Formas físicas en que se presenta la materia

La materia puede presentarse en dos formas distintas: homogénea y heterogénea, según que sus propiedades y su composición sean las mismas en cualquier punto o cambien al pasar de un punto a otro. La homogeneidad, tal como se entiende en química, es, pues, homogeneidad respecto a la subdivisión.

En cambio, un material heterogéneo es una mezcla en la que cada porción homogénea de la misma constituye lo que se denomina una fase. Una roca de granito, por ejemplo, es un material heterogéneo en el que se pueden observar a simple vista distintos componentes: partículas pequeñas y oscuras de mica, cristales de cuarzo duros y transparentes, y cristales oblongos y grises de feldespato. Cada fase de una mezcla presenta distintas propiedades y la separación de las mismas puede en general realizarse por medios mecánicos.

Sustancia pura y disolución

Una sustancia pura o especie química es una fase homogénea de composición constante. Si la composición de una fase homogénea puede variar se habla de disoluciones. Las disoluciones pueden ser de distintos tipos, pero las más comunes son de un sólido en un líquido; por ejemplo, de sal común en agua.

La composición de una sustancia o cuerpo puro no varía con los cambios de estado. Así, el agua tiene la misma composición en forma de hielo, de agua líquida o de vapor. Si se varía la presión, la temperatura de fusión (o solidificación) de una sustancia pura también varía, pero tampoco en este caso cambia la composición del líquido (o sólido) que se obtiene. En cambio, la composición de una disolución sí varía con los cambios de estado o con los cambios de presión y temperatura. Por ejemplo, si se enfría una disolución en agua caliente de sal común, parte de la sal precipita, ya que la sal es más soluble en agua caliente que en agua fría.

 

Una disolución puede variar su composición luego de un cambio de estado.

Elementos y compuestoS químicos

El agua y el azufre, por ejemplo, son sustancias puras, pero la primera es un compuesto y la segunda es un elemento o, en otras palabras, la molécula de agua está formada por dos átomos de distinto tipo (hidrógeno y oxígeno), mientras que la molécula de azufre está formada únicamente por átomos de azufre. Si sometemos el agua a cambios de estado, su composición no varía (es una sustancia pura), pero por medios químicos podemos descomponerla en hidrógeno y oxígeno, sus elementos constituyentes. Esto puede lograrse, por ejemplo, haciendo pasar vapor de agua sobre hierro calentado al rojo: el hierro extraerá el oxígeno de las moléculas de agua dando origen a la formación de un óxido de hierro, mientras que el hidrógeno quedará libre.

Con el azufre es imposible hacer algo así: podemos calentarlo y su molécula pasará de una forma (alotrópica) a otra, pero seguirá estando formada únicamente por átomos de azufre. También podemos intentar hacerlo reaccionar con otro elemento o con un compuesto, pero siempre tendremos lo mismo: azufre que no ha entrado en combinación o bien azufre que se ha combinado con otros elementos, nunca dos componentes distintos de esa sustancia que a la que llamamos azufre, por la simple razón de que se trata realmente de un elemento químico y, por lo tanto, está constituido por un único tipo de átomos.

Disoluciones

Las disoluciones o soluciones son sistemas formados de dos componentes: el disolvente y el soluto.

Se llama disolvente al componente más abundante, y soluto al que se halla en menor cantidad; sin embargo, en la práctica, en muchos casos no queda claramente delimitado cuál de los componentes es el soluto y cuál el disolvente.

En el lenguaje corriente, cuando se habla de disoluciones se suele hacer referencia a disoluciones de un soluto sólido en un disolvente líquido (casi siempre agua, con mucho el más común de los disolventes de sustancias inorgánicas), pero de hecho hay otros ocho tipos de disoluciones, ya que tanto el soluto como el disolvente pueden estar en estado sólido, líquido o gaseoso.

En una solución solo se distingue una fase de la materia.

La mayoría de las reacciones químicas se producen con las sustancias reaccionantes disueltas, y para el reconocimiento de una sustancia o la determinación de algunas de sus características a menudo es conveniente recurrir a su disolución. De ahí la gran importancia que posee su estudio. Por ahora sólo indicaremos que conviene distinguir entre disoluciones diluidas (poco soluto), concentradas (bastante cantidad de soluto) y saturadas (aquellas en que el disolvente no puede admitir más soluto). En disolución acuosa muchos compuestos se ionizan y entonces estas disoluciones son conductoras de la electricidad.

Disolventes fundamentales para el químico son: el agua, el agua destilada, los ácidos y bases inorgánicos, la bencina, el alcohol ordinario, la acetona, el éter, el sulfuro de carbono, etcétera.

Dispersiones coloidales

La distinción entre mezcla y disolución a partir de su homogeneidad o heterogeneidad es muy precisa en el ejemplo del granito y puede asimismo ser suficientemente precisa en el caso de las suspensiones. Un ejemplo de suspensión puede ser la de arena muy finamente pulverizada mezclada en agua: a diferencia de lo que ocurriría si se tratase de una disolución, la arena acaba por depositarse, aunque lo hará tanto más lentamente cuanto menores sean las partículas. La explicación de este diferente comportamiento estriba en que en una suspensión las partículas están constituidas por agrupaciones de un número muy grande de moléculas, mientras que en una disolución las partículas son moleculares.

Un caso menos evidente es el de las dispersiones coloidales, en las que las partículas tienen un tamaño que, aun siendo considerablemente superior al de las partículas en disolución, es muy inferior al de las partículas de las suspensiones, hasta el punto de que las partículas coloidales pasan a través de todos los filtros corrientes y no se depositan ni siquiera después de un período de reposo prolongado. Para fijar ideas, se puede afirmar que si el tamaño de las partículas es mayor que 0,2 (micras, siendo 1 = 10-3 mm) nos hallamos ante una suspensión; cuando está comprendido entre 0,2 y 1 m (milimicra, 10-6 mm), se trata de una dispersión coloidal, y si es menor que 1 m, se puede hablar propiamente de disolución. En el caso de las dispersiones coloidales, se habla de fase dispersa y de medio de dispersión, conceptos equivalentes a los de soluto y disolvente usados en el caso de las disoluciones. Como en el caso de las disoluciones, existen nueve tipos distintos de dispersiones coloidales, correspondientes a los tres posibles estados de la fase dispersa y del medio dispersante.

Separación de mezclas heterogéneas

En muchas ocasiones, tanto en el laboratorio como en la industria, se plantea la necesidad de separar los distintos componentes de una mezcla. Entre las distintas técnicas que se emplean con este fin cabe mencionar las siguientes:

  • Para separar sólidos de líquidos:
  • Separación por decantación, que consiste en dejar que el sólido acabe por depositarse en el fondo de un recipiente (en ocasiones, la decantación puede acelerarse por centrifugación);
  • Separación por filtración, en la que se utiliza un material (papel de filtro, porcelana porosa, etc.) que por el tamaño de sus poros permite el paso del líquido pero no el de las partículas sólidas;
  • Separación por centrifugación, basada en que las partículas en suspensión o en dispersión resultan afectadas por la fuerza centrífuga, con lo que tienden a escapar de la masa del líquido (esta técnica se emplea, por ejemplo, en la industria azucarera).
  • Para separar sólidos de sólidos:
  • Separación magnética, utilizable para extraer, por ejemplo, partículas de hierro o de otro metal ferromagnético de una mezcla;
  • Separación por levigación, que se basa en someter la mezcla a un chorro de agua, que arrastra con mucha mayor facilidad las partículas menos densas (se usa, por ejemplo, para separar una mezcla de arena y oro, aprovechando que este último es mucho más denso);
  • Separación por disolución, que puede usarse, por ejemplo, para extraer la sal de una mezcla de arena y sal: se añade agua, con lo que la sal se disuelve, y después, tras filtrar la disolución, el agua se evapora, con lo que la sal precipita.
  • Para separar líquidos inmiscibles:
  • Separación por centrifugación, según el principio ya explicado (también se emplea para la separación de emulsiones);
  • Separación por decantación, que en este caso suele hacerse usando un embudo de decantación, el cual, al abrir su llave, permite la salida del líquido de mayor densidad.

Separación de disoluciones

La separación de los diversos componentes de una disolución es más difícil que la de los componentes de una mezcla, ya que en este caso los medios puramente mecánicos no son efectivos y es preciso recurrir al calentamiento de la disolución para llevar a cabo la separación a partir del vapor:

  • Disolución de un sólido en un líquido: separación por evaporación, que se realiza calentando la disolución en una vasija abierta y poco profunda, con lo que, al irse evaporando el líquido, la disolución se va concentrando y, si se prosigue hasta la total evaporación del líquido, se obtiene el soluto precipitado.
  • Disolución de un líquido en otro: separación por destilación simple, aplicable cuando los puntos de ebullición de los dos líquidos son notablemente diferentes y en la que se procede calentando la disolución hasta una temperatura algo superior al punto de ebullición del líquido más volátil y condensando por enfriamiento el vapor recogido.
  • Disolución de varios líquidos en otro líquido: separación por destilación fraccionada, que se basa en que cada líquido tiene un punto de ebullición distinto; puede realizarse en una sola operación mediante las llamadas columnas de fraccionamiento, tal como se hace en el caso del petróleo crudo.
Proceso de destilación simple.

Compuestos orgánicos

Seguramente has escuchado a alguien decir “somos química”, pues no hay nada más cierto que esta afirmación. Ya que a nivel molecular, el ser humano está constituido por diversos compuestos orgánicos, como: proteínas, carbohidratos, aminas y azúcares.

En la química orgánica existe una gran variedad de compuestos, formados en su mayoría por combinaciones de átomos de carbono. El carbono es un elemento químico capaz de formar enlaces fuertes con otros átomos de carbono, oxígeno, hidrógeno, nitrógeno, entre otros.

La química orgánica es la rama de la química que estudia los compuestos de carbono.

Los compuestos de carbono hidrógeno, también conocidos como hidrocarburos están formados por átomos de carbono e hidrógeno unidos mediante enlaces covalentes simples o múltiples, estos últimos tienen gran influencia en el comportamiento químico de los hidrocarburos.Compuestos carbono hidrógeno

¿Qué es la cadena carbonada?

La cadena carbonada es la unión de varios átomos de carbono a través de enlaces sigma (σ) y pi (π), también se le denomina esqueleto carbonado.

De acuerdo a la estructura de su cadena carbonada, los hidrocarburos se clasifican de la siguiente manera:

Alifáticos acíclico: son aquellos compuestos formados por cadenas de carbono abiertas, las cuales pueden ser lineales o ramificadas.

 

Tipos de carbono
En el esqueleto carbonado de una molécula se distinguen varios tipos de carbono:

Carbono primario: enlazado a 1 átomo de carbono y 3 hidrógenos.

Carbono secundario: enlazado a 2 átomos de carbono y 2 hidrógenos.

Carbono terciario: enlazado a 3 átomos de carbono y 1 hidrógeno.

Carbono cuaternario: enlazado a 4 átomos de carbono.

Inténtalo en casa, ¿cuál de las siguientes opciones es la correcta?

  1. El 2,2,5-trimetilhexano tiene 5C 1rio, 2C 2rio, 2C 3rio y 1C 4rio
  2. El 2,2,5-trimetilhexano tiene 6C 1rio, 2C 2rio, 1C 3rio y 1C 4rio
  3. El 2,2,5-trimetilhexano tiene 5C 1rio, 3C 2rio, 1C 3rio y 1C 4rio
  4. El 2,2,5-trimetilhexano tiene 5C 1rio, 2C 2rio, 1C 3rio y 1C 4rio
 

 

 

  • Insaturados: compuestos de carbono hidrógeno que tienen enlaces simples y múltiples, se dividen en:
    • Alquenos: son aquellos que contienen un doble enlace (uno σ y otro π) en su cadena carbonada.
    • Alquinos: poseen un triple enlace (uno σ y dos π) en su cadena carbonada.

Las bolsas plásticas están hechas de polietileno [-(CH2-CH2)n-], un polímero formado a partir del eteno.
Alicíclicos: son los compuestos formados por cadenas de carbono cerradas, estas pueden tener ramificaciones.

  • Saturados: cadenas carbonadas cerradas formadas únicamente por enlaces simples (σ), se conocen como cicloalcanos.

  • Insaturados: cadenas carbonadas cerradas que tienen enlaces simples y múltiples, se clasifican en:
    • Cicloalquenos: son los que poseen dobles enlaces (uno σ y otro π) no alternados.
    • Cicloalquinos: constituidos por al menos un triple enlaces (uno σ y dos π).

Aromáticos: son los hidrocarburos que poseen enlaces π conjugados, cuya deslocalización de electrones π disminuye la energía electrónica de la molécula. Existen moléculas donde la deslocalización de electrones π aumenta la energía electrónica de la misma, estos compuestos se conocen como antiaromáticos.

Los hidrocarburos aromáticos se clasifican en:

Benceno y derivados, algunos ejemplos de este tipo de compuestos son:

¿Cómo saber si es aromático o antiaromático?

Para saber si un hidrocarburo con enlaces π conjugados es aromático o antiaromático se utiliza la Regla de Hückel, la cual nos indica que para que un compuesto sea considerado aromático el número de electrones π deslocalizados debe ser igual a 4N+2, en caso de ser igual a 4N se dice que la estructura es antiaromática.

3 enlace π 4 enlace π
Cada enlace tiene 2 electrones (e), entonces hay 6 e π Cada enlace tiene 2 electrones (e), entonces hay 8 e π
4N + 2 = 6 e π 4N = 8 e π
Se cumple para N igual 1, por lo cual es aromático. Se cumple para N igual 2, por lo cual es antiaromático.

Polinucleares, las cuales están constituidas por dos o más ciclos unidos entre sí, algunos de los compuestos más representativos de este grupo son:

El petróleo está constituido por una mezcla de diferentes hidrocarburos.

Compuestos carbono halógenos

Son aquellos compuestos que poseen al menos un enlace simple (σ) entre un átomo de carbono y un halógeno (-C-X, donde X = Cl, F, I, Br), se les denomina haluros. Entre los más representativos están:

Compuestos carbono oxígeno

Son los compuestos que tienen enlaces simples o múltiples entre un átomo de carbono y uno oxígeno. Entre los compuestos carbono oxígeno se encuentran:

  • Alcoholes: son lo compuestos que contienen en su estructura al menos un enlace C-OH.

Alcohol ≠ Fenol

Los fenoles son compuestos carbono oxígeno que poseen enlaces entre un átomo de carbono aromático y el oxígeno del grupo -OH. Las propiedades químicas de los fenoles son distintas a la de los alcoholes, por lo cual se les considera un tipo de compuesto o familia diferente.

 

 

 

Algunas sustancias como el vino contienen polifenoles, los cuales tienen una gran capacidad antioxidante.

  • Éteres: tienen un átomo de oxígeno enlazado a través de enlaces simples a dos átomos de carbono (R-O-R´).

  • Ácidos carboxílicos: poseen en su esqueleto carbonado la función –COOH.

  • Cetonas: tienen la siguiente forma R-CO-R, donde R puede ser un radical alifático, alicíclico o aromático.

  • Aldehídos: son los que contienen el grupo funcional –CHO.

  • Ésteres: son derivados de los ácidos carboxílicos, su grupo funcional es –COOR, donde R puede ser un radical alifático, alicíclico o aromático.

Algunos ésteres se emplean en la fabricación de fragancias o perfumes.

Compuestos carbono nitrógeno

Como su nombre lo indica, son los compuestos que contienen enlaces simples o múltiples entre un átomo de carbono y uno de nitrógeno. Entre los tipos de moléculas orgánicas con enlace C-N se encuentran:

  • Aminas: contienen enlaces simples carbono nitrógeno, pueden ser primarias (-NH2), secundarias (-NRH) o terciarias (-NR2)

  • Nitrilos: en su esqueleto carbonado tienen un enlace triple carbono nitrógeno (-C≡N).

A continuación un resumen de los grupos funcionales característicos de algunos compuestos carbono oxígeno:

Normas generales de nomenclatura orgánica

Para poder identificar los diferentes compuestos orgánicos que existen se aplican una serie de normas establecidas por la Unión Internacional para la Química Pura y Aplicada (IUPAC por sus siglas en inglés), dichas normas consisten en lo siguiente:

  1. Identificar según el orden de prioridad de los grupos funcionales el tipo de compuesto, para ello se emplea la siguiente tabla:
Orden de prioridad Grupo funcional

presente

Sufijo
1 Ácidos carboxílicos ico
2 Ésteres (y otros derivados de ácidos carboxílicos) ato
3 Nitrilos nitrilo
4 Aldehídos al
5 Cetonas ona
6 Alcoholes y fenoles ol
7 Aminas amina
8 Alquenos eno
9 Alquinos ino
10 Alcanos ano
  1. Seleccionar la cadena principal, la cual siempre es la más larga y la que contiene el grupo funcional de mayor prioridad.
  1. Enumerar la cadena principal, para ello se debe asigna la numeración más baja posible al grupo funcional de mayor prioridad y a los radicales e insaturaciones presentes.
  1. Identificar los radicales o sustituyentes presentes, se entiende por radicales todas aquellas ramificaciones que quedan unidas a la cadena.
  1. Se nombran los radicales por orden alfabético, en casos donde los sustituyentes se encuentran repetidos se utilizan prefijos de cantidad, por ejemplo: di = 2, tri = 3, tetra = 4, penta = 5, hexa = 6 y así sucesivamente.
  1. Por último se indica el nombre del compuesto en base al grupo funcional principal y al número de carbonos que forman la cadena principal, cada tipo de compuesto tiene una terminación o sufijo particular.
Reconociendo grupos funcionales
El anís estrellado debe su sabor a un compuesto químico denominado anetol, indica los grupos funcionales presentes en su estructura química:

¡Inténtalo en casa! , indica los grupos funcionales presentes en la estructura química del GABA y la aspirina.

Los compuestos de tipo orgánico se encuentran en diversos productos de nuestra vida cotidiana, algunos ejemplos se describen a continuación:

Compuestos orgánicos en la vida cotidiana
Uso cotidiano Estructura química Grupo funcional

El gas natural se emplea en las cocinas domésticas.

Propano

Alcano lineal

Las bolas de naftalina se emplean como insecticida.

Naftaleno

Aromático polinuclear

El ibuprofeno es un medicamento antiinflamatorio no esteroideo.

Ácido 2-(4-isobutilfenil)propanoico

Ácido carboxílico

Las bebidas alcohólicas como el vino contienen etanol.

Etanol

Alcohol

La canela debe su olor característico al cinamaldehído.

Cinamaldehído

Aldehído