CAPÍTULO 2 / TEMA 7 (REVISIÓN)

OPERACIONES | ¿Qué aprendimos?

operaciones básicas

Todos los días utilizamos operaciones básicas como la adición, la sustracción, la multiplicación y la división. Las adiciones con reagrupación de dos o más números se caracterizan por tener “llevadas” cuando sumamos sus unidades, decenas, centenas, etc. Las sustracciones con reagrupación son restas en las que existen cifras del minuendo que son menores a las del sustraendo. Por esta razón, hay que “pedirle” una unidad al dígito de al lado para así poder resolver el ejercicio. En el caso de la multiplicación, al igual que en la adición y en la sustracción, se observan dos tipos de operaciones: sin reagrupación y con reagrupación. Las multiplicaciones sin reagrupación son aquellas que no contienen llevadas cuando multiplicamos un dígito con otro. En cambio, las multiplicaciones con reagrupación sí poseen llevadas. En el caso de las divisiones, encontramos las exactas cuando el resto es igual a cero y las no exactas cuando el resto es diferente de cero.

Leibniz impuso el uso del punto como símbolo de la multiplicación e introdujo los dos puntos como símbolo de la división.

múltiplos y divisores

El múltiplo de un número es el resultado de multiplicar ese número por otro. Por otra parte, el divisor de un número es aquel que lo divide de manera exacta. Hay números cuyos únicos divisores son ellos mismos y el uno, a estos números se los conoce como números primos. Por otro lado, los números que poseen más de dos divisores se denominan números compuestos y pueden descomponerse en factores primos.

El número 1 no es ni primo ni compuesto porque solo tiene un divisor que es él mismo.

MÍNIMO COMÚN MÚLTIPLO Y MÁXIMO COMÚN DIVISOR

Todo número natural se puede descomponer como una multiplicación de sus factores primos. Este tipo de expresión permite calcular el mínimo común múltiplo (mcm) y el máximo común divisor (mcd) entre dos o más números. El mínimo común múltiplo (también llamado múltiplo común menor) de dos o más números es el menor múltiplo común de dos o más números distintos de cero. Para calcularlo, hay que descomponer los números en sus factores primos y luego elegir los números que tienen y no tienen en común a mayor potencia. El número que resulta del producto es el menor múltiplo en común. El máximo común divisor (también conocido como divisor común mayor) es el mayor divisor entre dos o más números distintos de cero. Para calcularlo también se descomponen los números en sus factores primos y luego se eligen solo los números que tienen en común a menor potencia. El producto de estos es el mayor divisor en común.

Si calculamos el mcd entre dos números de la secuencia de Fibonacci obtenemos otro número de Fibonacci. Por ejemplo, el mcd de (2, 8) = 2.

problemas con los números enteros

Una de las características de los números enteros es que permiten representar cantidades positivas y negativas, por esta razón se emplea la regla de los signos para saber qué signo tendrá un número al realizar una operación con enteros. En una adición, cuando todos los números son negativos, se suman y el resultado que se obtiene es un número negativo. Si se suman números positivos y negativos, los números de igual signo se suman y al final los dos números obtenidos se restan y se coloca el signo del número mayor. Para sustraer números enteros, hay que tener en cuenta que el símbolo de la resta cambia el signo al número que sigue según la regla. Para multiplicar y dividir números enteros primero se operan los signos mediante la regla de los signos y luego se multiplican o dividen los números según corresponda.

En Oriente se operaba con números positivos y negativos a través de ábacos, tablillas o bolas de colores. A los números negativos se los conocía como “números deudos” o “números absurdos”.

problemas con números decimales

Cuando vamos al supermercado la mayoría de los precios de los productos están marcados con números decimales. Con estos números también se pueden desarrollar las operaciones básicas de la aritmética. Para sumar números decimales tienen que coincidir la parte entera, la coma y la parte decimal de los números de acuerdo a sus valores posicionales. También podemos sumar números decimales con enteros siempre y cuando coincidan sus valores posicionales. Para sustraer también deben coincidir los valores posicionales y se pueden restar dos decimales o un decimal y un número entero. Para multiplicar dos números decimales se multiplican los números como si fuesen números naturales y el producto final será un número decimal que tendrá la cantidad de decimales igual a la suma de todos los decimales de ambos números. Si se multiplica un decimal con un natural el producto final tendrá tantos decimales como tenga el número decimal que se multiplicó inicialmente. Para dividir a estos números, ya sea por otro decimal o por un entero, hay que convertir a los números decimales en enteros. Para esto, se debe multiplicar al dividendo y al divisor por la unidad seguida de tantos ceros como decimales tenga el número con la parte decimal de más cifras. Luego se realiza la división de manera habitual.

A comienzos del siglo XV, un matemático árabe desarrolló el conjunto de los números decimales y sus usos.

operaciones combinadas

Las operaciones combinadas son aquellas que involucran dos o más operaciones aritméticas agrupadas por diferentes símbolos. Los símbolos de agrupamiento son: los paréntesis (), los corchetes [] y las llaves {}. En una operación con estos símbolos primero se eliminan los paréntesis, luego los corchetes y, por último, las llaves. En los ejercicios combinados se pueden encontrar agrupados números enteros, fracciones, números decimales, potencias y raíces. A la hora de resolverlos, se tiene que tener en cuenta el orden de eliminación de los símbolos de agrupamiento como también el de las operaciones: primero se resuelven las potencias y las raíces, luego las multiplicaciones y las divisiones, y por último, las sumas y las restas.

El símbolo de igual “=” fue creado por el matemático inglés Robert Recorde en 1557 para evitar la expresión textual “es igual a”.

CAPÍTULO 2 / TEMA 6

operaciones combinadas

Las operaciones combinadas son aquellas operaciones formadas por diferentes operaciones aritméticas que son agrupadas por paréntesis, corchetes y llaves. Para llegar al resultado hay que seguir algunas reglas de los símbolos de agrupamiento y tener en cuenta la prioridad entre las operaciones.

símbolos de agrupamiento

Muchas veces necesitamos agrupar dos o más operaciones aritméticas para indicar qué orden se debe seguir al momento de resolver un problema. Para agrupar las operaciones se utilizan algunos signos que son denominados símbolos de agrupamiento. Estos son: los paréntesis (), los corchetes [] y las llaves {}.

Cómo eliminar los símbolos de agrupamiento

Cada símbolo de agrupamiento tiene un orden de eliminación:

  • Primero se eliminan los paréntesis, luego los corchetes y finalmente las llaves. Para lograrlo, se resuelven paulatinamente las operaciones que se encuentran dentro de ellos. Hay que tener presente el signo que hay delante. Cuando los signos que están dentro y fuera del paréntesis, corchete o llave son positivos (+) y negativos (−) se consideran los siguientes pasos:

1. Si el signo que está fuera del símbolo de agrupamiento es positivo, los signos que se encuentran en su interior no cambian.

2. Si el signo que está fuera del símbolo de agrupamiento es negativo, los signos que se ubican dentro este cambia.

Por ejemplo:

-(80-44+15)=-80+44-15=-51

Otra forma sería:

+(80-44+15)=80-44+15=51

Como se puede observar, de acuerdo al signo que se encuentre delante del paréntesis pueden cambiar o no los signos de los términos que se encuentran dentro del mismo. Estos términos pueden ser factores o simples sumandos.

¿Sabías qué?
Para resolver operaciones combinadas se suelen aplicar las propiedades de las operaciones.

operaciones combinadas

Las operaciones combinadas son expresiones formadas por diferentes operaciones aritméticas como: sumas, restas, multiplicaciones, divisiones y algunas veces potencias y raíces que son agrupadas en paréntesis, corchetes y llaves.

Veremos el siguiente ejemplo:

Observa que primero se resuelven las operaciones que están dentro de los paréntesis y el resultado se coloca en el lugar donde se ubicaban las mismas. Luego se realiza la misma acción con los corchetes y finalmente con las llaves.

Cuando ya no quedan símbolos de agrupación hay que tener presente que también hay un orden en las operaciones: primero se resuelven potencias y raíces, luego multiplicaciones y divisiones, y por último, sumas y restas.

Observa este otro ejemplo:

Como te podrás dar cuenta, luego de eliminar los símbolos de agrupamiento se resuelven los términos que están fuera de estos con los resultados obtenidos.

Símbolo de igualdad

El símbolo del igual “=” fue creado por el matemático inglés Robert Recorde en 1557 para evitar la expresión textual “es igual a” que se usaba hasta ese momento. Para justificar la forma que obtuvo el símbolo expresó que “dos cosas no pueden ser más iguales que dos rectas paralelas” y, por eso, desde ese día sigue vigente para expresar igualdades en las operaciones.

VER INFOGRAFÍA

ejercicios combinados

Los ejercicios combinados, como se comentó anteriormente, además de incluir las operaciones básicas como la adición, la sustracción, la multiplicación y la resta pueden presentar potencias, raíces, decimales, fracciones y demás expresiones matemáticas.

Observa el siguiente ejercicio:

En el ejercicio anterior, la única diferencia es que observamos una potencia y una raíz. Para resolver el problema se realizan dichas operaciones a medida que se resuelven  las operaciones según su orden de prioridad.

¿Sabías qué?
El símbolo de la raíz cuadrada fue introducido en 1525 por el matemático Christoph Rudolff.

Observa el siguiente ejemplo:

-Resolver 1,5\, +\left \{ \frac{3}{2}+\left [ 2,5\cdot \left ( 5-1 \right ) \right ] \right \}=

Lo primero que debemos tener en cuenta es que se resuelven primero las multiplicaciones y divisiones, luego las sumas y restas. En este caso, observamos fracciones y números decimales:

1,5\, +\left \{ \frac{3}{2}+\left [ 2,5\cdot \left ( 4 \right ) \right ] \right \}=

1,5\, +\left \{ \frac{3}{2}+\left [ 10 \right ] \right \}=

1,5\, +\left \{ 11,5 \right \}=13

Importancia de las operaciones combinadas

A menudo nos enfrentamos a problemas en los que se deben realizar dos o más operaciones aritméticas. Es por ello que para poder resolver dichas situaciones debemos tener conocimiento sobre cómo abordar las operaciones combinadas. En el cálculo avanzado, las operaciones combinadas se resuelven de manera rutinaria porque permiten resolver problemas de manera más rápida y simple.

¡A resolver!

  1. Resuelve las siguientes operaciones combinadas.

a)4\cdot \left \{ 6-\left [ 3\cdot \left ( 5+1 \right ) \right ] \right \}+49

Solución
1

b) 3+\left \{ 10\cdot \left [ 2+\left ( 5-1 \right ) \right ]\right \}-50

Solución
13

c) 7-\left \{ 4+\left [ 5-\left ( 2-1 \right ) \right ] \right \}

Solución
−1

d) \left \{ 5^{2} -\left [ 2\cdot \sqrt{4}\, + (6-5)\right ]\right \}

Solución
20

e) 2,5\, +\left \{ \frac{1}{2}+\left [ 1,5\cdot \left ( 3-1 \right ) \right ] \right \}

Solución
6

RECURSOS PARA DOCENTES

Artículo “Cálculos combinados”

Este artículo destacado permite entender como resolver una operación combinada de acuerdo al orden de prioridades que se debe seguir. También muestra unas series de ejemplos que facilitan su comprensión.

VER

Artículo “Ejercicios combinados con sus desarrollos y soluciones”

El siguiente recurso muestra una serie de ejercicios con su respectiva resolución que permite corroborar los resultados.

VER

CAPÍTULO 2 / TEMA 6 (REVISIÓN)

OPERACIONES NUMÉRICAS | ¿qué aprendimos?

ADICIÓN

La adición es una de las cuatro operaciones básicas que utilizamos de forma habitual y se caracteriza porque nos permite añadir una cantidad a otra. Los términos de la adición son los sumandos y la suma. Para resolver adiciones usamos el algoritmo de la suma que consiste ordenar los sumando de manera que las unidades de mil, las centenas, las decenas y las unidades se encuentren en una misma columna. Si la suma de una columna es un número de dos cifras (mayor a 9), se coloca el valor de la segunda cifra y el valor de la primera se suma al resultado de la siguiente columna a la izquierda. Esta operación cumple varias propiedades como la conmutativa, la asociativa y la del elemento neutro.

La propiedad conmutativa explica que no importa cómo ordenemos los sumandos, el resultado es siempre el mismo.

SUSTRACCIÓN

La sustracción es una operación matemática que consiste en quitar o restar una cantidad a otra para determinar la diferencia. Esta operación es inversa a la suma y está formada por el minuendo, el sustraendo y la diferencia. El minuendo es la cantidad a la que se le va a restar, el sustraendo es la cantidad que se resta y la diferencia es el resultado de la sustracción. En la sustracciones los números se agrupan en columnas al igual que en la adición. Si el minuendo es mayor al sustraendo restamos de forma convencional. En caso contrario, debemos desagrupar la cifra de la columna siguiente y canjear un valor posicional.

Una forma de comprobar una sustracción es sumar el sustraendo y la diferencia, el resultado debe ser igual al minuendo.

OPERACIONES COMBINADAS

Las operaciones combinadas son aquellas en las que aparecen varias cálculos aritméticos. Para este tipo de problemas resolvemos primero las operaciones que están entre paréntesis y luego resolvemos las operaciones en el orden que aparecen de izquierda a derecha. En caso de que la operación combinada no tenga paréntesis resolvemos de acuerdo al orden que aparecen los términos de izquierda a derecha.

Los cálculos mentales permiten resolver operaciones sin usar herramientas como un lápiz, una hoja o una calculadora.

multiplicación

La multiplicación es sumar un mismo números tantas veces como indique otro. Por esta razón, esta operación se encuentra estrechamente relacionada con la adición. De hecho, toda adición iterada (adición que posee todos sus sumandos iguales) puede ser representada a través de la multiplicación. Su elementos principales son los factores y el producto. Los primeros son los números que se multiplican y el segundo corresponde al resultado. Para multiplicaciones de una cifra se ordenan los factores de forma vertical, se multiplica la unidad del segundo factor por la unidad del primero y luego se anota el resultado en la parte inferior, después se multiplica la unidad del segundo factor por la decena del primero y se anota el resultado.

Al multiplicar un número por la unidad seguida de cero se añade a la derecha de este la misma cantidad de ceros que acompañen a la unidad.

división

La división es una operación matemática que consiste en realizar reparticiones equitativas o formar grupos con la misma cantidad de elementos. Es una operación inversa a la multiplicación y puede considerarse una sustracción sucesiva. Los elementos de la división son el dividendo, el divisor, el cociente y el residuo o resto. El dividendo es la cantidad que se va a repartir, el divisor es la cantidad en la que se va a dividir, el cociente es el resultado y el residuo o resto es la parte que no se puede dividir. Para resolver divisiones buscamos un número que al ser multiplicado por el divisor sea igual o cercano al valor del dividendo.

Cada vez que compartimos alimentos hacemos una división, por ejemplo, esta pizza se dividió en 6 porciones, lo que es igual a 1 ÷ 6.

CAPÍTULO 2 / TEMA 3

OPERACIONES COMBINADAS

La adición y la sustracción están presentes en múltiples situaciones de nuestra vida cotidiana, son operaciones inversas que en muchas ocasiones pueden emplearse de forma combinadas. Para este tipo de problemas usamos ciertos símbolos como el paréntesis que permiten una resolución más sencilla.

OPERACIONES COMBINADAS

Las operaciones combinadas son aquellas en las que aparecen varias cálculos aritméticos para resolver.

La adición y la sustracción, además de ser operaciones básicas de las matemáticas, son dos operaciones inversas, por lo tanto, una adición puede ser comprobada a través de la sustracción y de igual modo, al resolver una sustracción, sus resultados pueden comprobarse a través de la adición. Conocer bien el desarrollo de las sumas y restas es fundamental para resolver cálculos combinados.

Para resolver operaciones combinadas de adición y sustracción debemos seguir ciertos pasos:

  • Operaciones con paréntesis
  1. Resolvemos las operaciones que están entre paréntesis.
  2. Resolvemos las demás según el orden en que aparecen, de izquierda a derecha.

– Ejemplo:

 

Observa que en primer lugar resolvimos lo que estaba dentro de los paréntesis y luego según el orden de izquierda a derecha.

  • Operaciones sin paréntesis

Si las operaciones combinadas de adición y sustracción no tienen operaciones entre paréntesis “()” debemos resolver según el orden en que aparecen de izquierda a derecha.

– Ejemplo:

Tal como lo muestra el ejemplo, resolvimos las operaciones en el orden que aparecen de izquierda a derecha.

¿Sabías qué?
Uno de los signos más usados en operaciones matemáticas es el paréntesis. Permite determinar el orden y prioridad de las operaciones.

¡Es tu turno!

  • (354 + 689) − 798
Solución

El resultado es 245.

  • 1.340 − 1.120 + 250
Solución

El resultado es 470.

  • (8.932 − 5670) + 990 − (459 + 615)
Solución

El resultado es 3.178.

  • 9.980 − 8.760 − 130 + 2700
Solución

 

El resultado es 3.790.

CÁLCULOS MENTALES

El cálculo mental, como su nombre lo indica, permite realizar cálculos sin que sea necesario un lápiz, una hoja o una calculadora. Para resolver problemas de forma mental usamos estrategias que aplican propiedades de los números y de las operaciones matemáticas.

Una de las mejores formas de desarrollar y ejercitar la comprensión numérica es a través de los cálculos mentales. Además de resolver problemas más rápido, permiten mejorar la concentración y la agilidad mental para otras situaciones. Con la práctica se pueden resolver cálculos más complejos en los cuales un papel y un lápiz no serían necesarios.

Para realizar cálculos mentales podemos hacer uso de diferentes estrategias:

Descomponer

La descomposición de un número mentalmente permite resolver adiciones y sustracciones de forma más sencilla. Para esto, se descompone el primero de los términos de acuerdo al valor posicional de sus cifras y luego se le suma o resta al número no descompuesto un valor posicional a la vez. Por ejemplo:

35 − 12 = ?

Descomponemos el número 12 de la siguiente forma:

12 = 10 + 2

Luego restamos un valor posicional a la vez al término no descompuesto, en este caso el término no descompuesto es el número 35.

35 − 10 = 25

25 − 2 = 23

Entonces:

 35 − 12 = 23

Completar la decena

Una estrategia que se puede emplear para resolver adiciones y sustracciones es completar la decena. Veamos un ejemplo:

35 + 8 = ?

El número 35 está entre las decenas 30 y 40, entonces sumamos las 5 unidades que faltan para que llegue a 40:

35 + 5 = 40

Luego, esas 5 unidades se las restamos al sumando 8:

8 − 5 = 3

Finalmente sumamos los dos resultados:

40 + 3 = 43

 

– Otro ejemplo:

22 − 12 = ?

El número 22 está entre la decenas 20 y 30, entonces restamos los 2 que es lo que faltan para llegar a 20:

22 − 2 = 20

Luego, restamos esas 2 unidades al sustraendo:

12 − 2 = 10

Al final hacemos la resta con esos resultados:

20 − 10 = 10

Aplicar la propiedad asociativa

Esta es una estrategia que permite resolver adiciones. La propiedad asociativa establece que al sumar tres o más sumandos, no importa el orden en que se realicen las operaciones, la suma es la misma. Por lo tanto, los sumandos pueden agruparse de forma que faciliten tus cálculos. Veamos un ejemplo:

320 + 300 + 80 = ?

En este caso, vamos a agrupar los siguientes términos:

320 + 300 + 80

(320 + 80) + 300

400 + 300 = 700

¿Sabías qué?
La palabra “cálculo” proviene del término latino calculus que significa “piedra”. Anteriormente se usaban las piedras para contar.

PROBLEMAS

Para resolver problemas aditivos es necesario comprender la situación y seleccionar los datos que permitan elegir una estrategia para encontrar la solución, y así dar una respuesta al problema. Veamos algunos:

1. En un maratón se deben correr 5.000 metros. Pablo avanzó 1.335 metros y se detuvo a tomar agua para refrescarse. Luego avanzó 1.280 metros más y volvió a tomar agua. ¿Cuántos metros de la maratón le faltan correr a Pablo?

  • Datos

Distancia que debe correr Pablo: 5.000 metros

Distancia 1 que recorrió Pablo: 1.335 metros

Distancia 2 que recorrió Pablo: 1.280 metros

  • Pregunta

¿Cuántos metros de la maratón le faltan correr a Pablo?

  • Reflexiona

Para conocer cuántos metros le faltan a Pablo por recorrer debemos restar a la distancia total, la suma de la distancia 1 y la distancia 2.

  • Resuelve

5.000 − (1.335 + 1.280)

5.000 − 2.615

2.385

  • Respuesta

A Pablo le faltan por correr 2.385 metros del maratón.


2. Daniela y su familia salieron de excursión a la montaña, durante su visita tomaron 243 fotografías de los paisajes y 125 fotografías de ellos mismos. Si en la excursión pasada tomaron 42 fotografías menos, ¿cuántas fotografías tomaron en la excursión anterior?

  • Datos

Fotografías de los paisajes: 243

Fotografías de ellos mismos: 125

Fotografías de la excursión anterior: 42

  • Pregunta

¿Cuántas fotografías tomaron en la excursión anterior?

  • Reflexiona

Para saber cuántas fotografías tomaron en la excursión pasada debemos sumar las fotografías de paisajes y de la familia que tomaron durante esta excursión y luego restar las 42 fotografías menos.

  • Resuelve

(243 + 125) − 42

368 − 42

326

  • Respuesta

La familia de Daniela tomó durante la excursión anterior 326 fotografías.


3. Un autobús se desplaza por la ciudad. En su primera parada recoge 12 pasajeros, en la segunda se suben 3 y se bajan 6, en la tercera se suben 9 y se bajan 8. Al llegar a la cuarta parada, ¿cuántos pasajeros lleva el bus?

  • Datos

Primera parada: suben 12 pasajeros

Segunda parada: suben 3 y se bajan 6 pasajeros

Tercera parada: suben 9 y se bajan 8 pasajeros

  • Pregunta

¿Cuántos pasajeros lleva el bus al llegar a la cuarta parada?

  • Reflexiona

Para resolver este tipo de problemas debemos asociar que cuando el bus recoge pasajeros, se realiza la operación sumar, y cuando se bajan pasajeros del bus, se realiza la operación restar. Así al traducir el problema al lenguaje matemático obtenemos: 12 + 3 − 6 + 9 − 8.

Una forma más fácil de resolverlo es contar primero el número de personas que se subieron al bus: (12 + 3 + 9) y después restarle el número de personas que se bajaron: (6 + 8). Obtenemos en ese caso la expresión: (12 + 3 + 9) − (6 + 8).

  • Resuelve

(12 + 3 + 9) − (6 + 8)

24 − 14

10

  • Respuesta

El bus al llegar a la cuarta parada lleva 10 pasajeros.


¿Por qué importan los cálculos combinados?

Resolver adiciones y sustracciones permite desarrollar la capacidad de solucionar situaciones en nuestra vida cotidiana y de esta forma crear, adaptar y resolver problemas matemáticos en un contexto familiar, escolar y social. Una de las situaciones en las que aplicamos esto es al momento de hacer una compra, pues si sumamos todos los precios de productos y luego lo restamos a la cantidad de dinero que tenemos, podremos saber cuánto dinero tendremos al final de una compra.

¡A practicar!

1. Resuelve los siguientes problemas:

a) Miguel tiene 25 años y Camila tiene 10 años más que él. Si Alejandro tiene 15 años menos que Camila, ¿cuántos años tiene Alejandro?

Solución

Datos

Edad de Miguel: 25 años

Edad de Camila : 10 años más que Miguel

Edad de Alejandro: 15 años menos que Camila

Pregunta

¿Cuántos años tiene Alejandro?

Reflexiona

Para resolver el problema debemos sumar los años de más que tiene Camila a la edad de Miguel y luego restar los 15 años que tiene de diferencia la edad de Alejandro con la de Camila.

Resuelve

(25 + 10) − 15

35 − 15

20

  • Respuesta

Alejandro tiene 20 años.

b) En una pequeña granja se recolectan aproximadamente 2.500 litros de leche de vaca, de ese total 1.800 litros se venden, 680 litros se emplean para elaborar postres y el resto, los granjeros lo dejan para su consumo. ¿Cuántos litros de leche de vaca dejan los granjeros para consumir?

Solución

Datos

Litros de leche recolectada: 2.500

Litros de leche que se venden: 1.800

Litros de leche que se emplean para postres: 680

Pregunta

¿Cuántos litros de leche de vaca dejan los granjeros para consumir?

Reflexiona

Para resolver el problema debemos restar a la cantidad de leche recolectada, la cantidad de litros vendidos más los empleados para los postres.

Resolvemos

2.500 − (1.800 + 680)

2.500 − 2.480

20

  • Respuesta

Los granjeros dejan 20 litros de leche de vaca para su consumo.

 

2. Resuelve las operaciones mentalmente con las estrategias mencionadas anteriormente:

  • 410 + 600 + 9
Solución
El resultado es 1.019.
  • 74 − 63
Solución
El resultado es 11.
  • 97 − 77
Solución
El resultado es 20.
  • 25 + 36
Solución
El resultado es 61.
  • 39 − 18
Solución
El resultado es 21.
  • 39 + 15
Solución
El resultado es 54.
  • 74 − 44
Solución
El resultado es 30.
  • 57 − 22
Solución
El resultado es 35.

RECURSOS PARA DOCENTES

Artículo “Operaciones combinadas”

El siguiente material proporciona información sobre cómo resolver problemas de operaciones combinadas y los pasos para resolver sumas y restas con y sin paréntesis.

VER

Artículo “Cálculos mentales”

El artículo profundiza en algunas otras estrategias usadas para resolver cálculos mentales, también muestra algunos elementos útiles al momento de resolver problemas de forma mental.

VER

CAPÍTULO 2 / TEMA 5 (REVISIÓN)

OPERACIONES │ ¿qué aprendimos?

OPERACIONES CON DECIMALES

Con los números decimales podemos realizar las mismas operaciones aritméticas que con los números enteros. Para la suma y la resta, las cifras deben tener la misma cantidad de decimales y las comas deben estar alineadas en una línea vertical. En la multiplicación, el resultado tendrá el total de decimales que tengan los factores. Existen tres posibles casos para dividir con decimales: decimal entre entero, entero entre decimal y decimal entre decimal.

Los decimales son parte de nuestra vida cotidiana, por ejemplo, los precios de los artículos vienen por lo general expresados en cifras decimales.

OPERACIONES COMBINADAS

Con frecuencia, en matemática debemos realizar cálculos que combinan diferentes operaciones algebraicas, así como varios tipos de números, y en ocasiones se requiere el uso de signos de agrupación que determinan las prioridades de dichas operaciones. Debemos resolver primero las operaciones dentro del paréntesis, luego las del corchete y, por último, las de las llaves. Es importante recordar que las multiplicaciones y las divisiones se resuelven primero que las sumas y las restas.

Los signos de agrupación sirven para expresar el orden de las operaciones. Para aplicar propiedades como la asociativa y la distributiva podemos usar paréntesis.

ECUACIONES

Las ecuaciones son expresiones algebraicas compuestas por miembros separados por una igualdad. Los miembros contienen términos y al menos una variable, también llamada incógnita. Por lo general, para obtener el valor de las incógnitas debemos realizar despejes: proceso que consiste en aplicar en ambos miembros de la ecuación la operación opuesta del término o coeficiente que se desea despejar.

Las ecuaciones son expresiones que deben contener una igualdad y al menos una variable o incógnita.

INECUACIONES

Son expresiones que muestran relaciones de desigualdad por medio de símbolos como <, >, o . Deben contener por lo menos una variable, y la solución la representamos a través de un intervalo de valores que satisfacen la desigualdad. Los despejes en las inecuaciones siguen las mismas reglas que en las ecuaciones pero, además, si se multiplica o divide por un número negativo, debemos cambiar el sentido de la desigualdad.

Las inecuaciones se pueden utilizar para plantear situaciones cuya variable está limitada por algún rango de valores, por ejemplo, la rapidez de un vehículo.

CAPÍTULO 2 / TEMA 2

OPERACIONES COMBINADAS

En ocasiones necesitamos efectuar cálculos que combinan varios tipos de números y, por lo tanto, diferentes tipos de operaciones. Para estos casos lo más importante es saber las jerarquías o el orden en el que debemos resolverlos, y para eso están los signos de agrupación. Aprendamos cuáles son y cómo usarlos.

SIGNOS DE AGRUPACIÓN

En matemática, los signos de agrupación hacen referencia a los paréntesis “( )”, corchetes “[ ]” y llaves “{ }” que empleamos para saber el orden o prioridad en el que realizamos las operaciones. En este sentido, existe una convención respecto a la jerarquía de estos signos:

  • En primer lugar, resolvemos los cálculos que se encuentran entre paréntesis “( )”.
  • En segundo lugar, realizamos los cálculos que están agrupados dentro de los corchetes “[ ]”.
  • Finalmente, hacemos las operaciones que están dentro de las llaves “{ }”.

¿Sabías qué?

En una ecuación no deberían aparecer corchetes sin la presencia de paréntesis, ya que los paréntesis tienen la prioridad en el orden de operaciones.

Operaciones combinadas en la calculadora

Muchas calculadoras u hojas de cálculo no utilizan los corchetes ni las llaves para jerarquizar el orden de operaciones combinadas y solo aplican los paréntesis para indicar qué operaciones se realizan primero. Por ejemplo, si deseamos resolver la operación:

\sqrt{\frac{\left ( 27-15 \right )\times 8}{\left [ (11+39)-(47-19) \right ]\times 6}}

El modo de introducir esta operación en algunas calculadoras (con entrada de datos SVPAM) sería:

Como observamos, hay diferentes niveles de jerarquía en los paréntesis, que en este caso, los denotamos por colores.

En las calculadoras también debemos emplear los signos de agrupación para indicar el orden de las operaciones. El uso incorrecto de los paréntesis, o su omisión cuando se necesiten, arrojará resultados erróneos. Por ejemplo, la operación (12 − 10) / 4 da como resultado 0,5; sin embargo, si obviamos los paréntesis y solo escribimos 12 − 10 / 4, el resultado será 9,5.

METODOLOGÍA PARA RESOLVER PROBLEMAS COMBINADOS

Cuando se presentan ejercicios que combinan diversas operaciones, así como diferentes tipos de números, es recomendable que sigamos los siguientes pasos:

1. Identificamos los signos de agrupación que aparecen en el ejercicio para saber el orden en el que vamos a resolver los términos. En este ejemplo tenemos paréntesis, corchetes y llaves.

\frac{1}{12}\times \left \{ -36\times \left [ \frac{5}{3}\times \left ( -\frac{9}{4}\times 7,81+22,06 \right ) \right ] \right \}=

2. Realizamos primero las operaciones que se encuentran dentro del paréntesis.

\frac{1}{12}\times \left \{ -36\times \left [ \frac{5}{3}\times \left ( {\color{Red} -\frac{9}{4}\times 7,81+22,06} \right ) \right ] \right \}=

Multiplicación y división primero

Si en una operación tenemos dos o más términos que se suman o restan y no hay paréntesis, pero a su vez cada término tiene una multiplicación o una división, primero hacemos la multiplicación o la división antes de hacer la suma o la resta.

Multiplicamos la fracción por 7,81 ya que esta operación tiene prioridad sobre la suma. Las multiplicaciones se resuelven de manera lineal, así que basta con multiplicar −9 × 7,81, y dividir el producto de esta multiplicación entre el denominador de la fracción (4).

-9\times 7,81 = -70,29

-70,29\div 4=-17,5725

Luego realizamos la suma de este resultado con 22,06. Como se trata de una suma de números con signos diferentes, empleamos una regla de los signos: ambos números se restan y se mantiene el signo del número con mayor valor absoluto.

(-17.5725)+ (22,06)=4,4875

3. Una vez que realizamos todas las operaciones dentro del paréntesis, lo eliminamos y agregamos el resultado obtenido. Luego seguimos con las operaciones dentro de los corchetes:

\frac{1}{12}\times \left \{ -36\times \left [ {\color{Blue} \frac{5}{3}}{\color{Blue} \times 4,4875} \right ] \right \}=

Multiplicamos el número decimal por 5 y el producto lo dividimos entre 3.

5\times 4,4875=22,4375

22,4375\div 3\approx 7,48

4. Eliminamos los corchetes y colocamos el resultado obtenido. A continuación, realizamos la operación dentro de las llaves:

\frac{1}{12}\times \left \{{\color{Green} -36\times 7,48} \right \}=

Multiplicamos el número negativo por el número decimal. Aplicamos la regla de los signo para la multiplicación: (−)(+)=(−).

-36\times 7,48 = -269,28

5. Por último, resolvemos la multiplicación. En este caso solo tenemos que multiplicar el resultado anterior por la fracción 1/12, lo que es igual a solo dividir entre 12 el número −269,28.

1\times -269,28=-269,28

-269,28\div 12=-22,44

6. Escribimos el resultado:

\frac{1}{12}\times \left \{ -36\times \left [ \frac{5}{3}\times \left ( -\frac{9}{4}\times 7,81+22,06 \right ) \right ] \right \}=\boldsymbol{-22,44}

En ocasiones no se utilizan todos los signos de agrupación y se trabaja solo con paréntesis que tienen diferentes jerarquías como podemos ver en la parte superior de la imagen. En este caso, debemos resolver primero las operaciones que están dentro de los paréntesis más internos hasta terminar con los paréntesis externos.

EJERCICIOS COMBINADOS

Los ejercicios combinados pueden involucrar diferentes tipos de números y además varias operaciones, y de ser necesario, el orden para realizarlos viene determinado por los signos de agrupación.

Si los términos dentro de un signo de agrupación contienen diferentes tipos de números, por ejemplo, fracciones, decimales, potencias o radicales; será necesario que realicemos primero una transformación para unificar el tipo de número antes de resolver.

– Ejemplo:

\left \{ \frac{8}{12}\left [ 5^{3}-\left ( \frac{9}{7}-\frac{2}{3} \right ) \right ]+\sqrt{4} \right \}=

  • Primero resolvemos la operación dentro de los paréntesis:

\left \{ \frac{8}{12}\left [ 5^{3}-\left ({\color{Red} \frac{9}{7}-\frac{2}{3} }\right ) \right ]+\sqrt{4} \right \}=

En este caso, es una resta de fracciones:

\frac{9}{7}-\frac{2}{3}=\frac{27-14}{21}=\frac{13}{21}

  • Eliminamos los paréntesis y colocamos el resultado. Luego resolvemos la operación dentro de los corchetes:

\left \{ \frac{8}{12}\left [ {\color{Blue} 5^{3}-\frac{13}{21}} \right ]+\sqrt{4} \right \}=

Resolvemos la potencia:

5^{3}=5\times 5\times 5 = 125

Después resolvemos la resta:

\frac{125}{1}-\frac{13}{21}=\frac{2.625-13}{21}=\frac{2.612}{21}

Expresamos la fracción como su número decimal equivalente por medio de una división entre su numerador y denominador:

2.612\div 21=124,38

  • Eliminamos lo corchetes y escribimos el nuevo resultado. Ahora, resolvemos las operaciones dentro de las llaves:

\left \{ {\color{Green} \frac{8}{12}\times 124,38} +\sqrt{4}\right \}=

Tenemos dos operaciones dentro de las llaves, y como las multiplicaciones tienen prioridad sobre las sumas, hacemos la multiplicación de la fracción con el número decimal primero:

8\times 124,38=995,04

995,04\div 12=82,92

Después realizamos la suma con el radical:

\left \{ 82,92+\sqrt{4} \right \}=

Resolvemos la raíz cuadrada. En este caso, es un cuadrado perfecto y la raíz es exacta.

\sqrt{4}=2

Finalmente sumamos:

82,92+2=84,92

  • Por último, escribimos el resultado:

\left \{ \frac{8}{12}\left [ 5^{3}-\left ( \frac{9}{7}-\frac{2}{3} \right ) \right ]+\sqrt{4} \right \}=\boldsymbol{84,92}

Las operaciones básicas utilizadas en aritmética son la suma, la resta, la multiplicación y la división. Sin embargo, podemos encontrar otras operaciones, como la potenciación, que en esencia es una multiplicación sucesiva de factores iguales. Por ejemplo, si queremos conocer el resultado de 23, solo efectuamos la operación 2 x 2 x 2 = 8.

¡A practicar!

Determina la solución de los siguientes ejercicios combinados.

  • \frac{8}{9}\left \{ -14,7+\frac{6^{3}}{4}\left [ 3^{2}+\sqrt{9}\times \left ( 6,5-\frac{13}{4} \right ) \right ] \right \}=
Solución

\frac{8}{9}\left \{ -14,7+\frac{6^{3}}{4}\left [ 3^{2}+\sqrt{9}\times \left ( 6,5-\frac{13}{4} \right ) \right ] \right \}=\boldsymbol{886,9\widehat{3}}

  • \left \{ \frac{1}{3}\times \frac{7}{8}+\sqrt{4}\left [ 2^{3}-\frac{21}{9}\left ( 0,75+\frac{3}{2} \right ) \right ] \right \}=
Solución

\left \{ \frac{1}{3}\times \frac{7}{8}+\sqrt{4}\left [ 2^{3}-\frac{21}{9}\left ( 0,75+\frac{3}{2} \right ) \right ] \right \}=\boldsymbol{5,79}

  • 2\left \{5^{3} \left [ \frac{1}{5}\left ( 8,36-\sqrt{25} \right )+3 \right ] \right \}=
Solución

2\left \{5^{3} \left [ \frac{1}{5}\left ( 8,36-\sqrt{25} \right )+3 \right ] \right \}=\boldsymbol{918}

RECURSOS PARA DOCENTES

Artículo “¿Cómo realizar ejercicios combinados con fracciones?”

Este recurso describe por medio de ejemplos el procedimiento para realizar operaciones combinadas entre números naturales, fracciones y potencias.

VER

Artículo “Los números irracionales”

El enlace que se presenta explica las características y propiedades de los números irracionales, así como ejemplos de esta categoría de números.

VER

Artículo “Resolución de cálculos combinados con paréntesis, corchetes y llaves”

Con este material podrá expandir la práctica sobre las operaciones combinadas y sus respectivos signos de agrupación.

VER