CAPÍTULO 7 / TEMA 1

SUCESIONES

Las sucesiones son series de números con un orden establecido llamado patrón. Algunas tienen un patrón en el que se suman o restan cantidades constantes, mientras que en otras el patrón se forma por medio de la multiplicación o división de cantidades constantes. Hoy aprenderemos cómo se llaman estos tipos de sucesiones y cómo calcular sus términos generales.

Las sucesiones forman parte de nuestra vida cotidiana. Incluso desde muy temprana edad ya están presentes de manera implícita en actividades que van desde aprender a contar hasta el cálculo de intereses compuestos de créditos bancarios. Las sucesiones se aplican cuando aprendemos a multiplicar o en programación para el diseño de videojuegos, por ejemplo.

¿QUÉ ES UNA SUCESIÓN?

Una sucesión es una secuencia ordenada de números o elementos que obedecen a un patrón o regla de formación particular. Por ejemplo, veamos la siguiente sucesión:

2, 4, 6, 8, 10, 12, 14, 16, 18, 20 …

En este caso, la sucesión está formada por números ordenados que reconocemos como cifras pares. Los puntos suspensivos al final nos indican que la sucesión es infinita.

Nota que cada número es 2 unidades superior al anterior, por lo tanto, el patrón de la sucesión consta de sumar 2.

¿Sabías qué?
Los elementos de una sucesión se llaman “terminos”.

Si denominamos a1 al primer término de la sucesión, a2 al segundo término, a3 al tercer término, y así sucesivamente, podemos determinar la regla de sucesión que sigue hasta el enésimo valor que llamaremos an. Los subíndices indican el lugar que ocupa cada elemento en la sucesión.

Observa que:

a1 = 2

a2 = 4

a3 = 6

a4 = 8

an = 2n

A partir de este análisis podemos obtener el término general de la sucesión:

an = 2n

Donde n es cualquier número entero. Por ejemplo, si n = 5, el quinto término de la sucesión es:

a5 = 2 × 5 = 10

Los término a20 y a25 de esta misma sucesión son los siguientes:

  • a20 = 2 × 20 = 40
  • a25 = 2 × 25 = 50

¿Qué es el término general de la sucesión?

Es el término que ocupa el enésimo lugar en la sucesión. Se escribe con la letra que denota la sucesión y el subíndice n. Por ejemplo, an.

Leonardo Pisa dio a conocer el uso de las sucesiones de Fibonacci en la solución de problemas (aunque ya se las usaban muchos años atrás). La espiral de Fibonacci, se construye trazando arcos circulares entre dos diagonales de cuadrados adosados, cuyos lados equivalen a los términos de la sucesión de Fibonacci: 1, 1, 2, 3, 5, 8, 13, 21,…

VER INFOGRAFÍA

TIPOS DE SUCESIONES

Existen varias maneras de clasificar las sucesiones, por ejemplo, podemos decir que las sucesiones pueden ser finitas, o infinitas. Sin embargo, también podemos clasificarlas de acuerdo a la diferencia o a la razón entre sus términos. En estos casos hablamos de sucesiones aritméticas y geométricas.

Sucesiones aritméticas

Son aquellas en las que cada término, con excepción del primero, tiene una diferencia con el término anterior en una cantidad constante. Por ejemplo:

20.000, 22.000, 24.000, 26.000, ..

Esta es una sucesión aritmética porque la diferencia entre un término y el siguiente es la misma en cada caso, es decir, la diferencia es constante.

A esta diferencia, denominada diferencia común y representada como d, la podemos obtener por medio de una resta entre cualquier término y su término anterior. Para la sucesión antes señalada la diferencia común d es:

d = 22.000 − 20.000 = 2.000

d = 24.000 − 22.000 = 2.000

d = 26.000 − 24.000 = 2.000

Observa que sin importar el término que elijas la diferencia siempre será la misma.


– Otro ejemplo:

Para la siguiente sucesión:

5, 1, −3, −7, −11, −15, …

La diferencia común d = −4 porque:

d = 1 − 5 = −4

d = −3 − 1 = −4

d = −15 − (−11) = −4

¡Es tu turno!

Observa estas sucesiones aritméticas, ¿cuál es la diferencia común d?

  • −15, −12, −9, −6, −3, 0, 3, …
    Solución
    d = 3
  • 230, 345, 460, 575, 690, 805, …
    Solución
    d = 115

Término enésimo de una sucesión aritmética

El término enésimo de una sucesión aritmética con un primer término a1 y una diferencia común d es el siguiente:

an = a1 + d(n − 1)

– Ejemplo:

Para la siguiente sucesión:

−3, −1, 1, 3, 5, … 

La diferencia común d = 2 porque:

d = −1 − (−3)

d = 2

Por lo tanto, si a1 = −3 y d = 2, el término enésimo de la sucesión es:

an = a1 + d(n −1)

an−3 + 2(n − 1)

an = −3 + (2n − 2)

an = −3 + 2n − 2

an = 2n − 5

Entonces, si queremo determinar a10, a12 y a15 solo aplicamos:

  • a10 = 2n − 5 = 2 (10) − 5 = 20 − 5

a10 =15

 

  • a12 = 2n − 5 = 2 (12) − 5 = 24 − 5

a12 = 19

 

  • a15 = 2n − 5 = 2 (15) − 5 = 30 − 5

a15 = 25

Podemos considerar los ahorros como una sucesión aritmética. Por ejemplo, si tenemos $ 10 ahorrados y cada mes le sumamos $ 2, los primeros cuatro meses podríamos representarlos como: 10, 12, 14, 16, … Entonces, si a1 = 10 y la diferencia común d = 2, el término enésimo de esta sucesión sería: an = 8 + 2n. Calcula cuánto podemos ahorrar de esta manera en 6 meses.

Sucesiones geométricas

Son aquellas en las que cada término (excepto el primero) es múltiplo del término anterior de la sucesión. El cociente entre cualquier término y su precedente es constante. Por ejemplo:

20.000, 30.000, 45.000, 67.500, 101.250, …

Esta es una sucesión geométrica porque el cociente de la división entre cualquier término y su anterior es el mismo en cada caso.

Este cociente es igual al múltiplo común entre términos y se llama razón común (r). Se obtiene al dividir un término con el que le precede. Para esta sucesión la razón común se determina así:

r = 30.000 ÷ 20.000 = 1,5

r = 45.000 ÷ 30.000 = 1,5

r = 101.250 ÷ 67.500 = 1,5

Observa que sin importar el término que elijas la razón común es la misma: 1,5.


– Otro ejemplo:

Para la siguiente sucesión:

3, 12, 48, 192, 768, 3.072, …

La razón común es 4 porque:

r = 12 ÷ 3 = 4

r = 48 ÷ 12 = 4

r = 768 ÷ 192 = 4

¡Es tu turno!

Observa estas sucesiones geométricas, ¿cuál es la razón común?

  • 5, 10, 20, 40, 80, 160, 320, …
    Solución
    r = 2
  • −18, 54, −162, 486, −1.458, …
    Solución
    r = −3

Término enésimo de una sucesión geométrica

El término enésimo de una sucesión geométrica con un primer término a1 y una razón común r es el siguiente:

an = a1(rn − 1)

– Ejemplo:

Para la siguiente sucesión:

3, −6, 12, −24, 48, −96, …

La razón común r = −2 porque:

r = −6 ÷ 3 = −2

r = −24 ÷ 12 = −2

r = −96 ÷ 48 = −2

Por lo tanto, si a1 = 3 y r = −2, el término enésimo de la sucesión es:

an = a1(rn − 1)

an = 3(2n − 1)

Entonces, si queremos determinar a8, a10 y a12 solo aplicamos:

  • a8 = 3(−2n − 1) = 3(−28 − 1) = 3(−27) = 3(−128)

a8= −384

 

  • a10 = 3(−2n − 1) = 3(−210 − 1) = 3(−29) = 3(−512)

a10 = −1.536

 

  • a12 = 3(−2n − 1) = 3(−212 − 1) = 3(−211) = 3(−2.048)

a12 = −6.144

La división celular es un ejemplo de sucesión geométrica, ya que si por ejemplo, partimos de una célula (a1 = 1), durante el proceso de meiosis esta se divide y obtenemos dos células nuevas (a2 = 2). Luego, estas dos células a su vez se dividen y se tienen 4 células más (a3 = 4). La razón de progresión r = 2 y an = 2n − 1.

Resolvamos unos problemas

1. Marcos comenzó un trabajo y su pago inicial fue de $ 15.000. Se le prometió un aumento de $ 1.500 después de cada año. ¿Cuál será su salario en el séptimo año de trabajo? ¿y en el décimo año?

  • Datos

Salario inicial = a1 = $ 15.000

Aumento anual = d = $ 1.500

  • Reflexiona

Su salario después de los primeros años es: 15.000, 16.500, 18.000, 19.500 … Ya que se suma una cantidad constante, esta es una sucesión aritmética. El término general enésimo de una sucesión aritmética es an = a1 + d(n − 1). Donde a1 = 15.000. Tenemos que calcular la diferencia común, luego el término enésimo y finalmente a7 y a10.

  • Calcula

– Diferencia común, d

d = 16.500 − 15.000 = 1.500

 

– Término enésimo

an = a1 + d(n − 1)

an = 15.000 + 1.500(n − 1)

an = 15.000 + 1.500n − 1.500

an = 13.500 + 1.500n

 

– Términos a7 y a10

a7 = 13.500 + 1.500(7)

a7 = 13.500 + 10.500

a7 = 24.000

 

a10 = 13.500 + 1.500(10)

a10 = 13.500 + 15.000

a10 = 28.500

  • Responde

En su séptimo año Marcos tendrá un salario de $ 24.000.

En su décimo año Marcos tendrá un salario de $ 28.500.


2. Un auditorio tiene 15 asientos en la primera fila. Cada fila sucesiva tiene tres asientos más que el anterior. ¿Cuántos asientos hay en las primeras diez filas?

  • Datos

Asientos en la primera fila = a1 = 15

Diferencia con las demás filas = d = 3 asientos

  • Reflexiona

Como cada fila tiene 3 asientos más que la anterior se trata de una sucesión aritmética. Primero calculamos el término enésimo y luego determinamos los primeros diez términos.

  • Calcula

– Término enésimo

an = a1 + d(n − 1)

an = 15 + 3(n − 1)

an = 15 + 3n − 3

an = 12 + 3n

 

– Primeros diez términos

a1 = 12 + 3(1) = 12 + 3 = 15

a2 = 12 + 3(2) = 12 + 6 = 18

a3 = 12 + 3(3) = 12 + 9 = 21

a4 = 12 + 3(4) = 12 + 12 = 24

a5 = 12 + 3(5) = 12 + 15 = 27

a6 = 12 + 3(6) = 12 + 18 = 30

a7 = 12 + 3(7) = 12 + 21 = 33

a8 = 12 + 3(8) = 12 + 24 = 36

a9 = 12 + 3(9) = 12 + 27 = 39

a10 = 12 + 3(10) = 12 + 30 = 32

  • Responde

La cantidad de asientos en cada fila sigue este orden: 15, 18, 21, 24, 27, 30, 33, 36, 39, 32.


3. José tiene una alcancía. Si el día 1 sacó $ 1, el día 2 sacó $ 2, el día 3 sacó $ 4, el día 4 sacó $ 8, y así sucesivamente, ¿cuánto dinero sacó después de 30 días?

  • Datos

Dinero sacado el día 1 = a1 = $ 1

Dinero sacado el día 2 = a2 = $ 2

Dinero sacado el día 3 = a3 = $ 4

Dinero sacado el día 4 = a4 = $ 8

  • Reflexiona

Como la cantidad de dinero sacado se multiplica cada día, se trata de una sucesión geométrica. Por lo tanto, a partir de la fórmula general del término enésimo (an = a1(rn − 1)) podremos saber el dinero sacado a los 30 días. Nota que a1 = 1 y r = 2.

  • Calcula

an = a1(rn − 1)

a30 = 1(230 − 1)

a30 = 1(229)

a30 = 536.870.912

  • Responde

José sacó $ 536.870.912.

Las sucesiones también pueden clasificarse como progresivas o ascendentes; o regresivas o descendentes. Las primeras son aquellas que van de menor a mayor, mientras que las segundas son las que van de mayor a menor. Un ejemplo de estas sucesiones podemos verlo en el orden en el que enumeran los asientos de un estadio.

¡A practicar!

Observa las siguientes sucesiones.

  1. Indica si la sucesión es aritmética o geométrica.
  2. Encuentra el término enésimo.
  3. Determina a12 en cada caso.
  • 20, 19,3, 18,6, 17,9, …
Solución

a.

Es una sucesión aritmética.

 

b.

Si d = −0,7 y a1 = 20 el término enésimo es:

an = a1 + d(n − 1)

an = 20 + 0,7(n − 1)

an = 20 + (0,7n − 0,7)

an = 20 − 0,7n + 0,7

an = 20,7 − 0,7n

 

c.

a12 = 20,7 − 0,7 (12) = 20,7 − 8,4

a12 = 12,3

  • 4, 2, 1, 0,5, 0,25, …
Solución

a.

Es una sucesión geométrica.

 

b.

Si a1 = 4 y r = 0,5 el término enésimo es:

an = a1(rn − 1)

an = 4(0,5n − 1)

 

c.

a12 = 4(0,512 − 1) = 4 (0,513)

a12 = 4,8 × 10−5

  • 13, 23, 33, 43, 53, 63, …
Solución

a.

Es una sucesión aritmética.

 

b.

Si a1 = 13 y d = 10 el término enésimo es:

an = a1 + d(n − 1)

an = 13 + 10(n − 1)

an = 13 + 10n − 10

an = 3 + 10n

 

c.

a12 = 3 + 10(12) = 3 + 120

a12 = 123

RECURSOS PARA DOCENTES

Artículo “Sucesiones”

En el siguiente artículo encontrarás ejemplos relacionados con sucesiones aritméticas. Adicionalmente, el artículo describe algunos tipos de sucesiones.

VER

CAPÍTULO 2 / TEMA 7 (REVISIÓN)

OPERACIONES | ¿Qué aprendimos?

operaciones básicas

Todos los días utilizamos operaciones básicas como la adición, la sustracción, la multiplicación y la división. Las adiciones con reagrupación de dos o más números se caracterizan por tener “llevadas” cuando sumamos sus unidades, decenas, centenas, etc. Las sustracciones con reagrupación son restas en las que existen cifras del minuendo que son menores a las del sustraendo. Por esta razón, hay que “pedirle” una unidad al dígito de al lado para así poder resolver el ejercicio. En el caso de la multiplicación, al igual que en la adición y en la sustracción, se observan dos tipos de operaciones: sin reagrupación y con reagrupación. Las multiplicaciones sin reagrupación son aquellas que no contienen llevadas cuando multiplicamos un dígito con otro. En cambio, las multiplicaciones con reagrupación sí poseen llevadas. En el caso de las divisiones, encontramos las exactas cuando el resto es igual a cero y las no exactas cuando el resto es diferente de cero.

Leibniz impuso el uso del punto como símbolo de la multiplicación e introdujo los dos puntos como símbolo de la división.

múltiplos y divisores

El múltiplo de un número es el resultado de multiplicar ese número por otro. Por otra parte, el divisor de un número es aquel que lo divide de manera exacta. Hay números cuyos únicos divisores son ellos mismos y el uno, a estos números se los conoce como números primos. Por otro lado, los números que poseen más de dos divisores se denominan números compuestos y pueden descomponerse en factores primos.

El número 1 no es ni primo ni compuesto porque solo tiene un divisor que es él mismo.

MÍNIMO COMÚN MÚLTIPLO Y MÁXIMO COMÚN DIVISOR

Todo número natural se puede descomponer como una multiplicación de sus factores primos. Este tipo de expresión permite calcular el mínimo común múltiplo (mcm) y el máximo común divisor (mcd) entre dos o más números. El mínimo común múltiplo (también llamado múltiplo común menor) de dos o más números es el menor múltiplo común de dos o más números distintos de cero. Para calcularlo, hay que descomponer los números en sus factores primos y luego elegir los números que tienen y no tienen en común a mayor potencia. El número que resulta del producto es el menor múltiplo en común. El máximo común divisor (también conocido como divisor común mayor) es el mayor divisor entre dos o más números distintos de cero. Para calcularlo también se descomponen los números en sus factores primos y luego se eligen solo los números que tienen en común a menor potencia. El producto de estos es el mayor divisor en común.

Si calculamos el mcd entre dos números de la secuencia de Fibonacci obtenemos otro número de Fibonacci. Por ejemplo, el mcd de (2, 8) = 2.

problemas con los números enteros

Una de las características de los números enteros es que permiten representar cantidades positivas y negativas, por esta razón se emplea la regla de los signos para saber qué signo tendrá un número al realizar una operación con enteros. En una adición, cuando todos los números son negativos, se suman y el resultado que se obtiene es un número negativo. Si se suman números positivos y negativos, los números de igual signo se suman y al final los dos números obtenidos se restan y se coloca el signo del número mayor. Para sustraer números enteros, hay que tener en cuenta que el símbolo de la resta cambia el signo al número que sigue según la regla. Para multiplicar y dividir números enteros primero se operan los signos mediante la regla de los signos y luego se multiplican o dividen los números según corresponda.

En Oriente se operaba con números positivos y negativos a través de ábacos, tablillas o bolas de colores. A los números negativos se los conocía como “números deudos” o “números absurdos”.

problemas con números decimales

Cuando vamos al supermercado la mayoría de los precios de los productos están marcados con números decimales. Con estos números también se pueden desarrollar las operaciones básicas de la aritmética. Para sumar números decimales tienen que coincidir la parte entera, la coma y la parte decimal de los números de acuerdo a sus valores posicionales. También podemos sumar números decimales con enteros siempre y cuando coincidan sus valores posicionales. Para sustraer también deben coincidir los valores posicionales y se pueden restar dos decimales o un decimal y un número entero. Para multiplicar dos números decimales se multiplican los números como si fuesen números naturales y el producto final será un número decimal que tendrá la cantidad de decimales igual a la suma de todos los decimales de ambos números. Si se multiplica un decimal con un natural el producto final tendrá tantos decimales como tenga el número decimal que se multiplicó inicialmente. Para dividir a estos números, ya sea por otro decimal o por un entero, hay que convertir a los números decimales en enteros. Para esto, se debe multiplicar al dividendo y al divisor por la unidad seguida de tantos ceros como decimales tenga el número con la parte decimal de más cifras. Luego se realiza la división de manera habitual.

A comienzos del siglo XV, un matemático árabe desarrolló el conjunto de los números decimales y sus usos.

operaciones combinadas

Las operaciones combinadas son aquellas que involucran dos o más operaciones aritméticas agrupadas por diferentes símbolos. Los símbolos de agrupamiento son: los paréntesis (), los corchetes [] y las llaves {}. En una operación con estos símbolos primero se eliminan los paréntesis, luego los corchetes y, por último, las llaves. En los ejercicios combinados se pueden encontrar agrupados números enteros, fracciones, números decimales, potencias y raíces. A la hora de resolverlos, se tiene que tener en cuenta el orden de eliminación de los símbolos de agrupamiento como también el de las operaciones: primero se resuelven las potencias y las raíces, luego las multiplicaciones y las divisiones, y por último, las sumas y las restas.

El símbolo de igual “=” fue creado por el matemático inglés Robert Recorde en 1557 para evitar la expresión textual “es igual a”.

CAPÍTULO 2 / TEMA 5

problemas con números decimales

La presencia de los decimales en nuestras vidas ha permitido en ciertas ocasiones representar cantidades con mayor exactitud, por ejemplo, valores que se encuentran entre dos números enteros. Con este tipo de números podemos realizar operaciones básicas de la matemáticas a través de algoritmos similares a los usados en los números enteros.

Adición y sustracción de decimales

Los decimales se usan a diario. Un claro ejemplo son las cajas registradoras de los supermercados que suman y restan decimales todos los días, suman los productos que compramos y restan cuando obtenemos un descuento por alguna oferta. Como verás, los decimales son muy importantes para realizar operaciones en la vida cotidiana.

Adición

En el caso de la adición de números decimales, lo primero que se debe hacer es hacer coincidir los valores posicionales de los números, tanto de su parte entera (unidades, decenas, centenas, etc.) como de su parte decimal (décimos, centésimos, milésimos, etc.).

Una manera simple de ordenar los decimales es colocar uno debajo del otro de manera que la coma quede en una misma columna al igual que los valores de la izquierda. Si uno de los números tiene menos decimales que el otro, se completa con cero su parte decimal hasta que la cantidad de cifras decimales en ambos números sea la misma.

Finalmente, luego de ordenar los números, se suman con el mismo algoritmo de la suma usado en los números enteros. La única diferencia es que se debe colocar la coma del resultado en su columna correspondiente.

Por ejemplo:

-Resolver 10,357 + 7,23.

Al ordenar los números de acuerdo a sus valores posicionales y después de aplicar el algoritmo de la suma se obtuvo el siguiente resultado:

Observa que como 7,23 tiene dos decimales y 10,357 tiene tres, se agregó un cero en los decimales de 7,23 para poder sumarlos.

De esta manera, 10,357 + 7,23 es igual a 17,587.

Sumar números decimales y números enteros

Para sumar decimales y números enteros lo único que hay que hacer es transformar los enteros a decimales. Para ello, se deben agregar tantos ceros a estos como cifras decimales tenga el número decimal. Luego se ordenan los números de la manera explicada anteriormente.

Por ejemplo:

-Resolver 169 + 34,93.

En este caso, el número 34,93 tiene dos decimales, por lo tanto, al transformar el 169 a decimal quedaría expresado como 169,00. Luego se ordenan ambos números de acuerdo a sus valores posicionales. Observa que, en este caso, se trata de una suma “con llevada” y se realiza de la misma forma que una suma de este tipo con números enteros:

De esta manera, 169 + 34,93 es igual a 203,93.

A menudo se suelen convertir números decimales a fracciones para simplificar las operaciones. Los decimales que se pueden convertir de manera más fácil a fracción son los que tienen un cero antes de la coma. En estos casos, el denominador sería la unidad seguida de la cantidad de ceros consecutivos que tenga el decimal a la izquierda, y los números restantes serán iguales al denominador. De esta manera 0,037 es igual a 37/100.

Sustracción

La sustracción con decimales se realiza de manera similar a la sustracción de números enteros. En este caso, se deben hacer coincidir los valores posicionales del minuendo y del sustraendo. En caso de que alguno de los dos números tenga menor cantidad de decimales se completa con ceros.

Por ejemplo:

-Resolver 27,45 − 10,3

En este caso, completamos los decimales del 10,3 para que sean iguales, por lo tanto, se agrega un cero a la derecha. Luego posicionamos los números uno debajo del otro de manera que cada valor posicional se encuentre en una misma columna. Luego se resuelve la resta como lo hacemos con los números enteros. Al final, se debe anotar la coma en su columna correspondiente.

De esta forma, 27,45 − 10,3 es igual a 17,15.

Restar decimales y números enteros

La sustracción también se puede realizar entre números enteros y decimales. Para realizar los cálculos, el número entero se debe convertir a decimal y luego se resuelve la operación de la forma explicada anteriormente.

Por ejemplo:

-Resolver 973 − 632,38

En este caso, como el número decimal tiene dos decimales, debemos agregar dos ceros al número entero. De esta forma, el número 973 queda expresado como 973,00. Luego se posicionan ambos números uno debajo del otro, de manera que sus valores posicionales estén en una misma columna, y se resuelve la resta con decimal. De esta forma, el procedimiento es el siguiente:

El resultado de 973 − 632,38 es 340,62.

multiplicación y división de decimales

Otras de las operaciones básicas que podemos realizar con números decimales son la multiplicación y la división. La multiplicación permite realizar sumas reiteradas de manera rápida y la división permite repartir cantidades en partes iguales.

Multiplicación

Para multiplicar dos números decimales se pueden seguir los siguientes pasos:

  1. Multiplicar los números decimales de la misma manera que se multiplican los números enteros.
  2. El producto final será un número decimal que tendrá la cantidad de decimales igual a la suma de los decimales que tengan el multiplicando y el multiplicador. Por ejemplo, si el multiplicando tiene dos decimales y el multiplicador tiene un decimal, el resultado será un número con tres decimales porque 2 + 1 = 3.

Por ejemplo:

-Resolver 46,5 × 8,6.

Se resuelve la multiplicación de la misma forma en la que se resuelven multiplicaciones con números enteros. El resultado que se obtiene al sumar los dos productos parciales es 39990, como 46,5 tiene un decimal y 8,6 tiene un decimal también, el resultado debe tener dos decimales, es decir; dos números después de la coma, de esta forma el resultado será: 399,90. Observa el procedimiento:

Multiplicar decimales y números enteros

La multiplicación de decimales y números enteros se realiza de la misma forma que con los números enteros. Al final, el resultado tendrá la misma cantidad de decimales que el número decimal que se multiplica.

Por ejemplo:

-Resolver 7,809 × 4.

Al resolver la multiplicación se obtiene 31236, como 7,809 tiene tres decimales, el resultado de esta multiplicación tiene la misma cantidad de decimales, es decir, el resultado es 31,236. El procedimiento aplicado fue el siguiente:

Los decimales son tan usados que podemos encontrarlos en desde una factura de compra hasta una escala de medición. De acuerdo al país, se puede usar la coma o el punto para representarlos. Por ejemplo, en México y en varios países del Caribe se emplea al punto como símbolo para separar decimales, mientras que en España y en gran parte de los países del Cono Sur se usa la coma.

División

Dividir un número entero entre un número decimal

Para dividir un número entero entre un decimal se pueden seguir los siguientes pasos:

  1. Convertir el número decimal en un número entero. Para esto, se va a multiplicar el divisor por la unidad seguida de tantos ceros como decimales tenga el número. Por ejemplo, imagina que tenemos la división 278 : 3,6. En este caso, al convertir el decimal a entero se obtiene: 3,6 x 10 = 36.
  2. Multiplicar al dividendo por el mismo número que se haya multiplicado al divisor. En el ejemplo anterior sería: 278 x 10 = 2.780
  3. Dividir los números obtenidos. En este caso serían 2.780 : 36.

El resultado de la división sería el siguiente:

Cuando se restó 260 − 252 se obtuvo 8. Agregamos una coma en el cociente que era 77 y luego colocamos un 0 al lado del 8 para luego continuar con la división. En este caso, observa que el resto seguirá siempre con el mismo valor, esto se debe a que el resultado de esta división particular es un número infinito periódico (77,22222222222…), es decir, es un número en el que se repite de manera infinita un patrón en su parte decimal.

¿Sabías qué?
Los números decimales pueden ser finitos o infinitos. Dentro de estos últimos están los periódicos y los irracionales.

Dividir un número decimal entre un número entero

Para dividir un número decimal por un número entero se divide de la misma manera, como si fuesen enteros. Al bajar el primer número decimal, se agrega una coma en el cociente y se continúa la división.

El ejemplo a continuación indica el procedimiento para resolver la división 77,5 : 25. Observa que después de resolver la parte entera (77) se agrega la coma en el cociente y se continúa con la operación.

Dividir dos números decimales

Para dividir un decimal con otro decimal se pueden seguir los siguientes pasos (278,1 : 2,52):

  1. Convertir el dividendo y el divisor en números enteros. Para esto, se multiplican ambos números por la unidad seguida de tantos ceros como sea la mayor cantidad de decimales que tengan los números. Por ejemplo, imagina que tenemos 278,1 : 2,52. El número con mayor cantidad de decimales es 2,52 que tiene dos decimales, por lo tanto tenemos que multiplicar ambos números por 100:
    278,1 × 100 = 27.810
    2,52 × 100 = 252
  2. Luego se dividen los dos números obtenidos. En este caso es 27.810 : 252 y el resultado es 110,3. El procedimiento se observa a continuación:

¿Sabías qué?
Los números decimales se pueden escribir como fracciones y viceversa.

Los números decimales en la historia

A comienzos del siglo XV, un matemático árabe organizó el conjunto de los números decimales y sus usos. Un siglo más tarde, Stevin desarrolló números decimales que expresaban las décimas, centésimas, milésimas, etc., pero utilizaba una forma complicada de escritura. Por ejemplo, al número 456,765 lo escribía como 456 (0) 7 (1) 6 (2) 5 (3).

En el siglo XVII, los números decimales se empezaron a escribir con punto o coma para separar la parte entera de la parte decimal del número. En 1792, los decimales se empezaron a utilizar en todos los países al extenderse el Sistema Métrico Decimal.

¡A resolver!

  1. Resuelve las siguientes operaciones:

a) 32,98 + 16,2 = 

RESPUESTAS
49,18

b) 1.589 + 6,98 = 

RESPUESTAS
1.595,98

c) 2.549,8 – 1.563,89 = 

RESPUESTAS
985,91

d) 450,64 – 315,5 =

RESPUESTAS
135,14

e) 1.330,6 + 906,8 = 

RESPUESTAS
2.237,4

f) 23,369 – 3,963 = 

RESPUESTAS
19,406

g) 190,3 x 15 = 

RESPUESTAS
2.854,5

h) 987 x 3,118 = 

RESPUESTAS
3.077,466

i) 73,24 x 5,1 = 

RESPUESTAS
373,524

j) 14,57 x 8,29 = 

RESPUESTAS
120,7853

k) 73,8 : 6 = 

RESPUESTAS
12,3

l) 885,6 : 12 = 

RESPUESTAS
73,8

m) 5.462,5 : 23 = 

RESPUESTAS
237,5

n) 29,095 : 5,29 = 

RESPUESTAS
5,5

o) 799,46 : 1,29 = 

RESPUESTAS
619,73

RECURSOS PARA DOCENTES

Artículo “Números decimales”

El siguiente artículo destacado explica que es un número decimal y describe sus diferentes tipos.

VER

Artículo “Operaciones con números decimales”

Este recurso le permite entender cómo están formados los números decimales y cómo resolver las principales operaciones que los involucran.

VER

CAPÍTULO 2 / TEMA 1

OPERACIONES BÁSICAS

Los seres humanos tenemos la capacidad de contar cosas. Para este proceso de conteo necesitamos un conjunto de operaciones que facilitan los cálculos. La adición, la sustracción, la multiplicación y la resta son conocidas como operaciones básicas y su uso va desde lo cotidiano hasta lo científico. 

Adición y sustracción por reagrupación

Las adiciones y las sustracciones las utilizamos todos los días para contar cantidades como los puntos que obtenemos en un juego o cuando necesitamos saber lo que nos tienen que dar de vuelto al hacer una compra. Existen diversos métodos para realizar estas operaciones pero el resultado siempre es el mismo.

Adición por reagrupación

A menudo hacemos uso de las adiciones para resolver distintas situaciones. Cuando los números son pequeños usamos cálculos mentales, pero cuando los números son grandes generalmente hacemos la cuenta en un papel.

Los siguientes pasos te ayudarán a resolver adiciones por reagrupación:

1. Se escriben los números a sumar uno debajo del otro, de manera que coincidan las unidades, decenas, centenas, unidades de mil, etc.

2. Se inicia la suma de derecha a izquierda, a partir de las unidades. Si el resultado de la suma de las unidades es mayor a 9, se anota el resultado de la unidad de dicha suma y el valor de la otra cifra se anota sobre la columna de la izquierda. De esta manera, al resultado de la columna siguiente se le suma la cifra que se anotó con antelación.

Luego se procede a sumar las siguientes columnas junto con los números de las llevadas que se hayan podido generar en sumas de columnas anteriores.

Sustracción por reagrupación

Para resolver las sustracciones por reagrupación se pueden seguir los siguientes pasos:

1. Se escriben los números a restar uno debajo del otro, de manera que coincidan las unidades, decenas, centenas, etc.

2. Igual que en la adición, la sustracción se resuelve de derecha a izquierda. Si el número de la cifra superior es menor que el de la cifra inferior, no se puede restar de forma directa. En este caso, se coloca un 1 delante del número de arriba y se resuelve la resta. A este tipo de operación se la conoce como “resta con llevada” porque al resolver la siguiente columna se le debe restar el 1 que se tomó prestado anteriormente.

3. Se repite el procedimiento hasta abarcar todas las columnas.

Multiplicación

Las multiplicaciones nos sirven para simplificar situaciones en las que tendríamos que sumar reiteradamente un mismo número. De hecho, la multiplicación consiste en calcular el resultado de sumar un número por sí mismo tantas veces como indique otro número o multiplicador. Existen dos tipos de multiplicación: sin reagrupación y con reagrupación.

Multiplicación sin reagrupación

Las multiplicaciones sin reagrupación son aquellas que no tienen llevada, es decir, que cuando multiplicamos cada una de las cifras del multiplicador por el multiplicando da como resultado un número de una cifra.

Para resolver estas multiplicaciones se siguen estos pasos:

1. Primero se calculan los productos intermedios. Se comienza con la multiplicación de las unidades del multiplicador por todas las cifras del multiplicando de derecha a izquierda y se anotan las cifras correspondientes en cada columna. En este caso se multiplica 3 × 62.312 = 186.936.

2. Luego se multiplica la decena del multiplicador por las cifras del multiplicando, se deja un espacio y se anota el número obtenido debajo del resultado anterior. Aquí se multiplica 1 × 62.312 = 62.312.

3. Luego de obtener los productos intermedios, estos se suman para obtener el resultado de la multiplicación.

 

Observemos ahora un ejemplo en donde el multiplicador posee tres cifras:

1. Igual que en el ejemplo anterior, lo primero que hacemos es multiplicar las unidades del multiplicador (2) por cada una de las cifras.

2. Luego dejamos un espacio en la fila de abajo y anotamos el resultado de la multiplicación de las decenas del multiplicador y el multiplicando.

3. Después dejamos dos espacios y anotamos el resultado de multiplicar las centenas del multiplicador y el multiplicando.

4. Finalmente sumamos los tres productos obtenidos y obtenemos el resultado 45.245.252.

¿Sabías qué?
La multiplicación es una suma abreviada de sumandos iguales. El resultado de la multiplicación se llama producto.
La multiplicación presenta varias propiedades, como la del elemento neutro, en la que todo número multiplicado por 1 es igual al mismo número. Otra propiedad es la conmutativa que explica que el orden de los factores no altera el resultado. También presenta la propiedad distributiva la cual indica que no importan cómo se reagrupen los factores, el resultado siempre será el mismo.

Multiplicación con reagrupación

A diferencia de los ejemplos anteriores, las multiplicaciones por reagrupación tienen llevadas. Se resuelven con los mismos pasos anteriores, pero esta vez las llevadas se suman al resultado de cada multiplicación al momento de anotar los productos intermedios.

Para resolver este tipo de multiplicación se siguen estos pasos:

1. Primero se calculan los productos intermedios. Se comienza con la multiplicación de las unidades del multiplicador por todas las cifras del multiplicando de derecha a izquierda y se anotan las cifras correspondientes en cada columna. Cuando el producto de una cifra del multiplicador por una cifra del multiplicando tiene dos cifras, se anota la unidad de dicho número y la cifra correspondiente a las decenas se suma al producto siguiente.

Nota que 5 × 5 = 25. Así que colocamos la unidad (5) en la columna de los resultados y la decena (2) sobre la columna de la izquierda. Por lo tanto, al multiplicar 5 × 0 = 0 y 0 + 2 = 2.

2. Luego se multiplica la decena del multiplicador por las cifras del multiplicando, se deja un espacio y se anota el número obtenido debajo del resultado anterior.

3. Repetimos el paso anterior con las centenas del multiplicador.

4. Finalmente sumamos los productos parciales y obtenemos el resultado de la multiplicación.

división

Muchas veces tenemos la necesidad de hacer repartos de manera equitativa. La operación que nos permite hacerlo es la división. Esta puede ser exacta o inexacta.

Si la resta es la operación opuesta a la suma, la división es la opuesta a la multiplicación. Para expresar una división se pueden emplear los símbolos de “÷”, “:” y “/”. Esta operación nos sirve para repartir cantidades en partes iguales y pueden ser de dos tipos: divisiones exactas cuando el resto es igual a cero y divisiones inexactas cuando no lo es.

Divisiones exactas

Las divisiones exactas son aquellas cuyo resto es igual a cero. Esto lo determinamos al resolver la división por medio de los siguientes pasos:

Para dividir 323 ÷ 17 lo primero que debemos hacer es escribir los datos en su respectiva ubicación para poder comenzar a realizar cálculos:

2. Como tenemos dos cifras de divisor, tomamos dos de dividendo para comenzar la división y comprobamos que la cantidad sea menor a la del divisor.

3. Pensamos un número que multiplicado por 17 se acerque lo máximo posible a 32. Sabemos que 1 × 17 = 17 y 2 × 17 = 34 y es mayor que 32. Así que colocamos el 1 en el cociente, escribimos el producto debajo del 32 y restamos 32 − 17 = 15.

4. Bajamos el siguiente dígito del dividendo, en este caso el 3:

5. Buscamos un número que multiplicado por 17 sea igual o se acerque lo máximo posible a 153. En este caso sería 9, porque 17 × 9 = 153. Luego restamos el producto. Como 153 − 153 = 0 no seguimos la división y el resto de esta es cero, lo que significa que es exacta.

Podemos escribir que 323 ÷ 17 = 19.

Divisiones no exactas

Las divisiones no exactas son aquellas que tienen un resto distinto de cero. El procedimiento para resolverlas es igual al anterior lo único que cambia es que la división termina cuando el resto obtenido es menor al divisor. Observemos el siguiente ejemplo:

Podemos escribir esta división de la siguiente forma:

5.584 ÷ 24 = 232 y resto = 16.

Historia de los símbolos matemáticos

Muchos países en la Antigüedad utilizaban abreviaturas para indicar algunas operaciones matemáticas. Los italianos, por ejemplo, utilizaban una “p” y una “m” para indicar la suma y la resta (plus y minus, en latín). Luego se impuso el uso de la abreviatura alemana ­”+” y “−”. Estos símbolos se usaron por primera vez en un libro alemán de Widman en 1489.

El primer símbolo que se utilizó para la multiplicación fue “×”, utilizado por Oughtred en 1631. Varios años después Leibniz impuso el punto “·” como símbolo de la multiplicación porque decía que el símbolo que se usaba era fácil de confundir con la letra equis “x”.

Fibonacci, en el siglo XIII, creó la barra horizontal para las fracciones. Esta separaba el numerador del denominador. En 1845, De Morgan ideó la barra oblicua (/) para denotar a la división. Antes de la barra oblicua, Rahn inventó para la división el signo ÷. Los dos puntos (:) los introdujo Leibniz en el caso de que se quisiese escribir una división en una sola línea.

¡A practicar!

1. Resuelve las siguientes adiciones y sustracciones.

a) 3.005.078 + 5.119.839 = 

Solución
8.124.917

b) 4.313.528 − 499.999 = 

Solución
3.813.529

c) 27.521.666 − 14.124.917 = 

Solución
13.396.739

d) 187.324.949 + 153.286.084 = 

Solución
340.611.033

2. Resuelve las siguientes multiplicaciones.

a) 2.321.231 × 231 = 

Solución
536.204.361

b) 1.639.121 × 452 = 

Solución
740.882.692

c) 3.141.243 × 221 = 

Solución
694.214.703

d) 796.467 × 734 = 

Solución
584.606.778

3. Resuelve las siguientes divisiones.

a) 48.321.564 : 12 = 

Solución
4.026.797

b) 240.526 : 18 = 

Solución
13.362 y su resto es 10.

c) 451.542 : 42 = 

Solución
10.751

d) 2.795.615 : 26 = 

Solución
107.523 y su resto es 17.

RECURSOS PARA DOCENTES

Artículo “Operaciones básicas de los números naturales y sus propiedades”

El siguiente artículo destacado explica cuáles son las principales propiedades de las operaciones básicas en números naturales.

VER

Artículo “Suma y resta utilizando el algoritmo de descomposición”

Este artículo explica uno de los métodos para resolver sumas y restas que se fundamenta en la descomposición de un número de acuerdo a los valores posicionales de sus cifras.

VER

Artículo “Divisiones por dos o más cifras”

Este artículo explica uno de los métodos usados para realizar divisiones de dos o más cifras.

VER

CAPÍTULO 2 / TEMA 4

Operaciones con números decimales

Los números decimales son aquellos que tienen una parte entera y una parte decimal, separadas por una coma; son comunes en los precios de los productos del supermercado o en nuestro peso y altura. Los problemas con este tipo de números se resuelven casi de la misma forma que los que tienen números naturales. A continuación, aprenderás las reglas para resolver dichos cálculos.

suma de números decimales

Cuando sumamos número decimales el procedimiento es similar al de los números naturales. Colocamos las unidades, decenas y centenas una sobre otra; de este modo, las comas, décimas, centésimas y milésimas también estarán en las mismas columnas.

– Ejemplo:

432,61 + 54,3

Donde:

C = centena

D = decena

U = unidad

d = décima

c = centésima

m = milésima

 

Si la suma de las cifras de una columna es mayor a 9, colocamos el dígito de la unidad debajo de dicha columna y el dígito de la decena en la columna de la izquierda.

– Ejemplo:

523,4 + 74,86

¡Es tu turno!

Resuelve estas sumas de números decimales.

  • 0,816 + 26,5
  • 10,5 + 10,5
  • 129,836 + 345,26
  • 64,68 + 22,129
Solución

 

¿Sabías qué?
Además de la coma, también se puede usar un punto para separar la parte entera de la parte decimal. Todo depende de la convención del país en el que estés.

 

¿Notaste que la adición de los números decimales es muy similar a la adición de los números naturales? Lo más importante en esta operación es que las cifras estén en las mismas columnas según su valor posicional: unidades con unidades, decenas con decenas, centenas con centenas. De este modo, la coma siempre estará en el lugar adecuado.

resta de números decimales

Para restar números decimales colocamos cada números en las mismas columnas según el orden de cada cifra: unidades con unidades, décimas con décimas, etc. De ser necesario añadimos ceros para que ambos números tengan la misma cantidad de dígitos. Luego restamos como si fueran números naturales y colocamos la coma en el resultado.

– Ejemplo:

360,84 − 246,013

1. Colocamos los números uno sobre otro y agregamos un cero al minuendo.

2. Como no podemos restarle 3 a 0, tomamos “prestada” una décima de la columna de la izquierda. Ahora el 0 se transforma en 10 y el 4 de las centésimas se convierte en 3. Luego hacemos la resta: 10 − 3 = 7.

3. Restamos las centésimas: 3 − 1 = 2.

4. Restamos las décimas: 8 − 0 = 8.

5. Restamos las unidades. Como no podemos restarle 6 a 0, tomamos una decena de la columna de la izquierda. Así que el 0 se convierte en 10 y el 6 se transforma en 5. Luego restamos: 10 − 6 = 4.

6. Restamos las decenas: 5 − 4 = 1.

7. Restamos las centenas y colocamos la coma en la misma columna en la que están las comas.

¡Es tu turno!

Resuelve las siguientes restas de números decimales.

  • 95,371 − 24,98
  • 137 − 45,290
  • 348,6 − 26,696
  • 67,4 − 0,16
Solución

 

Décimas en una regla

La regla graduada es un instrumento de medición con el que también podemos trazar líneas rectas. Por lo general viene con marcas con números que indican los centímetros y marcas más pequeñas entre estas que muestran los milímetros. Recuerda que 1 milímetro es igual a 0,1 centímetros.

Multiplicación con números decimales

Cuando multiplicamos un número decimal por un número natural colocamos los factores uno sobre otro alineados a la derecha, luego multiplicamos tal como si ambos fueran números naturales. Al final colocamos la coma decimal de acuerdo a la cantidad de decimales que tenga el factor decimal.

– Ejemplo:

1,27 × 36

1. Colocamos los factores uno sobre otro.

2. Multiplicamos como hacemos con los números naturales.

3. Colocamos la coma decimal en el resultado. Como el 1,27 tiene dos números decimales, movemos dos espacios en el resultado y colocamos la coma.

Por lo tanto,

1,27 × 36 = 45,72

¡Es tu turno!

Resuelve la siguientes multiplicaciones.

  • 3,1 × 21
  • 132 × 5,3
  • 2,65 × 68
Solución

Los números decimales también se pueden representar como una fracción. Para esto colocamos un denominador con la unidad seguida de tantos ceros como sean necesarios para que el numerador sea un entero. Recuerda que se multiplican ambas partes de la fracción. Luego simplificamos. Por ejemplo, si amplificamos por 10 la expresión 0,5/1 nos queda 5/10 = 1/2.

 

¡A practicar!

Resuelve las siguientes operaciones.

421,78 + 100,1

Solución
421,78 + 100,1 = 521,88

500,999 − 500,159

Solución
500,999 − 500,159 = 0,84

131 × 12,4

Solución
131 × 12,4 = 1.624,4

0,92 × 53

Solución
0,92 × 53 = 48,76

0,578 + 0,9

Solución
0,578 + 0,9 = 1,478

36,9 − 0,806

Solución
36,9 − 0,806 = 36,094
RECURSOS PARA DOCENTES

Artículo “Números decimales”

Con este artículo podrás ampliar la información relacionada con los números decimales, su clasificación y las operaciones que los involucran.

VER

Artículo “Operaciones con números decimales”

Este recurso describe paso a paso cómo realizar sumas, restas, multiplicaciones y divisiones con números decimales.

VER

 

CAPÍTULO 1 / TEMA 7 (REVISIÓN)

SENTIDO NUMÉRICO | REVISIÓN

UNIVERSO DE LOS NÚMEROS

Los números desde su invención han servido para contar cosas y por eso existen diferentes sistemas y tipos de números que permiten un mejor conocimiento de las cantidades. Para comprender el sentido numérico, dentro del universo de los números se utilizan diversas clasificaciones. Un tipo de números son los ordinales que sirven para establecer un orden. Por otro lado, existen los cardinales que indican cantidades numéricas de elementos que pertenecen a un grupo o conjunto. Actualmente, el sistema más usado es el sistema numérico decimal pero no es el único que existe. Otras culturas crearon sistemas de numeración distintos al decimal, como por ejemplo, los mayas y los romanos.

El sistema de numeración binario se utiliza principalmente en la informática. Está conformado solo por dos cifras: el 0 y el 1.

NÚMEROS PRIMOS Y COMPUESTOS

De acuerdo a la cantidad de divisores que poseen los número, los podemos clasificar en primos y compuestos. Los números primos son aquellos que solo son divisibles por el número uno y por sí mismos. En cambio, los números compuestos son aquellos que además de ser divisibles por el uno y por sí mismos, también son divisibles por otro u otros números, es decir, tienen más de dos divisores. Todos los números compuestos pueden expresarse como un producto de factores primos.

Para determinar los factores primos de un número compuesto se emplean los criterios de divisibilidad.

VALOR POSICIONAL

Una de las principales características de nuestro sistema de numeración decimal es que el valor de los dígitos varía de acuerdo a su ubicación dentro del número. Esta característica se denomina valor posicional y aplica tanto en los números enteros como en los fraccionarios. Una herramienta que nos permite observar directamente el valor de cada dígito de acuerdo al lugar que ocupa es la tabla posicional.

Según la posición de cada dígito, los números pueden descomponerse en forma de suma (descomposición aditiva) o de multiplicación (descomposición multiplicativa).

NÚMEROS DECIMALES

Hay números que se ubican entre dos números enteros consecutivos, estos números se denominan números decimales y se caracterizan porque presentan una parte entera y una decimal, que se encuentran separadas por una coma o punto de acuerdo a la convención del país. Los números decimales se clasifican en racionales y en irracionales. Los racionales se pueden representar en forma de fracción, y los irracionales son números infinitos cuya parte decimal no sigue ningún patrón, como sucede en el caso del número pi.

A menudo se pueden aplicar redondeos en las cifras decimales de un número para simplificar los cálculos.

POTENCIAS

La potenciación es una operación compuesta de tres partes fundamentales: el exponente, la base y la potencia. El exponente indica cuántas veces se debe multiplicar la base por si misma. La base es el número que se multiplica por sí mismo las veces que indique el exponente. La potencia es el resultado de la operación de potenciación. Como toda operación matemática, las potencias cumplen con algunas propiedades. Por ejemplo, todo número elevado a 0 es igual a 1. Para resolver potencias se aplican sus propiedades y se realizan multiplicaciones sucesivas de la base.

Cuando el exponente es 1, la potencia es siempre igual a la base.

RAÍZ DE UN NÚMERO

La radicación es la operación inversa a la potenciación y por ello se encuentran estrechamente relacionadas. Esta operación emplea el símbolo (√) denominado radical. Sus elementos principales son el radicando, el índice y la raíz. El radicando es el número al cual se le va a calcular la raíz y se encuentra en la parte inferior del radical. El índice es el número que índica la cantidad de veces en las que debe multiplicarse un número por sí mismo para que el resultado sea igual al radicando, y se ubica en la parte izquierda del radical. La raíz es el resultado de la operación. Para calcular una raíz se debe buscar un número que multiplicado por sí mismo las veces que indique el índice dé como resultado el mismo valor del radicando.

En las raíces cuadradas, el índice 2 no se coloca en el radical: simplemente se denotan como (√).

 

CAPÍTULO 2 / TEMA 6 (REVISIÓN)

OPERACIONES NUMÉRICAS | ¿qué aprendimos?

ADICIÓN

La adición es una de las cuatro operaciones básicas que utilizamos de forma habitual y se caracteriza porque nos permite añadir una cantidad a otra. Los términos de la adición son los sumandos y la suma. Para resolver adiciones usamos el algoritmo de la suma que consiste ordenar los sumando de manera que las unidades de mil, las centenas, las decenas y las unidades se encuentren en una misma columna. Si la suma de una columna es un número de dos cifras (mayor a 9), se coloca el valor de la segunda cifra y el valor de la primera se suma al resultado de la siguiente columna a la izquierda. Esta operación cumple varias propiedades como la conmutativa, la asociativa y la del elemento neutro.

La propiedad conmutativa explica que no importa cómo ordenemos los sumandos, el resultado es siempre el mismo.

SUSTRACCIÓN

La sustracción es una operación matemática que consiste en quitar o restar una cantidad a otra para determinar la diferencia. Esta operación es inversa a la suma y está formada por el minuendo, el sustraendo y la diferencia. El minuendo es la cantidad a la que se le va a restar, el sustraendo es la cantidad que se resta y la diferencia es el resultado de la sustracción. En la sustracciones los números se agrupan en columnas al igual que en la adición. Si el minuendo es mayor al sustraendo restamos de forma convencional. En caso contrario, debemos desagrupar la cifra de la columna siguiente y canjear un valor posicional.

Una forma de comprobar una sustracción es sumar el sustraendo y la diferencia, el resultado debe ser igual al minuendo.

OPERACIONES COMBINADAS

Las operaciones combinadas son aquellas en las que aparecen varias cálculos aritméticos. Para este tipo de problemas resolvemos primero las operaciones que están entre paréntesis y luego resolvemos las operaciones en el orden que aparecen de izquierda a derecha. En caso de que la operación combinada no tenga paréntesis resolvemos de acuerdo al orden que aparecen los términos de izquierda a derecha.

Los cálculos mentales permiten resolver operaciones sin usar herramientas como un lápiz, una hoja o una calculadora.

multiplicación

La multiplicación es sumar un mismo números tantas veces como indique otro. Por esta razón, esta operación se encuentra estrechamente relacionada con la adición. De hecho, toda adición iterada (adición que posee todos sus sumandos iguales) puede ser representada a través de la multiplicación. Su elementos principales son los factores y el producto. Los primeros son los números que se multiplican y el segundo corresponde al resultado. Para multiplicaciones de una cifra se ordenan los factores de forma vertical, se multiplica la unidad del segundo factor por la unidad del primero y luego se anota el resultado en la parte inferior, después se multiplica la unidad del segundo factor por la decena del primero y se anota el resultado.

Al multiplicar un número por la unidad seguida de cero se añade a la derecha de este la misma cantidad de ceros que acompañen a la unidad.

división

La división es una operación matemática que consiste en realizar reparticiones equitativas o formar grupos con la misma cantidad de elementos. Es una operación inversa a la multiplicación y puede considerarse una sustracción sucesiva. Los elementos de la división son el dividendo, el divisor, el cociente y el residuo o resto. El dividendo es la cantidad que se va a repartir, el divisor es la cantidad en la que se va a dividir, el cociente es el resultado y el residuo o resto es la parte que no se puede dividir. Para resolver divisiones buscamos un número que al ser multiplicado por el divisor sea igual o cercano al valor del dividendo.

Cada vez que compartimos alimentos hacemos una división, por ejemplo, esta pizza se dividió en 6 porciones, lo que es igual a 1 ÷ 6.

CAPÍTULO 2 / TEMA 4

MULTIPLICACIÓN

La multiplicación es una de las operaciones fundamentales que realizamos con los números. Se encuentra estrechamente relacionada con la adición, por lo tanto, cuando sumamos repetidas veces una misma cantidad, realmente hacemos una multiplicación. A partir de esto se crearon las tablas de multiplicar para facilitar los cálculos.

RELACIÓN ENTRE LA ADICIÓN Y LA MULTIPLICACIÓN

Se denomina adición iterada a la adición que posee todos sus sumandos iguales y se puede representar como una multiplicación.

– Ejemplo 1:

Observa que cada mariposa tiene 2 alas. Por lo tanto, en 4 mariposas hay 8 alas.

4 veces 2 es igual a 8.

4 × 2 = 8

– Ejemplo 2:

¿Cuántas patas (extremidades) hay en total?

5 veces 2 es igual a 10.

5 × 2 = 10

– Ejemplo 3:

Sofía tiene tres portalápices y en cada uno de ellos caben 5 lápices, ¿cuántos lápices tiene Sofía en total?

3 veces 5 es igual a 15.

3 × 5 es igual a 15.

La multiplicación es considerada como una adición con sumandos iguales (adición iterada). Nos ayuda a obtener resultados más rápidos de manera sencilla. Los elementos de la multiplicación son los factores y el producto. Los números multiplicados son los factores y el resultado es el producto. Para resolver multiplicaciones se usan las tablas de multiplicar.

¡Es tu turno!

  • ¿Cuántos huevos hay en total?

Solución

3 + 3 + 3 = 9

3 veces 3 es igual a 9.

3 × 3 = 9

  • ¿Cuántas flores hay en total?

Solución

4 + 4 + 4 + 4 = 16

4 veces 4 es igual a 16.

4 × 4 = 16

  • Expresa las adiciones como multiplicación, resuelve y completa:
Adición Multiplicación
1 + 1 + 1 + 1 = 4 1 × 4 = 4
5 + 5 + 5 =
6 + 6 + 6 + 6 + 6 =
7 + 7 + 7 + 7 =
2 + 2 + 2 =
3 + 3 + 3 + 3 + 3 + 3 =

Solución
Adición Multiplicación
1 + 1 + 1 + 1 = 4 1 × 4 = 4
5 + 5 + 5 = 15 5 × 3 = 15
6 + 6 + 6 + 6 + 6 = 30 6 × 5 = 30
7 + 7 + 7 + 7 = 28 7 × 4 = 28
2 + 2 + 2 = 6 2 × 3 = 6
3 + 3 + 3 + 3 + 3 + 3 = 18 3 × 6 = 18

elementos de la multiplicación

Los términos de una multiplicación se denominan factores y producto. Los factores son los números que se multiplican, y el producto es el resultado de la operación de multiplicación.

Tablas de multiplicar

Para hacer cálculos de multiplicaciones se crearon las tablas de multiplicar, que no son más que un atajo para realizar sumas largas de forma rápida. La forma más común de representar las tablas de multiplicación es, como su nombre lo indica, a través de tablas. Normalmente se muestran las tablas del 1 al 10 y cada una de ellas a su vez indica las multiplicaciones del número que representan del 1 al 10 o del 0 al 10.

Multiplicación en forma vertical

La multiplicación es una adición de sumandos iguales, el signo de la multiplicación es “×” y se lee “por”.

La multiplicación es la operación matemática que consiste en determinar el resultado de un número que se haya sumado tantas veces como indique otro. La palabra multiplicación proviene del latín de la palabra multus que significa “mucho” y plico que quiere decir “doblar”. En este sentido, multiplicar es doblar o repetir un número muchas veces.

¿Sabías qué?
Además del símbolo de la cruz, en la multiplicación también puede usarse el punto a media altura (·).

Para multiplicar un número de una cifra por otro de dos cifras, multiplicamos cada cifra de los factores. Para esto seguimos los siguientes pasos:

1. Colocamos los factores uno sobre el sobre.

2. Multiplicamos la unidad del segundo factor por la unidad del primer factor: 3 × 3 = 9

3. Multiplicamos la unidad del segundo factor por las decenas de la primer factor: 3 × 2 = 6.

4. También podemos escribir el resultado de forma horizontal:

23 × 3 = 69

 

– Otros ejemplos:

Multiplicación con llevadas

Cuando multiplicamos las cifras de los factores y el resultado es mayor a 9, debemos hacer llevadas. Los pasos son los siguientes:

1. Colocamos los factores uno sobre otro según su valor posicional.

2. Multiplicamos la unidad del segundo factor por la unidad del primer factor: 4 × 3 = 12. Como el resultado es mayor a 9, colocamos la unidad (2) en la columna de las unidades y la cifra de la decena (1) la colocamos en la columna de la izquierda.

3. Multiplicamos la unidad del segundo factor por las decenas del segundo factor y consideramos el 1 que se lleva: 4 × 2 = 8 + 1 = 9.

– Otros ejemplos:

 

También es posible que llevemos cifras a las centenas. En estos casos los pasos son estos:

1. Colocamos los factores uno sobre otro según sus valores posicionales.

2. Multiplicamos la unidad del segundo factor por la unidad del primer factor: 7 × 4 = 28. Como el resultado es mayor a 9, escribimos el 8 en la columna de las unidades y llevamos la decena (2) a la columna de la izquierda.

3. Multiplicamos la unidad del segundo factor por las decenas del primer factor, como llevamos 2: 7 × 2 = 14 + 2 = 16. Escribimos el 6 en las decenas y el 1 en la columna de las centenas.

 

– Otros ejemplos:

¿Sabías qué?
Es común que en las multiplicaciones se escriba arriba el número mayor (multiplicando) y debajo el número menor (multiplicador).

MULTIPLICACIÓN POR 10, POR 100 Y POR 1.000

Para multiplicar un número natural por 10 agregamos un cero a la derecha del número. Si lo multiplicamos por 100 agregamos 2 ceros y si lo multiplicamos por 1.000 agregamos 3 ceros. Ejemplo:

  • ¿Cuál es el producto de 35 × 10?

Como se multiplica por 10, se agrega un cero a la derecha del 35, es decir:

35 × 10 = 350

  • ¿Cuál es el producto de 35 × 100?

Como se multiplica por 100, se agregan dos ceros a la derecha del 35, es decir:

35 × 100 = 3.500

  • ¿Cuál es el producto de 35 × 1.000?

Como se multiplica por 1.000, se agregan tres ceros a la derecha del 35, es decir:

35 × 1.000 = 35.000

– Otros ejemplos:

Factores 2 5 17 29 40 73 91
× 10 20 50 170 290 400 730 910
× 100 200 500 1.700 2.900 4.000 7.300 9.100
× 1.000 2.000 5.000 17.000 29.000 40.000 73.000 91.000
Las propiedades de la multiplicación permiten realizar operaciones de manera más sencilla. Por ejemplo, la propiedad conmutativa nos permite cambiar el orden de los factores sin alterar el producto, por esta razón, el número mayor se suele colocar arriba y el menor debajo al momento de resolver los cálculos. Lo mismo aplica para el resto de las propiedades.

PROBLEMAS DE MULTIPLICACIÓN

1. Tres camiones viajan del campo a la ciudad, cada uno con 800 sandías. ¿Cuántas sandías llevan en total?

  • Datos

Cantidad de camiones: 3

Cantidad de sandías por camión: 800

  • Pregunta

¿Cuántas sandías llevan en total?

  • Reflexiona

Para resolver el problema debemos multiplicar las 800 sandías por 3, para lo cual se ubica el 800 en el multiplicando por ser mayor y el 3 en el multiplicador.

  • Resuelve

 

  • Respuesta

Entre los camiones hay 2.400 sandías.


2. A la hermana de Susana le gusta coleccionar zapatos. Tiene tantos que los organiza en un estante por tramos. Si el estante tiene seis tramos y en cada uno hay catorce pares, ¿cuántos pares de zapatos tiene la hermana de Susana?

  • Datos

Tramos del estante: 6

Pares de zapatos por tramos: 14

  • Pregunta

¿Cuántos pares de zapatos tiene la hermana de Susana?

  • Reflexiona

Para resolver el problema debemos multiplicar los 14 pares de zapatos por los 6 tramos que tiene el estante. Para esto ubicamos el 14 arriba y el 6 debajo.

  • Resuelve

  • Respuesta

La hermana de Susana tiene 84 pares de zapatos.


3. Si un paquete de caramelos cuesta $ 843, ¿cuánto cuestan 9 paquetes?

  • Datos

Valor del paquete de caramelos: $ 843

  • Pregunta

¿Cuánto cuestan 9 paquetes de caramelos?

  • Reflexiona

Para resolver el problema debemos multiplicar el costo del paquete de caramelos que son $ 843 por el número de paquetes que pide el problema, es decir 9.

  • Resuelve

  • Respuesta

Nueve paquetes de caramelos tienen un valor de $ 7.587

¡A practicar!

1. Valentina compró cinco paquetes de palomitas de maíz por un valor de $ 1.569 cada uno. ¿Cuánto dinero gastó Valentina?

Solución
  • Datos

Valor del paquete de palomitas: $ 1.569

Cantidad de paquetes de palomitas comprado: 5

  • Pregunta

¿Cuánto gastó Valentina?

  • Reflexiona

Para resolver el problema debemos multiplicar el costo del paquete de palomitas que son $ 1.569 por el número de paquetes que compró Valentina, es decir 5.

  • Resuelve

  • Respuesta

Valentina gastó $17.845.

2. En un salón de clases hay 42 estudiantes, si cada uno de ellos trae 2 paletas de caramelo, ¿cuántas paletas de caramelo tendrían en total?

Solución
  • Datos

Cantidad de estudiantes: 42

Cantidad de paletas por estudiante: 2

  • Pregunta

¿Cuántas paletas de caramelo tendrían en total?

  • Reflexiona

Para resolver el problema debemos multiplicar el número total de estudiantes, que son 42 por la cantidad de paletas de caramelo que trajo cada estudiante, es decir 2.

  • Resuelve

  • Respuesta

Los alumnos tendrían en total 84 paletas de caramelo.

3. En la granja de don Tomás hay 8 vacas lecheras, cada una produce diariamente 52 litros. ¿Cuántos litros de leche se producen durante 7 días?

Solución
  • Datos

Cantidad de vacas: 8

Litros de leche producidos por una vaca en 1 día: 52

  • Pregunta

¿Cuántos litros de leche se producen durante 7 días en la granja de don Tomás?

  • Reflexiona

Para resolver el problema debemos hacerlo en dos partes, primero se debe sacar la cantidad de litros que producen diariamente por medio de una multiplicación entre 52 y 8. Luego, multiplicar ese resultado por 7.

  • Resuelve

 

  • Respuesta

Durante siete días se producen 2.912 litros de leche en la granja de don Tomás.

4. En una granja hay 3 corrales para cerdos y en cada corral caben seis cerdos, ¿qué adición iterada representaría la situación?

a) 4 + 4 + 4 + 4 + 4

b) 6 + 4

c) 6 + 6 + 6

d) 24 + 24 + 24 + 24

Solución
c) 6 + 6 + 6

5. Víctor lee cuatro páginas de su libro favorito por día, ¿cuántas páginas leerá en seis días?

Solución

1 día → 4 páginas

2 días → 4 + 4 = 8 páginas

3 días → 4 + 4 + 4 = 12 páginas

4 días → 4 + 4 + 4 + 4 = 16 páginas

5 días → 4 + 4 + 4 + 4 + 4 = 20 páginas

6 días → 4 + 4 + 4 + 4 + 4 + 4 = 24 páginas

 

Podemos ver que 6 veces 4 es 24, por lo tanto:

6 × 4 = 24

Victor leerá 24 página en 6 días.

RECURSOS PARA DOCENTES

Artículo “Trucos para aprender las tablas de multiplicar”

El siguiente material ofrece algunos trucos para aprender las tablas de multiplicar sin necesidad de memorizarlas.

VER

Artículo “Multiplicación por una cifra”

El artículo muestra los procedimientos principales para resolver multiplicaciones por una cifra. También ofrece una serie de ejercicios propuestos.

VER

CAPÍTULO 4 / TEMA 5

APLICACIÓN DE LA POTENCIA Y DE LA RADICACIÓN

La potenciación y la radicación son operaciones estrechamente relacionadas. Mientras que la primera es una multiplicación condensada de un número por sí mismo n cantidad de veces, la segunda busca ese número que multiplicado por sí mismo resulte en el radicando. Si bien sus propiedades ya se trataron en temas anteriores, aquí aprenderás otras aplicaciones de estos cálculos.

operaciones que simplifican

Tanto la potenciación como la radicación son operaciones útiles para mostrar números de manera más simple. Por ejemplo, dentro del conjunto de los números reales encontramos otros tipos de números que no son sencillos de representar, como los números irracionales, cuyas expresiones decimales son ilimitadas y no periódicas, por lo que es más fácil mostrarlo como una raíz:

\boldsymbol{\sqrt{2}=1,414213562...}

\boldsymbol{\sqrt{3}=1,732050807...}

\boldsymbol{\sqrt{5}=2,236067977...}

Por su parte, la potencia nos ayuda a expresar números muy grandes o muy pequeños de manera resumida, pues la potencia no es más que una multiplicación abreviada.

La descomposición en factores primos y la notación científica son solo dos de los procesos que pueden verse involucrados con la potenciación y la radicación. Ambas operaciones son empleadas en múltiples cálculos cotidianos y en diversas áreas como la astronomía, la ingeniería o la biología.

Las bacterias son microorganismos que crecen con un ritmo acelerado. Este crecimiento suele expresarse en forma de potencia con exponente positivo y se grafica en forma de línea curva ascendente. Saber que tan rápida puede ser la reproducción de una bacteria puede prevenir focos de infección en un paciente y evitar que este sea una víctima mortal.

descomposición en factores primos

También conocida como descomposición factorial o factorización, consiste en escribir un número como producto de sus números primos. Cada vez que un factor se repita en la descomposición, este se convertirá  en la base de una potencia y la cantidad de veces que se repita será el exponente.

– Ejemplo:

¿Qué es un número primo?

Un número primo es un número natural que tiene dos divisores positivos: al uno y a sí mismo. Esta tabla muestra los primero números primos en color azul.

¿Sabías qué?
Las factorización es un paso indispensable para calcular el mínimo común múltiplo y el máximo común divisor de un número.

Las raíces también se pueden obtener por medio de la descomposición del radicando en sus números primos.

– Ejemplo:

Halla la raíz cuadrada de 625 por descomposición de sus factores primos.

1. Descomponemos al número 625 en sus factores primos.

2. Expresamos la raíz cuadrada con producto de la descomposición.

\boldsymbol{\sqrt{625}=\sqrt{5^{4}}}

3. Aplicamos la propiedad “raíz de un potencia”.

\boldsymbol{\sqrt{5^{4}}=5^{\frac{4}{2}}=5^{2}=25}

4. Escribimos el resultado.

\boldsymbol{\sqrt{625}=25}


– Otro ejemplo:

Halla la raíz cuadrada de 196 por descomposición de sus factores primos.

1. Descomponemos al número 196 en sus factores primos.

2. Expresamos la raíz cuadrada con su radicando igual al producto de su descomposición.

\boldsymbol{\sqrt{196}=\sqrt{2^{2}\times 7^{2}}}

3. Aplicamos la propiedad “raíz de un producto”.

\boldsymbol{\sqrt{2^{2}\times 7^{2}}=\sqrt{2^{2}}\times \sqrt{7^{2}}}

4. Aplicamos la propiedad “raíz de una potencia”.

\boldsymbol{\sqrt{2^{2}}\times \sqrt{7^{2}}=2^{\frac{2}{2}}\times 7^{\frac{2}{2}}=2\times 7=14}

5. Escribimos el resultado.

\boldsymbol{\sqrt{196}=14}


– Otro ejemplo:

Halla la raíz cúbica de 1.728 por descomposición de sus factores primos.

  1. Descomponemos el número 1.728 en sus factores primos.

2. Expresamos la raíz cúbica con su radicando igual al producto de su descomposición.

\boldsymbol{\sqrt[3]{1.728}=\sqrt[3]{2^{6}\times 3^{3}}}

3. Aplicamos la propiedad “raíz de un producto”.

\boldsymbol{\sqrt[3]{2^{6}\times 3^{3}}=\sqrt[3]{2^{6}}\times \sqrt[3]{3^{3}}}

4. Aplicamos la propiedad “raíz de una potencia”.

\boldsymbol{\sqrt[3]{2^{6}}\times \sqrt[3]{3^{3}}=2^{\frac{6}{3}}\times 3^{\frac{3}{3}}=2^{2}\times 3=4\times 3=12}

5. Escribimos el resultado.

\boldsymbol{\sqrt[3]{1.728}=12}

Velocidad de un auto en un accidente

Cuando ocurre una accidente de tránsito, por lo general las llantas de los autos dejan una marca sobre el pavimento al frenar. Esta marca es de gran utilidad para los fiscales de tránsito, pues la raíz cuadrada del producto entre la aceleración y la longitud de la marca de frenado es igual a la velocidad del vehículo al momento del choque.

\boldsymbol{\sqrt{-2ax}}

Donde:

a = aceleración

x = longitud de las marcas de frenado

NOTACIÓN CIENTÍFICA

La notación científica es la expresión de números a partir de potencias de base 10. De forma general se representan así:

a × 10n

Donde:

a: es el número entero o decimal que multiplica a la potencia de base 10. Su módulo debe tener un valor igual o mayor que 1 pero menor que 10.

n: es un número entero distinto de cero que corresponde al exponente de la potencia de base 10. Es conocido también como “orden de magnitud”.

Se escriben de la siguientes manera:

  • 10−5 = 0,00001
  • 10−4 = 0,0001
  • 10−3 = 0,001
  • 10−2 = 0,01
  • 10−1 = 0,1
  • 100 = 1
  • 101 = 10
  • 102 = 100
  • 103 = 1.000
  • 104 = 10.000
  • 105 = 100.000

Signos del exponente

Cuando los números son muy pequeños o menores a 1 el exponente es negativo, mientras que si el número es muy grande o mayores a 1 el exponente es positivo.

  • Los exponentes positivos indican la cantidad de ceros que se encuentran a la derecha del número que multiplica la potencia. Por ejemplo, el número 2.000.000 representado en notación científica es 2 × 106 en donde el exponente 6 indica la cantidad de ceros que están después del dos.
  • Los exponentes negativos indican la cantidad de ceros a la izquierda del número que multiplica la potencia. Por ejemplo, el número 0,00000004 representado en notación científica es 4 × 10−8. En este caso el signo menos indica que hay 8 ceros delante del 4.
Nuestro planeta Tierra se encuentra en la galaxia espiral llamada Vía Láctea, la cual tiene unos 100.000 años luz de diámetro. Los científicos estiman que hay alrededor de 400.000.000.000 estrellas en esta galaxia. Estos número tan grandes podemos expresarlos por medio de notación científica como 1 × 105 años luz de diámetro y 4 × 1011 estrellas.

– Otros ejemplos:

  • 3,2 × 10−3 = 0,0032
  • 4 × 10−4 = 0,0004
  • 1,05 × 106 = 1.050.000
  • 6,78 × 10−1 = 0,678
  • 9,43 × 102 = 943

¿Sabías qué?
En el caso de números muy grandes, lo primero que se debe hacer es mover la coma decimal a un número que esté comprendido entre 1 y 10. El número de espacios recorridos hasta dicho número corresponderá al exponente de la potencia de base 10.
  • 8.956.000.000.000 = 8,956 × 1012
  • 243.000 = 2,43 × 105
  • 90.000 = 9 × 104
  • 0,00000045 = 4,5 × 10−7
  • 0,007 = 7 × 10−3

¡A practicar!

1. Expresa los siguientes números como producto de sus factores primos.

  • 520
Solución
520 = 23 × 5 × 13
  • 156
Solución
156 = 22 × 3 × 13
  • 200
Solución
200 = 23 × 52
  • 86
Solución
86 = 2 × 43
  • 22
Solución
22 = 2 × 11

2. Calcula las siguientes raíces por descomposición de sus factores primos.

  • \sqrt[3]{729}
Solución
\sqrt[3]{729}=9
  • \sqrt[3]{64}
Solución
\sqrt[3]{64}=4
  • \sqrt[3]{343}
Solución
\sqrt[3]{343}=7
  • \sqrt{324}
Solución
\sqrt{324}=18
  • \sqrt{400}
Solución
\sqrt{400}=20

3. Calcula:

  • 6 × 108
Solución
6 × 108 = 600.000.000
  • 3 × 10−5
Solución
3 × 10−5 = 0,00003
  • 1,26 × 10−6 
Solución
1,26 × 10−6 = 0,00000126
  • 1,78 × 105
Solución
1,78 × 105 = 178.000 
  • 2 × 104
Solución
2 × 104 = 20.000

RECURSOS PARA DOCENTES

Video “Notación científica”

Este recurso audiovisual le permitirá poner en práctica lo aprendido sobre la notación científica.

VER

Artículo “Factorización de números”

Este artículo detalla cómo descomponer números en sus factores primos y su relación con el cálculo del mínimo común múltiplo y máximo común divisor.

VER

CAPÍTULO 1 / TEMA 3

VALOR POSICIONAL

El sistema de numeración decimal se caracteriza por ser de base 10 y por ser posicional. Esto significa que solo usa diez dígitos y que la posición de cada uno de ellos determina el valor que tienen. La tablas posicionales y la descomposición son algunas técnicas que podemos emplear para escribir y leer números con más de cinco cifras de manera sencilla. A continuación verás lo fácil que es.

VALOR POSICIONAL DE CIFRAS HASTA 1.000.000

En el sistema de numeración decimal contamos con los siguientes dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9. Con ellos podemos formar todos los números del sistema ya que si variamos la posición de las cifras dentro del número, también cambiamos su valor. Esta característica se denomina valor posicional.

Como podemos observar en este ejemplo, todas las cifras que componen el número 999.999 son las mismas: 9, pero cada una tiene un valor diferente debido a su posición dentro del número.

Como ya sabemos, luego de 3 cifras debemos colocar un punto. En este caso, dicho punto separa a los miles de los millones. El número que le sigue al 999.999 es el millón, que se escribe de la siguiente manera:

1.000.000

¿Sabías qué?
Si empiezas a contar de uno en uno no terminarás nunca porque los números no tienen un final, es decir, son infinitos.
Cuando algo no termina decimos que es infinito, y los números son un ejemplo de ello. No hay un límite final para los números, pero tampoco hay un comienzo, ya que antes del 0 hay una infinidad de número negativos. Cuando queramos expresar que una cuenta es infinita podemos utilizar el símbolo que lo representa: ∞.

LA TABLA POSICIONAL

Existe una clasificación según la posición que tengan las cifras dentro del número. Cada posición recibe el nombre de un orden, como las unidades, decenas y centenas. Cada tres órdenes se forma una clase, que va desde las unidades, miles, millones, millares de millón, billones, etc. Podemos observar toda esta información en una tabla posicional.

– Ejemplo:

Según la tabla posicional, los valores de cada cifra de derecha a izquierda son los siguientes:

  • 2 unidades = 2 se lee “dos”.
  • 3 decenas = 30 se lee “treinta”
  • 5 centenas = 500 se lee “quinientos”.
  • 9 unidades de mil = 9.000 se lee “nueve mil”.
  • 4 decenas de mil = 40.000 se lee “cuarenta mil”.
  • 8 centenas de mil = 800.000 se lee “ochocientos mil”.
  • 1 unidad de millón = 1.000.000 se lee “un millón”

Por lo tanto, el número 1.849.532 se lee “un millón ochocientos cuarenta y nueve mil quinientos treinta y dos”.

 

– Otro ejemplo:

Según la tabla posicional, los valores son:

  • 5 unidades = 5 se lee “cinco”.
  • 8 decenas = 80 se lee “ochenta”.
  • 9 centenas = 900 se lee “novecientos”.
  • 2 unidades de mil = 2.000 se lee “dos mil”.
  • 4 decenas de mil = 40.000 se lee “cuarenta mil”.
  • 6 centenas de mil = 600.000 se lee “seiscientos mil”.
  • 1 unidad de millón = 1.000.000 se lee “un millón”.

Entonces, el número 1.642.985 se lee “un millón seiscientos cuarenta y dos mil novecientos ochenta y cinco”.

¡Es tu turno!

Coloca los siguientes números en sus tablas posicionales:

  • 1.022.467
Solución

  • 270.628
Solución

  • 896.501
Solución

VALOR POSICIONAL DE DECIMALES

Los números decimales se componen de una parte entera y una parte decimal que van separadas por una coma. Esto quiere decir que de un lado de la coma vamos a tener la parte de los números enteros con unidades, decenas, centenas, etc.; y del otro lado, la parte decimal que también tiene valores posicionales conocidos como décimas, centésimas, milésimas, etc.

 

La parte decimal de los números decimales también puede ser representada en una tabla posicional. Al igual que la parte entera, el valor cambia de acuerdo a la posición de la cifra.

Unidades decimales

Son las que obtenemos al dividir la unidad en partes iguales. Las primeras unidades decimales son las décimas, las centésimas y las milésimas.

Décimas Centésimas Milésimas
\boldsymbol{\frac{1}{10}=0,1} \boldsymbol{\frac{1}{100}=0,01} \boldsymbol{\frac{1}{1.000}=0,001}
1 unidad = 10 décimas

1 décima = 0,1 unidades

1 unidad = 100 centésimas

1 centésima = 0,01 unidades

1 unidad = 1.000 milésimas

1 milésima = 0,001 unidades

– Ejemplo:

Podemos leer los números decimales de dos formas:

  1. Leemos la parte entera seguida de la palabra “enteros”. Luego leemos la parte decimal como se lee la parte entera y mencionamos la posición en la que está la última cifra.
  2. Leemos la parte entera seguida de la palabra “coma”. Después leemos la parte decimal de la misma forma en la que lees la parte entera.

De este modo, el número 5.897,234 puede ser leído de dos formas, ambas correctas:

  1. “Cinco mil ochocientos noventa y siete enteros doscientos treinta y cuatro milésimas“.
  2. “Cinco mil ochocientos noventa y siete coma doscientos treinta y cuatro”.

DESCOMPOSICIÓN ADITIVA DE UN NÚMERO

Todos los números pueden descomponerse de diversas maneras. Una de ellas es la descomposición aditiva, la cual consiste en representar números como la suma de otros.

Por ejemplo, podemos descomponer el número 128 de forma aditiva y representarlo así:

128 = 100 + 20 + 8

Observa que sumamos los valores posicionales de cada cifra.

– Otros ejemplos:

  • 419.847 = 400.000 + 10.000 + 9.000 + 800 + 40 + 7
  • 1.589.634 = 1.000.000 + 500.000 + 80.000 + 9.000 + 600 + 30 + 4
  • 25,39 = 20 + 5 + 0,3 + 0,09 
Cualquier número puede ser expresado a través de la suma, en lo que se conoce como descomposición aditiva. Este tipo de descomposición considera el valor posicional de cada una de sus cifras, pero también es posible verlo como la suma de diferentes cifras, por ejemplo, 15 = 10 + 5, pero también lo podemos escribir como 15 = 7 + 8.

DESCOMPOSICIÓN MULTIPLICATIVA DE UN NÚMERO

Es otro tipo de descomposición en el que representamos números por medio de multiplicaciones. Aquí tomamos en cuenta el valor del dígito por el valor de su posición.

– Ejemplo:

Este número tiene:

  • 2 unidades = 2 × 1
  • 3 decenas = 3 × 10
  • 9 centenas = 9 × 100
  • 6 unidades de mil = 6 × 1.000

Su descomposición multiplicativa es:

6.932 = 6 × 1.000 + 9 × 100 + 3 × 10 + 2 ×

– Otros ejemplos:

  • 958.348 = 9 × 100.000 + 5 × 10.000 + 8 × 1.000 + 3 × 100 + 4 × 10 + 8 × 1
  • 22.076 = 2 × 10.000 + 2 × 1.000 + 7 × 10 + 6 × 1
  • 143,896 =1 × 100 + 4 × 10 + 3 × 1 + 8 × 0,1 + 9 × 0,01 + 6 × 0,001

¡A practicar!

1. Coloca los siguientes números en tablas posicionales.

  • 775.426
Solución

  • 2.325,682
Solución

  • 987.110,85
Solución

 

2. Escribe la descomposición aditiva de los siguientes números:

  • 6.887
Solución

6.887 = 6.000 + 800 + 80 + 7

  • 359
Solución

359 = 300 + 50 + 9

  • 856.421
Solución

856.421 = 800.00 + 50.00 + 6.000 + 400 + 20 + 1

  • 1.325.644,856
Solución

1.325.644,856 = 1.000.000 + 300.000 + 20.000 + 5.000 + 600 + 40 + 4 + 0,8 + 0,05 + 0,006

 

3. Escribe la descomposición multiplicativa de los siguientes números:

  • 427
Solución

427 = 4 × 100 + 2 × 10 + 7 × 1

  • 17.504
Solución

17.504 = 1 × 10.000 + 7 × 1.000 + 5 × 100 + 4 × 1

266.915

Solución

266.915 = 2 × 100.000 + 6 × 10.000 + 6 × 1.000 + 9 × 100 + 1 × 10 + 5 × 1

RECURSOS PARA DOCENTES

Artículo destacado “Sistemas posicionales de numeración”

El siguiente artículo te permitirá conocer más acerca del valor posicional en distintos sistemas de numeración.

VER

Artículo destacado “Composición y descomposición de números”

El siguiente artículo te permitirá profundizar la información sobre la composición y descomposición de los números.

VER