CAPÍTULO 2 / TEMA 7 (REVISIÓN)

OPERACIONES | ¿Qué aprendimos?

operaciones básicas

Todos los días utilizamos operaciones básicas como la adición, la sustracción, la multiplicación y la división. Las adiciones con reagrupación de dos o más números se caracterizan por tener “llevadas” cuando sumamos sus unidades, decenas, centenas, etc. Las sustracciones con reagrupación son restas en las que existen cifras del minuendo que son menores a las del sustraendo. Por esta razón, hay que “pedirle” una unidad al dígito de al lado para así poder resolver el ejercicio. En el caso de la multiplicación, al igual que en la adición y en la sustracción, se observan dos tipos de operaciones: sin reagrupación y con reagrupación. Las multiplicaciones sin reagrupación son aquellas que no contienen llevadas cuando multiplicamos un dígito con otro. En cambio, las multiplicaciones con reagrupación sí poseen llevadas. En el caso de las divisiones, encontramos las exactas cuando el resto es igual a cero y las no exactas cuando el resto es diferente de cero.

Leibniz impuso el uso del punto como símbolo de la multiplicación e introdujo los dos puntos como símbolo de la división.

múltiplos y divisores

El múltiplo de un número es el resultado de multiplicar ese número por otro. Por otra parte, el divisor de un número es aquel que lo divide de manera exacta. Hay números cuyos únicos divisores son ellos mismos y el uno, a estos números se los conoce como números primos. Por otro lado, los números que poseen más de dos divisores se denominan números compuestos y pueden descomponerse en factores primos.

El número 1 no es ni primo ni compuesto porque solo tiene un divisor que es él mismo.

MÍNIMO COMÚN MÚLTIPLO Y MÁXIMO COMÚN DIVISOR

Todo número natural se puede descomponer como una multiplicación de sus factores primos. Este tipo de expresión permite calcular el mínimo común múltiplo (mcm) y el máximo común divisor (mcd) entre dos o más números. El mínimo común múltiplo (también llamado múltiplo común menor) de dos o más números es el menor múltiplo común de dos o más números distintos de cero. Para calcularlo, hay que descomponer los números en sus factores primos y luego elegir los números que tienen y no tienen en común a mayor potencia. El número que resulta del producto es el menor múltiplo en común. El máximo común divisor (también conocido como divisor común mayor) es el mayor divisor entre dos o más números distintos de cero. Para calcularlo también se descomponen los números en sus factores primos y luego se eligen solo los números que tienen en común a menor potencia. El producto de estos es el mayor divisor en común.

Si calculamos el mcd entre dos números de la secuencia de Fibonacci obtenemos otro número de Fibonacci. Por ejemplo, el mcd de (2, 8) = 2.

problemas con los números enteros

Una de las características de los números enteros es que permiten representar cantidades positivas y negativas, por esta razón se emplea la regla de los signos para saber qué signo tendrá un número al realizar una operación con enteros. En una adición, cuando todos los números son negativos, se suman y el resultado que se obtiene es un número negativo. Si se suman números positivos y negativos, los números de igual signo se suman y al final los dos números obtenidos se restan y se coloca el signo del número mayor. Para sustraer números enteros, hay que tener en cuenta que el símbolo de la resta cambia el signo al número que sigue según la regla. Para multiplicar y dividir números enteros primero se operan los signos mediante la regla de los signos y luego se multiplican o dividen los números según corresponda.

En Oriente se operaba con números positivos y negativos a través de ábacos, tablillas o bolas de colores. A los números negativos se los conocía como “números deudos” o “números absurdos”.

problemas con números decimales

Cuando vamos al supermercado la mayoría de los precios de los productos están marcados con números decimales. Con estos números también se pueden desarrollar las operaciones básicas de la aritmética. Para sumar números decimales tienen que coincidir la parte entera, la coma y la parte decimal de los números de acuerdo a sus valores posicionales. También podemos sumar números decimales con enteros siempre y cuando coincidan sus valores posicionales. Para sustraer también deben coincidir los valores posicionales y se pueden restar dos decimales o un decimal y un número entero. Para multiplicar dos números decimales se multiplican los números como si fuesen números naturales y el producto final será un número decimal que tendrá la cantidad de decimales igual a la suma de todos los decimales de ambos números. Si se multiplica un decimal con un natural el producto final tendrá tantos decimales como tenga el número decimal que se multiplicó inicialmente. Para dividir a estos números, ya sea por otro decimal o por un entero, hay que convertir a los números decimales en enteros. Para esto, se debe multiplicar al dividendo y al divisor por la unidad seguida de tantos ceros como decimales tenga el número con la parte decimal de más cifras. Luego se realiza la división de manera habitual.

A comienzos del siglo XV, un matemático árabe desarrolló el conjunto de los números decimales y sus usos.

operaciones combinadas

Las operaciones combinadas son aquellas que involucran dos o más operaciones aritméticas agrupadas por diferentes símbolos. Los símbolos de agrupamiento son: los paréntesis (), los corchetes [] y las llaves {}. En una operación con estos símbolos primero se eliminan los paréntesis, luego los corchetes y, por último, las llaves. En los ejercicios combinados se pueden encontrar agrupados números enteros, fracciones, números decimales, potencias y raíces. A la hora de resolverlos, se tiene que tener en cuenta el orden de eliminación de los símbolos de agrupamiento como también el de las operaciones: primero se resuelven las potencias y las raíces, luego las multiplicaciones y las divisiones, y por último, las sumas y las restas.

El símbolo de igual “=” fue creado por el matemático inglés Robert Recorde en 1557 para evitar la expresión textual “es igual a”.

CAPÍTULO 2 / TEMA 6

operaciones combinadas

Las operaciones combinadas son aquellas operaciones formadas por diferentes operaciones aritméticas que son agrupadas por paréntesis, corchetes y llaves. Para llegar al resultado hay que seguir algunas reglas de los símbolos de agrupamiento y tener en cuenta la prioridad entre las operaciones.

símbolos de agrupamiento

Muchas veces necesitamos agrupar dos o más operaciones aritméticas para indicar qué orden se debe seguir al momento de resolver un problema. Para agrupar las operaciones se utilizan algunos signos que son denominados símbolos de agrupamiento. Estos son: los paréntesis (), los corchetes [] y las llaves {}.

Cómo eliminar los símbolos de agrupamiento

Cada símbolo de agrupamiento tiene un orden de eliminación:

  • Primero se eliminan los paréntesis, luego los corchetes y finalmente las llaves. Para lograrlo, se resuelven paulatinamente las operaciones que se encuentran dentro de ellos. Hay que tener presente el signo que hay delante. Cuando los signos que están dentro y fuera del paréntesis, corchete o llave son positivos (+) y negativos (−) se consideran los siguientes pasos:

1. Si el signo que está fuera del símbolo de agrupamiento es positivo, los signos que se encuentran en su interior no cambian.

2. Si el signo que está fuera del símbolo de agrupamiento es negativo, los signos que se ubican dentro este cambia.

Por ejemplo:

-(80-44+15)=-80+44-15=-51

Otra forma sería:

+(80-44+15)=80-44+15=51

Como se puede observar, de acuerdo al signo que se encuentre delante del paréntesis pueden cambiar o no los signos de los términos que se encuentran dentro del mismo. Estos términos pueden ser factores o simples sumandos.

¿Sabías qué?
Para resolver operaciones combinadas se suelen aplicar las propiedades de las operaciones.

operaciones combinadas

Las operaciones combinadas son expresiones formadas por diferentes operaciones aritméticas como: sumas, restas, multiplicaciones, divisiones y algunas veces potencias y raíces que son agrupadas en paréntesis, corchetes y llaves.

Veremos el siguiente ejemplo:

Observa que primero se resuelven las operaciones que están dentro de los paréntesis y el resultado se coloca en el lugar donde se ubicaban las mismas. Luego se realiza la misma acción con los corchetes y finalmente con las llaves.

Cuando ya no quedan símbolos de agrupación hay que tener presente que también hay un orden en las operaciones: primero se resuelven potencias y raíces, luego multiplicaciones y divisiones, y por último, sumas y restas.

Observa este otro ejemplo:

Como te podrás dar cuenta, luego de eliminar los símbolos de agrupamiento se resuelven los términos que están fuera de estos con los resultados obtenidos.

Símbolo de igualdad

El símbolo del igual “=” fue creado por el matemático inglés Robert Recorde en 1557 para evitar la expresión textual “es igual a” que se usaba hasta ese momento. Para justificar la forma que obtuvo el símbolo expresó que “dos cosas no pueden ser más iguales que dos rectas paralelas” y, por eso, desde ese día sigue vigente para expresar igualdades en las operaciones.

VER INFOGRAFÍA

ejercicios combinados

Los ejercicios combinados, como se comentó anteriormente, además de incluir las operaciones básicas como la adición, la sustracción, la multiplicación y la resta pueden presentar potencias, raíces, decimales, fracciones y demás expresiones matemáticas.

Observa el siguiente ejercicio:

En el ejercicio anterior, la única diferencia es que observamos una potencia y una raíz. Para resolver el problema se realizan dichas operaciones a medida que se resuelven  las operaciones según su orden de prioridad.

¿Sabías qué?
El símbolo de la raíz cuadrada fue introducido en 1525 por el matemático Christoph Rudolff.

Observa el siguiente ejemplo:

-Resolver 1,5\, +\left \{ \frac{3}{2}+\left [ 2,5\cdot \left ( 5-1 \right ) \right ] \right \}=

Lo primero que debemos tener en cuenta es que se resuelven primero las multiplicaciones y divisiones, luego las sumas y restas. En este caso, observamos fracciones y números decimales:

1,5\, +\left \{ \frac{3}{2}+\left [ 2,5\cdot \left ( 4 \right ) \right ] \right \}=

1,5\, +\left \{ \frac{3}{2}+\left [ 10 \right ] \right \}=

1,5\, +\left \{ 11,5 \right \}=13

Importancia de las operaciones combinadas

A menudo nos enfrentamos a problemas en los que se deben realizar dos o más operaciones aritméticas. Es por ello que para poder resolver dichas situaciones debemos tener conocimiento sobre cómo abordar las operaciones combinadas. En el cálculo avanzado, las operaciones combinadas se resuelven de manera rutinaria porque permiten resolver problemas de manera más rápida y simple.

¡A resolver!

  1. Resuelve las siguientes operaciones combinadas.

a)4\cdot \left \{ 6-\left [ 3\cdot \left ( 5+1 \right ) \right ] \right \}+49

Solución
1

b) 3+\left \{ 10\cdot \left [ 2+\left ( 5-1 \right ) \right ]\right \}-50

Solución
13

c) 7-\left \{ 4+\left [ 5-\left ( 2-1 \right ) \right ] \right \}

Solución
−1

d) \left \{ 5^{2} -\left [ 2\cdot \sqrt{4}\, + (6-5)\right ]\right \}

Solución
20

e) 2,5\, +\left \{ \frac{1}{2}+\left [ 1,5\cdot \left ( 3-1 \right ) \right ] \right \}

Solución
6

RECURSOS PARA DOCENTES

Artículo “Cálculos combinados”

Este artículo destacado permite entender como resolver una operación combinada de acuerdo al orden de prioridades que se debe seguir. También muestra unas series de ejemplos que facilitan su comprensión.

VER

Artículo “Ejercicios combinados con sus desarrollos y soluciones”

El siguiente recurso muestra una serie de ejercicios con su respectiva resolución que permite corroborar los resultados.

VER

CAPÍTULO 2 / TEMA 5

problemas con números decimales

La presencia de los decimales en nuestras vidas ha permitido en ciertas ocasiones representar cantidades con mayor exactitud, por ejemplo, valores que se encuentran entre dos números enteros. Con este tipo de números podemos realizar operaciones básicas de la matemáticas a través de algoritmos similares a los usados en los números enteros.

Adición y sustracción de decimales

Los decimales se usan a diario. Un claro ejemplo son las cajas registradoras de los supermercados que suman y restan decimales todos los días, suman los productos que compramos y restan cuando obtenemos un descuento por alguna oferta. Como verás, los decimales son muy importantes para realizar operaciones en la vida cotidiana.

Adición

En el caso de la adición de números decimales, lo primero que se debe hacer es hacer coincidir los valores posicionales de los números, tanto de su parte entera (unidades, decenas, centenas, etc.) como de su parte decimal (décimos, centésimos, milésimos, etc.).

Una manera simple de ordenar los decimales es colocar uno debajo del otro de manera que la coma quede en una misma columna al igual que los valores de la izquierda. Si uno de los números tiene menos decimales que el otro, se completa con cero su parte decimal hasta que la cantidad de cifras decimales en ambos números sea la misma.

Finalmente, luego de ordenar los números, se suman con el mismo algoritmo de la suma usado en los números enteros. La única diferencia es que se debe colocar la coma del resultado en su columna correspondiente.

Por ejemplo:

-Resolver 10,357 + 7,23.

Al ordenar los números de acuerdo a sus valores posicionales y después de aplicar el algoritmo de la suma se obtuvo el siguiente resultado:

Observa que como 7,23 tiene dos decimales y 10,357 tiene tres, se agregó un cero en los decimales de 7,23 para poder sumarlos.

De esta manera, 10,357 + 7,23 es igual a 17,587.

Sumar números decimales y números enteros

Para sumar decimales y números enteros lo único que hay que hacer es transformar los enteros a decimales. Para ello, se deben agregar tantos ceros a estos como cifras decimales tenga el número decimal. Luego se ordenan los números de la manera explicada anteriormente.

Por ejemplo:

-Resolver 169 + 34,93.

En este caso, el número 34,93 tiene dos decimales, por lo tanto, al transformar el 169 a decimal quedaría expresado como 169,00. Luego se ordenan ambos números de acuerdo a sus valores posicionales. Observa que, en este caso, se trata de una suma “con llevada” y se realiza de la misma forma que una suma de este tipo con números enteros:

De esta manera, 169 + 34,93 es igual a 203,93.

A menudo se suelen convertir números decimales a fracciones para simplificar las operaciones. Los decimales que se pueden convertir de manera más fácil a fracción son los que tienen un cero antes de la coma. En estos casos, el denominador sería la unidad seguida de la cantidad de ceros consecutivos que tenga el decimal a la izquierda, y los números restantes serán iguales al denominador. De esta manera 0,037 es igual a 37/100.

Sustracción

La sustracción con decimales se realiza de manera similar a la sustracción de números enteros. En este caso, se deben hacer coincidir los valores posicionales del minuendo y del sustraendo. En caso de que alguno de los dos números tenga menor cantidad de decimales se completa con ceros.

Por ejemplo:

-Resolver 27,45 − 10,3

En este caso, completamos los decimales del 10,3 para que sean iguales, por lo tanto, se agrega un cero a la derecha. Luego posicionamos los números uno debajo del otro de manera que cada valor posicional se encuentre en una misma columna. Luego se resuelve la resta como lo hacemos con los números enteros. Al final, se debe anotar la coma en su columna correspondiente.

De esta forma, 27,45 − 10,3 es igual a 17,15.

Restar decimales y números enteros

La sustracción también se puede realizar entre números enteros y decimales. Para realizar los cálculos, el número entero se debe convertir a decimal y luego se resuelve la operación de la forma explicada anteriormente.

Por ejemplo:

-Resolver 973 − 632,38

En este caso, como el número decimal tiene dos decimales, debemos agregar dos ceros al número entero. De esta forma, el número 973 queda expresado como 973,00. Luego se posicionan ambos números uno debajo del otro, de manera que sus valores posicionales estén en una misma columna, y se resuelve la resta con decimal. De esta forma, el procedimiento es el siguiente:

El resultado de 973 − 632,38 es 340,62.

multiplicación y división de decimales

Otras de las operaciones básicas que podemos realizar con números decimales son la multiplicación y la división. La multiplicación permite realizar sumas reiteradas de manera rápida y la división permite repartir cantidades en partes iguales.

Multiplicación

Para multiplicar dos números decimales se pueden seguir los siguientes pasos:

  1. Multiplicar los números decimales de la misma manera que se multiplican los números enteros.
  2. El producto final será un número decimal que tendrá la cantidad de decimales igual a la suma de los decimales que tengan el multiplicando y el multiplicador. Por ejemplo, si el multiplicando tiene dos decimales y el multiplicador tiene un decimal, el resultado será un número con tres decimales porque 2 + 1 = 3.

Por ejemplo:

-Resolver 46,5 × 8,6.

Se resuelve la multiplicación de la misma forma en la que se resuelven multiplicaciones con números enteros. El resultado que se obtiene al sumar los dos productos parciales es 39990, como 46,5 tiene un decimal y 8,6 tiene un decimal también, el resultado debe tener dos decimales, es decir; dos números después de la coma, de esta forma el resultado será: 399,90. Observa el procedimiento:

Multiplicar decimales y números enteros

La multiplicación de decimales y números enteros se realiza de la misma forma que con los números enteros. Al final, el resultado tendrá la misma cantidad de decimales que el número decimal que se multiplica.

Por ejemplo:

-Resolver 7,809 × 4.

Al resolver la multiplicación se obtiene 31236, como 7,809 tiene tres decimales, el resultado de esta multiplicación tiene la misma cantidad de decimales, es decir, el resultado es 31,236. El procedimiento aplicado fue el siguiente:

Los decimales son tan usados que podemos encontrarlos en desde una factura de compra hasta una escala de medición. De acuerdo al país, se puede usar la coma o el punto para representarlos. Por ejemplo, en México y en varios países del Caribe se emplea al punto como símbolo para separar decimales, mientras que en España y en gran parte de los países del Cono Sur se usa la coma.

División

Dividir un número entero entre un número decimal

Para dividir un número entero entre un decimal se pueden seguir los siguientes pasos:

  1. Convertir el número decimal en un número entero. Para esto, se va a multiplicar el divisor por la unidad seguida de tantos ceros como decimales tenga el número. Por ejemplo, imagina que tenemos la división 278 : 3,6. En este caso, al convertir el decimal a entero se obtiene: 3,6 x 10 = 36.
  2. Multiplicar al dividendo por el mismo número que se haya multiplicado al divisor. En el ejemplo anterior sería: 278 x 10 = 2.780
  3. Dividir los números obtenidos. En este caso serían 2.780 : 36.

El resultado de la división sería el siguiente:

Cuando se restó 260 − 252 se obtuvo 8. Agregamos una coma en el cociente que era 77 y luego colocamos un 0 al lado del 8 para luego continuar con la división. En este caso, observa que el resto seguirá siempre con el mismo valor, esto se debe a que el resultado de esta división particular es un número infinito periódico (77,22222222222…), es decir, es un número en el que se repite de manera infinita un patrón en su parte decimal.

¿Sabías qué?
Los números decimales pueden ser finitos o infinitos. Dentro de estos últimos están los periódicos y los irracionales.

Dividir un número decimal entre un número entero

Para dividir un número decimal por un número entero se divide de la misma manera, como si fuesen enteros. Al bajar el primer número decimal, se agrega una coma en el cociente y se continúa la división.

El ejemplo a continuación indica el procedimiento para resolver la división 77,5 : 25. Observa que después de resolver la parte entera (77) se agrega la coma en el cociente y se continúa con la operación.

Dividir dos números decimales

Para dividir un decimal con otro decimal se pueden seguir los siguientes pasos (278,1 : 2,52):

  1. Convertir el dividendo y el divisor en números enteros. Para esto, se multiplican ambos números por la unidad seguida de tantos ceros como sea la mayor cantidad de decimales que tengan los números. Por ejemplo, imagina que tenemos 278,1 : 2,52. El número con mayor cantidad de decimales es 2,52 que tiene dos decimales, por lo tanto tenemos que multiplicar ambos números por 100:
    278,1 × 100 = 27.810
    2,52 × 100 = 252
  2. Luego se dividen los dos números obtenidos. En este caso es 27.810 : 252 y el resultado es 110,3. El procedimiento se observa a continuación:

¿Sabías qué?
Los números decimales se pueden escribir como fracciones y viceversa.

Los números decimales en la historia

A comienzos del siglo XV, un matemático árabe organizó el conjunto de los números decimales y sus usos. Un siglo más tarde, Stevin desarrolló números decimales que expresaban las décimas, centésimas, milésimas, etc., pero utilizaba una forma complicada de escritura. Por ejemplo, al número 456,765 lo escribía como 456 (0) 7 (1) 6 (2) 5 (3).

En el siglo XVII, los números decimales se empezaron a escribir con punto o coma para separar la parte entera de la parte decimal del número. En 1792, los decimales se empezaron a utilizar en todos los países al extenderse el Sistema Métrico Decimal.

¡A resolver!

  1. Resuelve las siguientes operaciones:

a) 32,98 + 16,2 = 

RESPUESTAS
49,18

b) 1.589 + 6,98 = 

RESPUESTAS
1.595,98

c) 2.549,8 – 1.563,89 = 

RESPUESTAS
985,91

d) 450,64 – 315,5 =

RESPUESTAS
135,14

e) 1.330,6 + 906,8 = 

RESPUESTAS
2.237,4

f) 23,369 – 3,963 = 

RESPUESTAS
19,406

g) 190,3 x 15 = 

RESPUESTAS
2.854,5

h) 987 x 3,118 = 

RESPUESTAS
3.077,466

i) 73,24 x 5,1 = 

RESPUESTAS
373,524

j) 14,57 x 8,29 = 

RESPUESTAS
120,7853

k) 73,8 : 6 = 

RESPUESTAS
12,3

l) 885,6 : 12 = 

RESPUESTAS
73,8

m) 5.462,5 : 23 = 

RESPUESTAS
237,5

n) 29,095 : 5,29 = 

RESPUESTAS
5,5

o) 799,46 : 1,29 = 

RESPUESTAS
619,73

RECURSOS PARA DOCENTES

Artículo “Números decimales”

El siguiente artículo destacado explica que es un número decimal y describe sus diferentes tipos.

VER

Artículo “Operaciones con números decimales”

Este recurso le permite entender cómo están formados los números decimales y cómo resolver las principales operaciones que los involucran.

VER

CAPÍTULO 2 / TEMA 4

problemas con números enteros

A menudo usamos los números naturales para contar, pero hay ocasiones en las que presentan limitaciones y no nos permiten representar ciertos valores como las cantidades negativas. Los números naturales, sus opuestos y el cero conforman un conjunto de números que siguen sus propias reglas aritméticas: los enteros.

regla de los signos

La regla de los signos es una herramienta útil para determinar el signo del resultado de una operación. Es muy importante que tengas presente que para cada tipo de operación existen reglas particulares. Las veremos a continuación:

Operación Regla de los signos Ejemplo
Multiplicación

El resultado de multiplicar dos números enteros positivos es igual a un número entero positivo.

\mathbf{(+)\cdot (+)=+}

(2)\cdot (3)=6

El resultado de multiplicar dos números enteros negativos es igual a un número entero positivo.

\mathbf{(-)\cdot (-)=+}

(-4)\cdot (-2)=8
El resultado de multiplicar un número entero positivo por otro negativo es igual a un número entero negativo.
\mathbf{(+)\cdot (-)=-}
(4)\cdot (-3)=-12

El resultado de multiplicar un número entero negativo por otro positivo es igual a un número entero negativo.

\mathbf{(-)\cdot (+)=-}

(-5)\cdot (2)=-10
División

El resultado de dividir dos números enteros positivos es igual a un número entero positivo.

\mathbf{(+): (+)=+}

(6): (3)=2

El resultado de dividir dos números enteros negativos es igual a un número entero positivo.

\mathbf{(-): (-)=+}

(-8): (-2)=4

El resultado de dividir un número entero positivo entre otro negativo es igual a un número entero negativo.

\mathbf{(+): (-)=-}

(12): (-2)=-6

El resultado de dividir un número entero negativo entre otro positivo es igual a un número entero negativo.

\mathbf{(-): (+)=-}

(-10): (2)=-5
Adición y sustracción

Si los dos números enteros son positivos, se suman y el resultado es un número entero positivo.

3+1= 4
Si los dos números enteros son negativos, se suman y el resultado es un número entero negativo. -5-3= -8
Si los dos números enteros tienen signos diferentes diferentes, se restan y el resultado tendrá el signo del número mayor. -5+3= -2

 

-5+10= 5

En este tipo de números, cuando no se indique el signo, se asume que es un número positivo.

Los números enteros contienen al conjunto de los números naturales y sus opuestos, es decir, contienen los números positivos y los negativos. Son muy importantes al momento de representar situaciones que los números naturales no podrían. Por ejemplo, algunas escalas representan temperaturas negativas y algunos sistemas de referencia también emplean números enteros.

¿Sabías qué?
El cero es el único número entero que no es ni positivo ni negativo, así que no sigue la regla de los signos.

adición y sustracción de números enteros

El conjunto de los números enteros están conformados por los números negativos, el cero y los números positivos. Con ellos se pueden resolver operaciones matemáticas, como la adición y la sustracción.

Adición

Para sumar números enteros existen tres casos distintos:

  • Si todos los números son positivos, el resultado de la suma será un número positivo:

  • Si todos los números son negativos, estos se suman y el resultado es un número negativo:

  • Si se suman números positivos y negativos, los positivos se suman con los positivos y los negativos con los negativos. Al final se restan ambos números resultantes y el resultado tendrá el signo del número mayor.

El número 3 quedó negativo porque el 11 era el número mayor y su signo era negativo.

¿Sabías qué?
Hace 2.400 años los chinos utilizaban varillas negras para representar a los números negativos y varillas rojas para los números positivos.

Sustracción

Para algunas sustracciones, como también para la suma, puede ser útil el siguiente recordatorio:

Hay que tener presente que el símbolo de resta cambia el signo al número que sigue. Entonces, si el número que sucede al signo menos es positivo, se convierte en negativo. Si el número que se resta es negativo, se convierte en positivo. Observemos los siguientes casos:

  • A un número positivo se le resta otro número positivo:

  • A un número positivo se le resta un número negativo:

  • A un número negativo se le resta otro número negativo:

  • A un número negativo se le resta un número positivo:

Los números negativos

Anteriormente a los números negativos se los conocía como “números deudos” o “números absurdos”. Se los empezó a utilizar en Asia durante el siglo V y en Europa en el siglo XVI. En Asia se operaban los números positivos y negativos a través del uso de ábacos, tablillas o bolas de colores. Los indios fueron los primeros en diferenciar los números positivos de los negativos ya que los interpretaban como créditos y débitos. Los símbolos de suma (+) y resta (-) como los conocemos en la actualidad fueron creados por el matemático alemán Michael Stifel.

En la vida cotidiana se nos presentan situaciones que no se pueden representar con números naturales, como por ejemplo, las temperaturas bajo cero, los pisos subterráneos de los edificios, las deudas y los gastos, entre otros.

multiplicación y división de números enteros

A los números enteros también se los puede operar a través de la multiplicación y de la división.

Multiplicación

Para multiplicar números enteros se pueden seguir los siguientes pasos:

  1. Se multiplican los números para obtener el resultado.
  2. Se determina el signo del resultado a través de la regla de los signos.

Veamos un ejemplo:

En este caso, el problema se resolvió a través de los pasos anteriores. Como se trata de enteros con diferente signo el resultado es negativo.

Observemos otro caso:

(-5)\cdot (-3)=15

En esta operación, al tratarse de una multiplicación de dos números negativos, el resultado es positivo.

División

Para dividir los números enteros se pueden seguir los siguientes pasos:

  1. Se dividen los números para obtener el resultado.
  2. Se determina el signo del resultado a través de la regla de los signos.

Veamos un ejemplo:

Al ser una división entre dos números con signo diferente el resultado es un número negativo.

Observemos otro ejemplo:

En este caso, al ser una división de números negativos el resultado es positivo.

Conjunto de los números enteros

Está formado por los números positivos, negativos y el cero. Este conjunto de números no considera a los números decimales y se denota con la letra Z. Las operaciones con los números enteros obedecen reglas aritméticas particulares como la regla de los signos.

¿Sabías qué?
Los números que utilizamos se denominan arábigos porque fueron introducidos a Europa por los árabes.

¡A practicar!

  1. Resuelve las siguientes operaciones:

RESPUESTAS

a) 1

b) −5

c) 14

d) −1

e) −36

f) 18

g) 7

h) −10

i) −80

j) −10

RECURSOS PARA DOCENTES

Artículo “Regla de los signos”

El siguiente recurso permite profundizar en la regla de los signos a través de ejercicios basados en situaciones en las que puede aplicarse.

VER

Artículo “Suma algebraica”

Este artículo explica qué es una suma algebraica, sus principales características y su influencia en el desarrollo de operaciones con números enteros.

VER

CAPÍTULO 2 / TEMA 1

OPERACIONES BÁSICAS

Los seres humanos tenemos la capacidad de contar cosas. Para este proceso de conteo necesitamos un conjunto de operaciones que facilitan los cálculos. La adición, la sustracción, la multiplicación y la resta son conocidas como operaciones básicas y su uso va desde lo cotidiano hasta lo científico. 

Adición y sustracción por reagrupación

Las adiciones y las sustracciones las utilizamos todos los días para contar cantidades como los puntos que obtenemos en un juego o cuando necesitamos saber lo que nos tienen que dar de vuelto al hacer una compra. Existen diversos métodos para realizar estas operaciones pero el resultado siempre es el mismo.

Adición por reagrupación

A menudo hacemos uso de las adiciones para resolver distintas situaciones. Cuando los números son pequeños usamos cálculos mentales, pero cuando los números son grandes generalmente hacemos la cuenta en un papel.

Los siguientes pasos te ayudarán a resolver adiciones por reagrupación:

1. Se escriben los números a sumar uno debajo del otro, de manera que coincidan las unidades, decenas, centenas, unidades de mil, etc.

2. Se inicia la suma de derecha a izquierda, a partir de las unidades. Si el resultado de la suma de las unidades es mayor a 9, se anota el resultado de la unidad de dicha suma y el valor de la otra cifra se anota sobre la columna de la izquierda. De esta manera, al resultado de la columna siguiente se le suma la cifra que se anotó con antelación.

Luego se procede a sumar las siguientes columnas junto con los números de las llevadas que se hayan podido generar en sumas de columnas anteriores.

Sustracción por reagrupación

Para resolver las sustracciones por reagrupación se pueden seguir los siguientes pasos:

1. Se escriben los números a restar uno debajo del otro, de manera que coincidan las unidades, decenas, centenas, etc.

2. Igual que en la adición, la sustracción se resuelve de derecha a izquierda. Si el número de la cifra superior es menor que el de la cifra inferior, no se puede restar de forma directa. En este caso, se coloca un 1 delante del número de arriba y se resuelve la resta. A este tipo de operación se la conoce como “resta con llevada” porque al resolver la siguiente columna se le debe restar el 1 que se tomó prestado anteriormente.

3. Se repite el procedimiento hasta abarcar todas las columnas.

Multiplicación

Las multiplicaciones nos sirven para simplificar situaciones en las que tendríamos que sumar reiteradamente un mismo número. De hecho, la multiplicación consiste en calcular el resultado de sumar un número por sí mismo tantas veces como indique otro número o multiplicador. Existen dos tipos de multiplicación: sin reagrupación y con reagrupación.

Multiplicación sin reagrupación

Las multiplicaciones sin reagrupación son aquellas que no tienen llevada, es decir, que cuando multiplicamos cada una de las cifras del multiplicador por el multiplicando da como resultado un número de una cifra.

Para resolver estas multiplicaciones se siguen estos pasos:

1. Primero se calculan los productos intermedios. Se comienza con la multiplicación de las unidades del multiplicador por todas las cifras del multiplicando de derecha a izquierda y se anotan las cifras correspondientes en cada columna. En este caso se multiplica 3 × 62.312 = 186.936.

2. Luego se multiplica la decena del multiplicador por las cifras del multiplicando, se deja un espacio y se anota el número obtenido debajo del resultado anterior. Aquí se multiplica 1 × 62.312 = 62.312.

3. Luego de obtener los productos intermedios, estos se suman para obtener el resultado de la multiplicación.

 

Observemos ahora un ejemplo en donde el multiplicador posee tres cifras:

1. Igual que en el ejemplo anterior, lo primero que hacemos es multiplicar las unidades del multiplicador (2) por cada una de las cifras.

2. Luego dejamos un espacio en la fila de abajo y anotamos el resultado de la multiplicación de las decenas del multiplicador y el multiplicando.

3. Después dejamos dos espacios y anotamos el resultado de multiplicar las centenas del multiplicador y el multiplicando.

4. Finalmente sumamos los tres productos obtenidos y obtenemos el resultado 45.245.252.

¿Sabías qué?
La multiplicación es una suma abreviada de sumandos iguales. El resultado de la multiplicación se llama producto.
La multiplicación presenta varias propiedades, como la del elemento neutro, en la que todo número multiplicado por 1 es igual al mismo número. Otra propiedad es la conmutativa que explica que el orden de los factores no altera el resultado. También presenta la propiedad distributiva la cual indica que no importan cómo se reagrupen los factores, el resultado siempre será el mismo.

Multiplicación con reagrupación

A diferencia de los ejemplos anteriores, las multiplicaciones por reagrupación tienen llevadas. Se resuelven con los mismos pasos anteriores, pero esta vez las llevadas se suman al resultado de cada multiplicación al momento de anotar los productos intermedios.

Para resolver este tipo de multiplicación se siguen estos pasos:

1. Primero se calculan los productos intermedios. Se comienza con la multiplicación de las unidades del multiplicador por todas las cifras del multiplicando de derecha a izquierda y se anotan las cifras correspondientes en cada columna. Cuando el producto de una cifra del multiplicador por una cifra del multiplicando tiene dos cifras, se anota la unidad de dicho número y la cifra correspondiente a las decenas se suma al producto siguiente.

Nota que 5 × 5 = 25. Así que colocamos la unidad (5) en la columna de los resultados y la decena (2) sobre la columna de la izquierda. Por lo tanto, al multiplicar 5 × 0 = 0 y 0 + 2 = 2.

2. Luego se multiplica la decena del multiplicador por las cifras del multiplicando, se deja un espacio y se anota el número obtenido debajo del resultado anterior.

3. Repetimos el paso anterior con las centenas del multiplicador.

4. Finalmente sumamos los productos parciales y obtenemos el resultado de la multiplicación.

división

Muchas veces tenemos la necesidad de hacer repartos de manera equitativa. La operación que nos permite hacerlo es la división. Esta puede ser exacta o inexacta.

Si la resta es la operación opuesta a la suma, la división es la opuesta a la multiplicación. Para expresar una división se pueden emplear los símbolos de “÷”, “:” y “/”. Esta operación nos sirve para repartir cantidades en partes iguales y pueden ser de dos tipos: divisiones exactas cuando el resto es igual a cero y divisiones inexactas cuando no lo es.

Divisiones exactas

Las divisiones exactas son aquellas cuyo resto es igual a cero. Esto lo determinamos al resolver la división por medio de los siguientes pasos:

Para dividir 323 ÷ 17 lo primero que debemos hacer es escribir los datos en su respectiva ubicación para poder comenzar a realizar cálculos:

2. Como tenemos dos cifras de divisor, tomamos dos de dividendo para comenzar la división y comprobamos que la cantidad sea menor a la del divisor.

3. Pensamos un número que multiplicado por 17 se acerque lo máximo posible a 32. Sabemos que 1 × 17 = 17 y 2 × 17 = 34 y es mayor que 32. Así que colocamos el 1 en el cociente, escribimos el producto debajo del 32 y restamos 32 − 17 = 15.

4. Bajamos el siguiente dígito del dividendo, en este caso el 3:

5. Buscamos un número que multiplicado por 17 sea igual o se acerque lo máximo posible a 153. En este caso sería 9, porque 17 × 9 = 153. Luego restamos el producto. Como 153 − 153 = 0 no seguimos la división y el resto de esta es cero, lo que significa que es exacta.

Podemos escribir que 323 ÷ 17 = 19.

Divisiones no exactas

Las divisiones no exactas son aquellas que tienen un resto distinto de cero. El procedimiento para resolverlas es igual al anterior lo único que cambia es que la división termina cuando el resto obtenido es menor al divisor. Observemos el siguiente ejemplo:

Podemos escribir esta división de la siguiente forma:

5.584 ÷ 24 = 232 y resto = 16.

Historia de los símbolos matemáticos

Muchos países en la Antigüedad utilizaban abreviaturas para indicar algunas operaciones matemáticas. Los italianos, por ejemplo, utilizaban una “p” y una “m” para indicar la suma y la resta (plus y minus, en latín). Luego se impuso el uso de la abreviatura alemana ­”+” y “−”. Estos símbolos se usaron por primera vez en un libro alemán de Widman en 1489.

El primer símbolo que se utilizó para la multiplicación fue “×”, utilizado por Oughtred en 1631. Varios años después Leibniz impuso el punto “·” como símbolo de la multiplicación porque decía que el símbolo que se usaba era fácil de confundir con la letra equis “x”.

Fibonacci, en el siglo XIII, creó la barra horizontal para las fracciones. Esta separaba el numerador del denominador. En 1845, De Morgan ideó la barra oblicua (/) para denotar a la división. Antes de la barra oblicua, Rahn inventó para la división el signo ÷. Los dos puntos (:) los introdujo Leibniz en el caso de que se quisiese escribir una división en una sola línea.

¡A practicar!

1. Resuelve las siguientes adiciones y sustracciones.

a) 3.005.078 + 5.119.839 = 

Solución
8.124.917

b) 4.313.528 − 499.999 = 

Solución
3.813.529

c) 27.521.666 − 14.124.917 = 

Solución
13.396.739

d) 187.324.949 + 153.286.084 = 

Solución
340.611.033

2. Resuelve las siguientes multiplicaciones.

a) 2.321.231 × 231 = 

Solución
536.204.361

b) 1.639.121 × 452 = 

Solución
740.882.692

c) 3.141.243 × 221 = 

Solución
694.214.703

d) 796.467 × 734 = 

Solución
584.606.778

3. Resuelve las siguientes divisiones.

a) 48.321.564 : 12 = 

Solución
4.026.797

b) 240.526 : 18 = 

Solución
13.362 y su resto es 10.

c) 451.542 : 42 = 

Solución
10.751

d) 2.795.615 : 26 = 

Solución
107.523 y su resto es 17.

RECURSOS PARA DOCENTES

Artículo “Operaciones básicas de los números naturales y sus propiedades”

El siguiente artículo destacado explica cuáles son las principales propiedades de las operaciones básicas en números naturales.

VER

Artículo “Suma y resta utilizando el algoritmo de descomposición”

Este artículo explica uno de los métodos para resolver sumas y restas que se fundamenta en la descomposición de un número de acuerdo a los valores posicionales de sus cifras.

VER

Artículo “Divisiones por dos o más cifras”

Este artículo explica uno de los métodos usados para realizar divisiones de dos o más cifras.

VER

CAPÍTULO 4 / TEMA 5

RELACIONES DE TIEMPO

El tiempo es una magnitud que nos ayuda a medir la duración de un evento. Gracias al tiempo podemos ordenar sucesos y establecer un pasado, un presente y un futuro. Todas sus unidades de medidas pueden convertirse entre ellas. Aprender sus cálculos básicos permite saber, por ejemplo, en qué momento tenemos que hacer una tarea.

El tiempo es una de las magnitudes más utilizamos cotidianamente, por eso es normal que veas un reloj en todas las casa, escuelas y comercios. Las unidades menores a un día son las horas, minutos y segundo, y para medirlas usamos el reloj o un cronómetro; en cambio, las unidades mayores a un día, como los meses y los años, son medidas con un calendario.

UNIDADES DE Tiempo: equivalencias y conversiones

Todo lo que realizamos consume tiempo: sabemos que el recreo dura 10 minutos, que un partido de fútbol dura 90 minutos o que el día tiene 24 horas. Es una variable tan importante, que en todo el mundo se utilizan las mismas unidades para medir el tiempo, a diferencia de otras magnitudes, como la distancia o el volumen. A algunas de sus unidades más importantes puedes verlas en esta tabla, junto a sus equivalencias:

Unidades de tiempo y sus equivalencia
Menores a un día

 

1 día = 24 horas

1 hora = 60 minutos

1 minuto = 60 segundos

Mayores a un día

 

1 semana = 7 días

1 mes = 30 o 31 días

1 año = 365 días = 12 meses

Conversión de unidades de tiempo

Podemos hacer conversiones entre dos o más unidades de tiempo por medio de una regla de tres: método en el que establecemos relaciones, multiplicamos en forma diagonal y luego dividimos por la unidad restante.

– Ejemplo 1:

¿Cuánto días hay en 96 horas?

En 96 horas hay 4 días.


– Ejemplo 2:

¿Cuántos meses hay en 20 años?

En 20 años hay 240 meses.


– Ejemplo 3:

¿Cuántas horas tiene una semana?

Una semana (7 días) tiene 168 horas.

Otras unidades de tiempo

Para las medidas de tiempo más grandes, las equivalencias más prácticas son:

  • 1 lustro = 5 años
  • 1 década = 10 años
  • 1 siglo = 100 años
  • 1 milenio = 1.000 años

¿Sabías qué?
Hay una unidad de tiempo mucho menor que  el segundo: el microsegundo. Su símbolo es µs y es igual a una millonésima parte de un segundo, es decir, 10−6 s.
En un calendario o agenda representamos todos los días del mes. Son útiles para planificar las actividades a realizar cada día; incluso, algunas agendas dividen cada día en horas, de manera que podamos organizar aún mejor nuestro tiempo. También son útiles para conocer las fechas de cada mes y los días feriados que hay en cada uno de ellos.

el reloj

El reloj es una instrumento para medir el tiempo, gracias a él sabemos las horas, los minutos y los segundos de un día. Pueden ser digitales o analógicos.

Este es un reloj analógico e indica que son “las 6 y 15 minutos”.

 Este es un reloj digital e indica que son “las 10 y 20 minutos de la mañana”.

Abreviaturas am y pm

  • La abreviatura am significa que la hora leída corresponde a antes del mediodía.
  • La abreviatura pm significa que la hora leída corresponde a después del mediodía.

Sistema horario de 24 horas

Los relojes analógcos tienen un sistema de 12 horas, por lo que necesitan hacer dos ciclos completos para cubrir un día. En cambio, los relojes digitales pueden tener, además de un sistema de 12 horas, un sistema de 24 horas que se caracteriza por dividir al día en las 24 horas totales que lo conforman, por lo que no utiliza las abreviaturas am y pm.

La siguiente tabla muestra la relación entre ambos formatos:

Formato 24 horas Formato 12 horas
00:00 h 12:00 am
01:00 h 01:00 am
02:00 h 02:00 am
03:00 h 03:00 am
04:00 h 04:00 am
05:00 h 05:00 am
06:00 h 06:00 am
07:00 h 07:00 am
08:00 h 08:00 am
09:00 h 09:00 am
10:00 h 10:00 am
11:00 h 11:00 am
12:00 h 12:00 pm
13:00 h 01:00 pm
14:00 h 02:00 pm
15:00 h 03:00 pm
16:00 h 04:00 pm
17:00 h 05:00 pm
18:00 h 06:00 pm
19:00 h 07:00 pm
20:00 h 08:00 pm
21:00 h 09:00 pm
22:00 h 10:00 pm
23:00 h 11:00 pm

operaciones con unidades de tiempo

Suma

Los pasos a seguir para sumar horas y minutos son los siguientes:

  1. Sumamos los minutos y luego las horas.
  2. Si los minutos son 60, colocamos 00 en la columna de los minutos y sumamos 1 hora en la columnas de las horas.
  3. Si los minutos son más de 60, restamos 60 a ese resultado y sumamos 1 hora en la columnas de las horas.
  4. Escribimos la hora final.

– Ejemplo 1:

¿Cuánto es 2:36 + 5:15?

Así que:

2 h y 36 min + 5 h y 15 min = 7 h y 51 min

También podemos representarlo de esta manera:

02:36 + 05:15 = 07:51


– Ejemplo 2:

Marta salió de su casa a las 3: 45 pm y luego de 2 horas y 15 minutos llegó a la casa de su abuela, ¿a qué hora llegó?

  • Datos

Hora de salida: 3 h y 45 min

Duración del recorrido: 2 h y 15 min

  • Analiza

Tenemos que sumar la hora de salida con el tiempo que duró en el recorrido para saber la hora de llegada. Para esto sumamos primero los minutos y luego las horas.

  • Calcula

Primero sumamos los minutos: 45 min + 15 min = 60 min. Como 60 min son iguales a 1 h, escribimos 00 y sumamos 1 hora a la columna de las horas.

Luego sumamos las horas: 1 h + 3 h + 2 h = 6 h.

  • Responde

Marta llegó a las 6 pm en punto.


– Ejemplo 3:

Carla entró a un examen a las 8:50 am y tardó 2 horas y 39 minutos en hacerlo, ¿a qué hora salió del examen?

  • Datos

Hora de entrada: 8 h y 50 min

Duración en el examen: 2 h y 39 min

  • Analiza

Si sumamos la hora de entrada con el tiempo que duró en el examen tendremos la hora de salida del examen. Primero sumamos los minutos y luego las horas.

  • Calcula

Sumamos los minutos: 50 + 39 = 89. Pero ya sabemos que 60 minutos forman una hora, así que tenemos que “sacar” 60 min de 89 min, es decir, 89 − 60 = 29.

Escribimos 29 min en la columna de los minutos y sumamos 1 h en la columna de las horas.

Luego sumamos las horas: 1 h + 8 h + 2 h = 11 h.

  • Responde

Carla salió a las 11:29 am.

Una de las primeras formas de medir el tiempo fue por medio de un reloj solar. Este funciona gracias a la sombra que genera el Sol durante el día sobre un estilo ubicado encima de una superficie. El movimiento diurno del Sol hace que la sombra cambie de dirección y de este modo se podía saber con bastante precisión la hora del día.

Resta

Los pasos a seguir para restar horas y minutos son los siguientes:

  1. Restamos los minutos.
  2. Si el minuendo es menor que el sustraendo, sumamos 60 minutos (que es igual a 1 hora) a ese minuendo. Luego restamos una hora de la columna de las horas.
  3. Restamos las horas.
  4. Escribimos el resultado.

– Ejemplo 1:

¿Cuánto es 4:11 – 2:47?

Lo primero que debemos hacer es colocar una hora sobre otra.

Como 11 es menor que 47 y no lo puede restar, tomamos “prestado” 60 minutos (1 hora) de la columna de las horas, es decir, sumamos a 11 min + 60 min = 71 min. Luego restamos esa hora de la columna de las horas: 4 h − 1 h = 3 h.

Ahora sí podemos hacer la resta de minutos: 71 min − 47 min = 24 min.

Después restamos las horas: 3 h − 2 h = 1 h.

Entonces:

4 h y 11 min − 2 h y 47 min = 1 h y 24 min

También lo podemos escribir así:

4:11 − 2:47 = 1:24


– Ejemplo 2:

Después de 45 min, un tren llegó a las 16 h y 15 min, ¿a qué hora salió el tren?

  • Datos

Duración de recorrido: 45 min

Hora de llegada: 16 h y 15 min

  • Analiza

Hay que restar el tiempo recorrido a la hora de llegada para saber la hora exacta de salida.

  • Calcula

Como 15 es menor que 45, tomamos prestado 60 minutos (1 hora) de la columna de las horas. Por lo tanto: 15 min + 60 min = 75 min. Al prestar 1 hora, tenemos que restarla de la columna de las horas, así que: 16 h − 1 h = 15 h. Luego hacemos la resta de minutos y horas.

  • Responde

El tren salió a las 15:30.


– Ejemplo 3:

Francisco tomó el bus para visitar a sus primos en otra ciudad. El bus salió a las 8:30 am y llegó a las 10:45 am ¿cuánto duró el viaje?

  • Datos

Hora de salida: 8 h y 30 min

Hora de llegada: 10 h y 45 min

  • Analiza

Si restamos la hora de salida a la hora de llegada tendremos la diferencia de tiempo entre ambas. Restamos primero los minutos y luego las horas.

  • Calcula

  • Responde

El viaje duró 2 h y 15 min.

¡A practicar!

1. Resuelve las operaciones de tiempo:

  • 8:45 + 2:45
Solución
8:45 + 2:45 = 11:30
  • 4:25 − 3:42
Solución
4:25 − 3:42 = 00:43
  • 10:20 + 6:15
Solución
10:20 + 6:15 = 16:35
  • 8:23 − 5:15
Solución
8:23 − 5:15 = 3:08
  • 1:50 + 9:38
Solución
1:50 + 9:38 = 11:28
  • 12:12 − 6:30
Solución
12:12 − 6:30 = 5:42

 

2. Responde:

  • ¿Cuántas horas hay en 5 días?
Solución
120 horas.
  • ¿Cuántos días hay en 1 década?
Solución
3.650 días.
  • ¿Cuántos segundos hay en 2 horas?
Solución
7.200 segundos.
  • ¿Cuántos meses hay en 2 lustros?
Solución
240 meses.
  • ¿Cuántas décadas hay en 3 siglos?
Solución
30 décadas.
RECURSOS PARA DOCENTES

Artículo “Operaciones en el sistema sexagesimal”

Este artículo explica la forma de realizar operaciones con unidades de tiempo en el sistema sexagesimal.

VER

Artículo “Medidas de tiempo”

Con este recurso podrás ampliar la información sobre cómo hacer operaciones de suma y resta con las medidas de tiempo.

VER

CAPÍTULO 2 / TEMA 5 (REVISIÓN)

OPERACIONES CON NATURALES | ¿QUÉ APRENDIMOS?

CÁLCULOS MATEMÁTICOS

LOS CÁLCULOS MATEMÁTICOS SON OPERACIONES QUE REALIZAMOS PARA CONOCER EL RESULTADO DE ALGO EXPRESADO EN NÚMEROS. LAS OPERACIONES QUE UTILIZAMOS CON MAYOR FRECUENCIA SON LA SUMA Y LA RESTA. PARA REGISTRARLAS EN FORMA ESCRITA UTILIZAMOS EL SÍMBOLO + (QUE SE LEE “MÁS”) Y EL SÍMBOLO − (QUE SE LEE “MENOS”). REALIZAMOS CÁLCULOS MATEMÁTICOS EN NUESTRA VIDA DIARIA: CUANDO PAGAMOS ALGO, AL MEDIR EL TIEMPO, PARA CONOCER UNA DISTANCIA Y HASTA PARA HACER MÚSICA.

LA MATEMÁTICA NO SOLO NOS SIRVE PARA LA ESCUELA, SINO QUE LA UTILIZAMOS A DIARIO EN NUESTRA VIDA COTIDIANA.

ADICIÓN O SUMA

LA ADICIÓN O SUMA ES LA OPERACIÓN DE AGREGAR O AGRUPAR CANTIDADES PARA OBTENER UN RESULTADO. ESAS CANTIDADES LLEVAN EL NOMBRE DE SUMANDOS, EL RESULTADO SE DENOMINA SUMA. AL SUMAR NÚMEROS DE DOS DÍGITOS A VECES ES CONVENIENTE ESCRIBIR LA OPERACIÓN EN FORMA VERTICAL. EN ESE CASO ES IMPORTANTE UBICAR EN LA COLUMNA DE LA DERECHA LAS UNIDADES Y EN LA DE LA IZQUIERDA LAS DECENAS.

CUANDO LOS NÚMEROS SON PEQUEÑOS PODEMOS USAR PALITOS O LOS DEDOS PARA HACER LA SUMA.

SUSTRACCIÓN O RESTA

LA SUSTRACCIÓN O RESTA ES LA OPERACIÓN CONTRARIA A LA SUMA. CONSISTE EN EXTRAER O QUITAR A UNA CANTIDAD MAYOR A UNA MENOR. AL NÚMERO MAYOR LO LLAMAMOS MINUENDO Y AL MENOR LO LLAMAMOS SUSTRAENDO, EL RESULTADO DE LA RESTA SE CONOCE COMO DIFERENCIA O RESTA.

EN LA RESTA USAMOS EL SIGNO − QUE SE LEE “MENOS”. POR EJEMPLO, 4 − 3 = 1 SE LEE “CUATRO MENOS TRES ES IGUAL A UNO”.

SITUACIONES PROBLEMÁTICAS

LAS SUMAS Y RESTAS SON LAS OPERACIONES MATEMÁTICAS MÁS USADAS POR TODOS DÍA A DÍA, ASÍ QUE ES POSIBLE QUE MUCHAS SITUACIONES LAS TENGAS QUE RESOLVER CON CÁLCULOS. CUANDO ESTO SUCEDE, ES IMPORTANTE QUE SIGAMOS UNA SERIE DE PASOS QUE NOS AYUDEN A RAZONAR Y ORGANIZAR LA INFORMACIÓN PARA RESOLVER EL PROBLEMA. ALGUNOS DE ESTOS PASOS SON IDENTIFICAR LOS DATOS, PENSAR EN EL PROCEDIMIENTO PARA LA RESOLUCIÓN, HACER LA OPERACIÓN Y DAR LA RESPUESTA. 

AUNQUE NO LO CREAS, LAS OPERACIONES MATEMÁTICAS LAS USAS SIEMPRE, ASÍ QUE DE TANTO PRACTICAR PODRÁS HACER TODOS ESTOS CÁLCULOS MENTALMENTE, ES DECIR, SIN NECESIDAD DE LÁPIZ Y PAPEL.

 

CAPÍTULO 2 / TEMA 4

situaciones problemáticas

MUCHAS SITUACIONES DE NUESTRO DÍA A DÍA SE RESUELVEN POR MEDIO DE CÁLCULOS MATEMÁTICOS, PERO PARA LLEGAR A SU RESPUESTA ES NECESARIO QUE REALICEMOS UNA SERIE DE PASOS: ORGANIZAR LOS DATOS, REFLEXIONAR SOBRE EL PROCESO, HACER LAS OPERACIONES Y FINALMENTE HALLAR LA RESPUESTA. MUCHAS OTRAS VECES TENEMOS QUE HACERLO MENTALMENTE. ¡APRENDE CÓMO SE HACEN! 

problemas de suma y resta

1. JUANA TIENE 12 LÁPICES DE COLORES Y CATALINA 6. ¿CUÁNTOS LÁPICES DE COLORES TIENEN ENTRE LAS DOS?

  • DATOS

LÁPICES DE JUANA: 12

LÁPICES DE CATALINA: 6

  • PREGUNTA

¿CUÁNTOS LÁPICES DE COLORES TIENEN ENTRE LAS DOS?

  • REFLEXIONA

HAY QUE SUMAR LAS DOS CANTIDADES DE LÁPICES DE COLORES PARA SABER EL TOTAL. PRIMERO SUMAS LAS UNIDADES Y LUEGO SUMA LAS DECENAS. SI UNO DE LOS SUMANDOS NO TIENE DECENAS SE CONSIDERA COMO UN CERO (0).

  • CALCULA

  • RESPUESTA

ENTRE LAS DOS TIENEN 18 LÁPICES.


2. JUAN TENÍA 54 FIGURITAS PARA JUGAR EN EL RECREO. COMPITIÓ CON CELINA Y PERDIÓ 13 FIGURITAS. ¿CUÁNTAS FIGURITAS LE QUEDAN A JUAN AHORA?

  • DATOS

FIGURITAS DE JUAN: 54

FIGURITAS QUE PERDIÓ: 13

  • PREGUNTA

¿CUÁNTAS FIGURITAS LE QUEDAN A JUAN AHORA?

  • REFLEXIONA

PARA SABER CUÁNTAS FIGURITAS LE QUEDARON A JUAN TENEMOS QUE RESTAR LA CANTIDAD QUE TENÍA AL INICIO CON LA CANTIDAD QUE PERDIÓ. PARA ESTO COLOCAMOS EL MINUENDO (54) SOBRE EL SUSTRAENDO (13). RESTAMOS PRIMERO LAS UNIDADES Y LUEGO LAS DECENAS.

  • CALCULA

  • RESPUESTA

A JUAN LE QUEDAN 41 FIGURITAS.


3. ILEANA LLEVÓ UN PAQUETE DE GALLETAS DE FRUTILLA PARA COMPARTIR. EL PAQUETE TENÍA 15 GALLETAS Y ELLA CONVIDÓ 5. ¿CUÁNTAS GALLETAS LE QUEDAN A ILEANA AHORA?

  • DATOS

GALLETAS DE ILEANA: 15

GALLETAS CONVIDADAS: 5

  • PREGUNTA

¿CUÁNTAS GALLETAS LE QUEDAN A ILEANA AHORA?

  • REFLEXIONA

ESTE PROBLEMA PODEMOS RESOLVERLO POR MEDIO DE UNA RESTA. SI LE “QUITAMOS” LA CANTIDAD DE GALLETAS CONVIDADAS A LA CANTIDAD TOTAL QUE TIENE EL PAQUETE TENDREMOS COMO RESULTADO LAS GALLETAS QUE QUEDARON.

  • CALCULA

  • RESPUESTA

A ILEANA LE QUEDAN AHORA 10 GALLETITAS.

TODO PROBLEMA MATEMÁTICO PUEDE SER RESUELTO POR MEDIO DE UNA OPERACIÓN, LAS MÁS COMUNES SON LAS DE SUMA Y RESTA. PARA RESOLVER PROBLEMAS TIENES QUE SEGUIR UNOS PASOS: ORGANIZAR LOS DATOS, OBSERVAR LA PREGUNTA, PENSAR SOBRE SU RESPUESTA PARA DAR EL RESULTADO A LA PREGUNTA. ESTOS PASOS TE AYUDARÁN A SOLUCIONAR PROBLEMAS DE MANERA RÁPIDA Y SENCILLA.

4. COMO FALTÓ LA MAESTRA DE UN PRIMER GRADO, UNIERON A TODOS LOS NIÑOS EN UN AULA. SI EN 1º A HAY 25 ALUMNOS Y EN 1º B HAY 23, ¿CUÁNTOS ALUMNOS HAY AHORA EN EL AULA?

  • DATOS

ALUMNOS DE 1º A: 25

ALUMNOS DE 1º B: 23

  • PREGUNTA

¿CUÁNTOS ALUMNOS HAY AHORA EN EL AULA?

  • REFLEXIONA

HAY QUE HACER UNA SUMA O ADICIÓN EN LAS QUE LOS SUMANDOS SON LAS CANTIDADES DE ALUMNOS EN CADA GRADO. COLOCA LOS SUMANDOS UNO SOBRE OTRO. SUMA PRIMERO LAS UNIDADES Y LUEGO LAS DECENAS.

  • CALCULA

  • RESPUESTA

AHORA EN EL AULA HAY 48 ALUMNOS.


5. EN 1º A HAY 25 ALUMNOS Y HOY FALTARON 4, ¿CUÁNTOS ALUMNOS DE 1º A ESTÁN EN LA ESCUELA?

  • DATOS

ALUMNOS TOTALES DE 1º A: 25

ALUMNOS DE 1º A QUE FALTARON: 4

  • PREGUNTA

¿CUÁNTOS ALUMNOS DE 1º A ESTÁN EN LA ESCUELA?

  • REFLEXIONA

TENEMOS QUE RESTAR LA CANTIDAD DE ALUMNOS QUE NO FUERON A LA ESCUELA A LA CANTIDAD TOTAL DE ALUMNOS DE 1º A. RECUERDA QUE EL SUSTRAENDO ES EL MENOR DE LOS NÚMEROS Y VA DEBAJO DEL MINUENDO QUE ES 25. RESTA LAS UNIDADES Y LUEGO LAS DECENAS.

  • CALCULA

  • RESPUESTA

EN LA ESCUELA ESTÁN 21 ALUMNOS DE 1º A


6. ANGÉLICA COMPRÓ UN PANTALÓN EN $ 50 Y PAGÓ CON $ 80. ¿CUÁNTO DINERO RECIBIÓ DE VUELTO?

  • DATOS

PRECIO DEL PANTALÓN: $ 50

PAGO DE ANGÉLICA: $ 80

  • PREGUNTA

¿CUÁNTO DINERO RECIBIÓ DE VUELTO?

  • REFLEXIONA

ESTE PROBLEMA LO PODEMOS RESOLVER POR MEDIO DE UNA RESTA, PUES SI SUSTRAEMOS EL PRECIO DEL PANTALÓN COMPRADO A LA CANTIDAD DE DINERO QUE SE PAGÓ, EL RESULTADO SERÁ EL DINERO QUE LE DIERON A ANGÉLICA DE VUELTO.

  • CALCULA

  • RESPUESTA

ANGÉLICA RECIBIÓ $ 30 DE VUELTO.


SI TIENES 1 PALETA Y TE REGALAN 4 PALETAS MÁS, ¿CUÁNTAS PALETAS TIENES? ESTA ES UNA OPERACIÓN QUE RESOLVEMOS CON UNA SUMA O ADICIÓN: 1 + 4 = 5. LA OPERACIÓN INVERSA DE LA SUMA ES LA RESTA, PUES MIENTRAS QUE EN LA SUMA AGRUPAMOS CANTIDADES, EN LA RESTA QUITAMOS UNA CANTIDAD A OTRA. ASÍ, QUE SI DE 4 PALETAS REGALAMOS 2, TENEMOS QUE HACER: 4 − 2 = 2. ¡QUEDAN 2 PALETAS!

LAS CALCULADORAS

LAS CALCULADORAS SON DISPOSITIVOS DISEÑADOS PARA REALIZAR CÁLCULOS MATEMÁTICOS DESDE LOS MÁS SIMPLES COMO UNA SUMA O UNA RESTA, HASTA OTROS MÁS COMPLICADOS COMO LA MULTIPLICACIÓN O LA DIVISIÓN. TAMBIÉN HACEN MUCHA OTRAS OPERACIONES. PUEDES VERLAS EN LOS COMERCIOS PORQUE AYUDAN A RESOLVER PROBLEMAS MATEMÁTICOS DE FORMA EXACTA MUY RÁPIDA, COMO LA CUENTA QUE DEBEMOS PAGAR.

¿SABÍAS QUÉ?
CUANDO PRACTICAS LO SUFICIENTE PUEDES HACER ESTOS CÁLCULOS DE MANERA MENTAL.
RECURSOS PARA DOCENTES

Artículo “Situaciones problemáticas 1º grado”

Este recurso te brindará una serie de situaciones problemáticas que puedes compartir con tus alumnos.

VER

Artículo “Situaciones problemáticas 1º grado”

Con este recurso obtendrás las respuestas a las situaciones problemáticas del artículo anterior.

VER

CAPÍTULO 2 / TEMA 2

ADICIÓN O SUMA

SI TIENES 2 CARAMELOS Y LUEGO TE REGALAN 2 CARAMELOS MÁS, ¿CUÁNTOS CARAMELOS TIENES? ESTE ES UN PROBLEMA QUE SE RESUELVE POR MEDIO DE UNA SUMA. LA SUMA O ADICIÓN ES UNA OPERACIÓN EN LA QUE AGREGAMOS O AGRUPAMOS CANTIDADES PARA OBTENER UN RESULTADO FINAL. LOS NÚMEROS A SUMAR SE LLAMAN SUMANDOS Y EL TOTAL SE LLAMA SUMA.

PUEDES RESOLVER UNA SUMA A TRAVÉS DE UN CÁLCULO MENTAL, UN GRÁFICO, UNA CUENTA HORIZONTAL O VERTICAL. LA SUMA ES UNA OPERACIÓN EN LA QUE AGRUPAMOS CANTIDADES LLAMADAS SUMANDOS Y EL RESULTADO SE DENOMINA SUMA. EN ESTA IMAGEN VEMOS UNA SUMA DE MANZANAS EN LA QUE SE AGRUPAN 1 MANZANA CON OTRAS 2 MANZANAS PARA TENER UN TOTAL DE 3 MANZANAS.

LA SUMA Y SUS ELEMENTOS

ANA Y NICO DECIDIERON LLEVAR SUS OSITOS PARA JUGAR EN EL RECREO DE LA ESCUELA. ¿CUÁNTOS OSITOS TIENEN ENTRE LOS DOS?

  • 1 Y 2 SON LOS SUMANDOS.
  • 3 ES LA SUMA O EL RESULTADO.

¡VAMOS A SUMAR!

ESCRIBE LOS SUMANDOS Y LA SUMA EN CADA CASO.

SOLUCIÓN

SOLUCIÓN
 

PROPIEDADES DE LA SUMA

PROPIEDAD CONMUTATIVA

ESTA PROPIEDAD EXPLICA QUE EL ORDEN DE LOS SUMANDO NO ALTERA LA SUMA O RESULTADO.

 

PROPIEDAD ASOCIATIVA

ESTA PROPIEDAD EXPLICA QUE SI SUMAMOS TRES NÚMEROS, PODEMOS AGRUPAR DOS Y LUEGO SUMAR EL TERCERO.

ELEMENTO NEUTRO: OTRA PROPIEDAD A CONOCER

ESTA PROPIEDAD NOS INDICA QUE LA SUMA DE TODO NÚMERO MÁS EL CERO ES IGUAL AL MISMO NÚMERO, DE MANERA QUE EL CERO ES EL ELEMENTO NEUTRO DE LA SUMA.

APLICACIÓN DE LA SUMA

A VECES NECESITAMOS SUMAR NÚMEROS MÁS GRANDES, ENTONCES NO PODEMOS DIBUJAR CADA ELEMENTO Y CONTARLO PORQUE NOS LLEVARÍA MUCHO TIEMPO. ¡APRENDERÁS AHORA OTRA FORMA DE SUMAR!

PRIMERO COLOCAMOS LOS SUMANDOS UNOS SOBRE OTRO. ESCRIBIMOS LAS UNIDADES EN LA COLUMNA DE LAS UNIDADES Y LAS DECENAS EN LA COLUMNA DE LAS DECENAS.

LUEGO SUMAMOS LAS UNIDADES: 1 + 6 = 7.

DESPUÉS SUMAMOS LAS DECENAS: 1 + 1 = 2.

PUEDES ESCRIBIR ESTA SUMA DE FORMA HORIZONTAL:

11 + 16 = 27

¡ES TU TURNO!

REALIZA ESTAS SUMAS:

  • 14 + 11
  • 23 + 35
  • 29 + 10
  • 44 + 31
  • 25 + 33
  • 18 + 61
SOLUCIÓN

LOS CÁLCULOS MENTALES SON AQUELLOS QUE PUEDES REALIZAR MENTALMENTE, SIN NECESIDAD DE EMPLEAR UNA CALCULADORA NI REALIZAR ANOTACIONES. LOS CÁLCULOS MENTALES TE PERMITEN ALCANZAR UNA MAYOR RAPIDEZ MENTAL, DISPONER DE MÁS RECURSOS PARA RESOLVER PROBLEMAS Y TAMBIÉN AUMENTAR TU CAPACIDAD DE ATENCIÓN Y CONCENTRACIÓN. ¡INTENTA HACER UNA SUMA MENTAL!
¿SABÍAS QUÉ?
PARA RESOLVER CÁLCULOS MENTALMENTE PUEDES UTILIZAR OTROS QUE YA SEPAS DE MEMORIA O HAYAS REALIZADO ANTES.

SITUACIONES PROBLEMÁTICAS

1. ES EL CUMPLEAÑOS DE MARTA. SU TÍA LE REGALÓ $ 15 Y SU ABUELO LE REGALÓ $ 23. ¿CUÁNTO DINERO LE REGALARON A MARTA?

  • DATOS

DINERO REGALADO POR SU TÍA: $ 15

DINERO REGALADO POR SU ABUELO: $ 23

  • REFLEXIONA

PARA CONOCER LA CANTIDAD DE DINERO QUE LE REGALARON EN TOTAL TENEMOS QUE SUMAR LAS DOS CANTIDADES. PARA ESO COLOCAMOS LOS SUMANDO UNO SOBRE OTRO. LUEGO SUMAMOS LAS UNIDADES Y DESPUÉS LAS DECENAS.

  • CALCULA

  • RESPUESTA

A MARTA LE REGALARON $ 38.


2. LA MAMÁ DE JULIETA COMPRÓ 20 GLOBOS ROJOS Y 25 GLOBOS NARANJAS PARA DECORAR EL SALÓN EL DÍA DE SU CUMPLEAÑOS ¿CUÁNTOS GLOBOS COMPRÓ EN TOTAL?

  • DATOS

GLOBOS ROJOS: 20

GLOBOS NARANJAS: 25

  • REFLEXIONA

PARA CONOCER LA CANTIDAD DE GLOBOS COMPRADOS TENEMOS QUE SUMAR LAS DOS CANTIDADES. PARA ESO COLOCAMOS LOS SUMANDO UNO SOBRE OTRO. LUEGO SUMAMOS LAS UNIDADES Y DESPUÉS LAS DECENAS.

  • CALCULA

  • RESPUESTA

LA MAMÁ DE JULIETA COMPRÓ EN TOTAL 45 GLOBOS.


3. CARLOS INVITÓ A SU FESTEJO DE CUMPLEAÑOS A 14 NIÑOS Y 21 NIÑAS ¿CUÁNTOS INVITADOS HAY EN TOTAL?

  • DATOS

NIÑOS INVITADOS: 14

NIÑAS INVITADAS: 21

  • REFLEXIONA

PARA CONOCER LA CANTIDAD NIÑOS INVITADOS EN TOTAL TENEMOS QUE SUMAR LAS DOS CANTIDADES. PARA ESO COLOCAMOS LOS SUMANDOS UNO SOBRE OTRO. LUEGO SUMAMOS LAS UNIDADES Y DESPUÉS LAS DECENAS.

  • CALCULA

  • RESPUESTA

CARLOS INVITÓ A 35 NIÑOS EN TOTAL.

¡A PRACTICAR!

RESUELVE ESTAS SUMAS.

  • 28 + 11
SOLUCIÓN
28 + 11 = 39
  • 36 + 52
SOLUCIÓN
36 + 52 = 88
  • 15 + 33
SOLUCIÓN
15 + 33 = 48
  • 78 + 10
SOLUCIÓN
78 + 10 = 88
  • 24 + 25
SOLUCIÓN
24 + 25 = 49
  • 16 + 62
SOLUCIÓN
16 + 62 = 78
RECURSOS PARA DOCENTES

Artículo “Propiedades de la suma”

Con este recurso podrás ampliar la información sobre las propiedades de las sumas.

VER

CAPÍTULO 2 / TEMA 1

CÁLCULOS MATEMÁTICOS

DÍA A DÍA NOS ENCONTRAMOS CON SITUACIONES EN LAS QUE TENEMOS QUE HACER CÁLCULOS, POR EJEMPLO, CUANDO COMPARTIMOS NUESTROS DULCES O CUANDO AGRUPAMOS NUESTROS JUGUETES. COMO VES, SIEMPRE RESOLVEMOS PROBLEMAS MATEMÁTICOS. PARA ELLO ES ÚTIL SEGUIR ALGUNOS CONSEJOS Y UTILIZAR SÍMBOLOS ESPECIALES.

¿QUÉ ES UN CÁLCULO MATEMÁTICO?

UN CÁLCULO MATEMÁTICO ES UNA OPERACIÓN QUE REALIZAMOS PARA CONOCER EL RESULTADO, VALOR O MEDIDA DE ALGO EXPRESADO EN NÚMEROS. LAS OPERACIONES QUE UTILIZAMOS CON MAYOR FRECUENCIA PARA CALCULAR SON LA SUMA Y LA RESTA.

ES POSIBLE QUE CADA DÍA SOLUCIONES PROBLEMAS MATEMÁTICOS SIN DARTE CUENTA. ESTOS CÁLCULOS SON MUY SENCILLOS CUANDO DOMINAS LOS SÍMBOLOS ADECUADOS. POR EJEMPLO, SI TIENES UNA CAJA CON DOCE ROSQUILLAS Y TE COMES DOS, PUEDES CONTAR UNA POR UNA LAS QUE QUEDARÍA O PUEDES EXPRESARLO COMO UNA CÁLCULO: 12 − 2 = 10. ¡QUEDARÍAN 10 ROSQUILLAS!

¿por qué es importante la matemática?

LA MATEMÁTICA NOS PERMITE ADQUIRIR HABILIDADES MUY ÚTILES PARA NUESTRA VIDA. NOS AYUDA A PENSAR, RAZONAR Y AGILIZAR NUESTRA MENTE. EN LA VIDA COTIDIANA ESTO TE AYUDARÁ A RESOLVER JUEGOS CON AMIGOS, ADMINISTRAR TUS AHORROS, UTILIZAR BIEN TU TIEMPO, UBICARTE EN EL ESPACIO Y NUNCA DEJAR DE APRENDER.

LA MATEMÁTICA Y LA MÚSICA

A SIMPLE VISTA LA MATEMÁTICA Y LA MÚSICA PUEDEN PARECER QUE NO TIENEN RELACIÓN. SIN EMBARGO, LOS MÚSICOS UTILIZAN CONSTANTEMENTE ELEMENTOS MATEMÁTICOS PARA CREAR Y EJECUTAR SUS PRODUCCIONES. LA UTILIZAN PARA INDICAR LA DURACIÓN DE LAS NOTAS, EL RITMO, EL VOLUMEN, LOS TONOS. ¡YA VES! LA MATEMÁTICA ESTÁ PRESENTE AÚN DONDE NO PODEMOS VERLA.

¿SABÍAS QUÉ?
EN TODOS LOS DEPORTES ES NECESARIA LA MATEMÁTICA. YA SEA PARA CONTAR LOS GOLES APUNTADOS, LA CANTIDAD DE JUGADORES O EL TAMAÑO DE LA CANCHA DE JUEGO.

SÍMBOLOS MATEMÁTICOS

EN MATEMÁTICA LOS SÍMBOLOS SIRVEN PARA EXPRESAR OPERACIONES O RELACIONES ENTRE LOS NÚMEROS. LA SUMA Y LA RESTA SON LAS OPERACIONES QUE UTILIZAMOS CON MAYOR FRECUENCIA.

ESTE ES EL SÍMBOLO “IGUAL”.

EL SÍMBOLO = ES USADO PARA DAR EL RESULTADO DE UN CÁLCULO COMO LA SUMA O LA RESTA.

ESTE ES EL SÍMBOLO “MÁS”.

EL SÍMBOLO + ES USADO PARA HACER SUMAS O ADICIONES. LA SUMA ES UN CÁLCULO EN EL QUE AGRUPAMOS CANTIDADES.

− ESTE ES EL SÍMBOLO “MENOS”.

EL SÍMBOLO  ES USADO PARA HACER RESTAS O SUSTRACCIONES. LA RESTA ES UNA CÁLCULO EN QUE QUITAMOS UNA CANTIDAD A OTRA.

– EJEMPLO:

SI MARÍA TIENE 4 LIMONES Y SU MAMÁ LE DA 3 LIMONES, ¿CUÁNTOS LIMONES TIENE AHORA?

MARÍA TIENE 7 LIMONES.

SI LUEGO LE REGALA 5 LIMONES A JOSÉ, ¿CUÁNTOS LIMONES LE QUEDAN?

LE QUEDAN 2 LIMONES.

LOS SÍMBOLOS MATEMÁTICOS REPRESENTAN LAS DISTINTAS OPERACIONES O RELACIONES ENTRE NÚMEROS. ALGUNOS SÍMBOLOS COMO “+” Y “−” REPRESENTAN LAS OPERACIONES DE SUMA Y RESTA, OTROS COMO “>” Y “<” REPRESENTAN RELACIONES DE “MAYOR QUE” O “MENOR QUE”. EXISTEN MUCHOS SÍMBOLOS ADEMÁS DE ESTOS. A MEDIDA QUE APRENDAS MÁS OPERACIONES APRENDERÁS MÁS SÍMBOLOS.

CONSEJOS PARA RESOLVER PROBLEMAS

  • PIENSA SI YA HAS RESUELTO UN PROBLEMA PARECIDO.
  • ANOTA LA INFORMACIÓN O LOS DATOS QUE EL PROBLEMA TE PROPORCIONA.
  • REALIZA DIBUJOS O ESQUEMAS.
  • PIENSA SI ALGUNA OPERACIÓN MATEMÁTICA TE AYUDARÍA A RESOLVERLO.
  • REALIZA LOS CÁLCULOS.
  • TOMA NOTA DE TODO LO QUE CONSIDERES NECESARIO.
  • ESCRIBE EL RESULTADO.

¡SIGUE LOS CONSEJOS!

JUAN TIENE 6 LÁPICES DE COLOR ROJO Y 3 LÁPICES DE COLOR AMARILLO. ¿CUÁNTOS LÁPICES TIENE EN TOTAL?

  • DATOS

LÁPICES DE COLOR ROJO:

LÁPICES DE COLOR AMARILLO: 3

  • DIBUJO

  • CÁLCULOS

  • RESULTADO

JUAN TIENE 9 LÁPICES EN TOTAL. 6 DE COLOR ROJO Y 3 DE COLOR AMARILLO.

RECURSOS PARA DOCENTES

Artículo “Matemáticas en las vida cotidiana”

Este artículo ofrece información sobre el uso diario de la matemática, lo que te servirá para analizar con tus alumnos la importancia de la misma.

VER