CAPÍTULO 3 / TEMA 4

AGUA

El agua es un compuesto químico de vital importancia que brinda grandes beneficios para los seres vivos. Es la sustancia más abundante en la Tierra. Está compuesta por hidrógeno y oxígeno.

Molécula vital

El agua es clave para la vida. El 70 % de nuestro cuerpo está formado por agua y es un alimento para nuestro organismo porque contiene sales minerales.

ESTADOS DEL AGUA

El proceso mediante el cual el agua pasa de estado sólido a líquido se llama fusión. En cambio, el proceso mediante el cual el agua pasa de estado líquido a sólido se denomina solidificación.

Si ponemos agua líquida a calentar, esta se transformará en vapor de agua. Este proceso se llama vaporización. Si hacemos el proceso inverso y enfriamos el vapor de agua, obtendremos nuevamente agua líquida. Esto se llama condensación.

El agua también puede pasar del estado sólido al gaseoso, es decir, de hielo a vapor de agua al aumentar la presión y bajar la temperatura: este proceso se llama volatilización o sublimación regresiva. Si, en cambio, el vapor de agua se congela, este proceso se llama sublimación.

ESTADOS DEL AGUA

Líquido

El agua en este estado puede encontrarse, por ejemplo, en mares, ríos y lagos.

 

Sólido

El hielo es un claro ejemplo de este estado. Lo podemos encontrar en glaciares.

 

Gaseoso

El vapor de agua es gaseoso. Lo vemos cuando el agua hierve o cuando nos damos un baño de agua caliente.

Agua en dos estados

En las aguas termales pueden encontrarse dos estados juntos: el vapor y el agua líquida.

PROPIEDADES DEL AGUA

El agua cuenta con diferentes propiedades que se clasifican en organolépticas y fisicoquímicas. Las primeras son las que percibimos con nuestros sentidos y las segundas tienen relación con la composición química.

  • Propiedades organolépticas

Inodora: no tiene olor.

Incolora: no tiene color.

Insípida: no tiene sabor.

  • Propiedades fisicoquímicas

Polaridad: tiene una distribución irregular de la densidad electrónica.

Capacidad calorífica: el agua necesita mucho calor para elevar su temperatura.

Tensión superficial: es un fenómeno a través del cual la gota de agua pareciera tener una superficie resistente. Así, un insecto se puede posar sobre una gota y no hundirse mediante adaptaciones en sus patas.

Capacidad de disolución: es el solvente universal.

Cambios de estado: sólido, líquido y gaseoso.

Efectos del pH
El pH ácido en el agua afecta el metabolismo de las especies acuáticas, toma el sodio de la sangre y el oxígeno de los tejidos; además, afecta el funcionamiento de las branquias de los peces. Si la acidez no los mata, el estrés adicional puede frenar el crecimiento y hacerlos menos capaces de competir por el alimento.

CICLO DEL AGUA

El ciclo del agua, también conocido como ciclo hidrológico, describe el movimiento continuo y cíclico del agua que circula entre los océanos, la atmósfera, la biósfera y la litósfera de nuestro planeta. El agua de las precipitaciones (lluvia, nevadas y glaciares) alimenta manantiales, ríos, lagos y acuíferos. Gracias a este ciclo todos los seres vivos tienen acceso al agua.

El ciclo del agua comienza con la evaporación. Este proceso puede darse de dos formas:

  • Evaporación de agua de mares, ríos y lagos.
  • Evapotranspiración, que es la transpiración de las plantas.
Agua dulce

Las aguas dulces de los arroyos, lagos y ríos apenas tienen 3 gramos de sal por litro. Este tipo de agua, que es la más escasa en el mundo, representa el 4 % del agua del planeta.

A medida que se eleva, el vapor de agua se enfría y se condensa en forma de pequeñas gotitas, lo que origina las nubes. Cuando las gotitas se juntan, se hacen más grandes y caen por su propio peso: se forma la lluvia (precipitación). Si hace mucho frío, esas gotitas se congelan y caen en forma de nieve o granizo.

El agua que llega a la superficie de la Tierra puede:

  • Ser aprovechada por los seres vivos.
  • Escurrir hasta alcanzar un curso de agua.
  • Filtrar en el suelo y formar acuíferos.

Finalmente, toda el agua que se encuentra en la Tierra en forma líquida vuelve a la atmósfera por medio de la evaporación y así se cierra el ciclo.

¿POR QUÉ EL AGUA ES UNA MOLÉCULA VITAL?

Al igual que el oxígeno, el agua es un elemento de la naturaleza esencial para que todas las formas de vida puedan existir. Es fundamental tanto para la reproducción de algunas especies de plantas y animales como para el desarrollo de los procesos biológicos que posibilitan la vida en nuestro planeta.

Los seres vivos tienen agua en su composición. Desde una bacteria hasta el ser humano contienen en su estructura este componente que puede hallarse en la sangre de los animales, en el citoplasma de las células o intervenir en las reacciones químicas que tienen lugar en los organismos.

Están compuestos por agua:

Plantas: entre un 75 % y un 90 %, según la especie.

¿Sabías qué?
Algunas plantas acuáticas tiene un gran valor alimentario y económico para las sociedades. Por ejemplo, el arroz es un alimento muy consumido en todo el mundo.

Animales: las proporciones varían desde un 40 % en insectos hasta casi un 100 % en medusas. Pero en promedio, el porcentaje de agua en animales es de un 75 %. Se debe tener en cuenta la etapa de la vida del organismo y la especie para poder determinar la proporción que posee de dicho líquido.

  • Importancia para la vida

Al ser el componente principal de los organismos vivos, el agua cumple diversas funciones, entre las que se destacan:

  • Permitir las reacciones químicas necesarias para el metabolismo celular.
  • Intervenir como medio de trasporte de sustancias.
  • Formar parte de la función de amortiguación que tienen las articulaciones de los animales vertebrados.
  • Regular la temperatura del cuerpo.
  • Humedecer el oxígeno para facilitar la respiración de animales.
  • Participar en el proceso de fotosíntesis en los organismos autótrofos.
Del agua dulce del planeta depende la supervivencia de las especies.

USOS DEL AGUA

  • Regulador de la temperatura

El agua, además de ser la principal fuente de vida de todos los seres vivos, juega un rol importante en la regulación de la temperatura a nivel corporal y planetario.

La temperatura corporal es regulada por el agua a través de la transpiración. El cuerpo incorpora agua de los alimentos que se consumen y de los subproductos del metabolismo. Cuando no se consume diariamente la cantidad de agua requerida, se genera un desequilibrio en los líquidos corporales, lo que provoca la deshidratación. En algunos casos, esta puede ser causa de muerte.

¿Sabías qué?
Una canilla que gotea desperdicia más de 75 litros de agua por día aproximadamente.

Por su parte, la hidrósfera y la atmósfera tienen un papel esencial en la regulación de la temperatura atmosférica. El agua de los mares y los océanos intercambia energía con la atmósfera en los períodos cálidos para devolverla en períodos fríos, así se evitan los cambios bruscos de temperatura. Al mismo tiempo, los vientos empujan las corrientes marinas que distribuyen el calor: llevan agua caliente procedente de latitudes tropicales hasta regiones que son frías.

Por otro lado, los casquetes polares y los hielos de los glaciares también contribuyen a la regulación de la temperatura terrestre al reflejar gran cantidad de radiación solar.

  • Energía hidroeléctrica

Una central hidroeléctrica utiliza el agua para generar energía eléctrica. Tiempo atrás, esta acción se realizaba con los molinos de agua, que aprovechaban las corrientes de los ríos para mover la rueda.

Las represas hidroeléctricas aprovechan la caída del agua desde una cierta altura para producir la energía. En el proceso, la caída de agua mueve una turbina para generar energía eléctrica. La naturaleza nos brinda este recurso, por ejemplo, en una cascada o una garganta.

Gran energía

La represa más grande, la Central Hidroeléctrica de las Tres Gargantas, se encuentra en Yichang, China.

  • Aguas residuales

Desechamos agua cuando nos bañamos, cocinamos o limpiamos. A este tipo de agua se la denomina residual y es la que también proviene de los procesos industriales. Para devolverla al medio de donde fue tomada, es necesario someterla a un proceso de limpieza para descontaminarla.

Para esto se llevan cabo procedimientos físicos, químicos y biológicos que pueden sintetizarse de la siguiente manera:

  1. Recepción del agua
  2. Sedimentación: el agua es vertida en piletas donde se retienen los sólidos, como la arena.
  3. Descontaminación: por acción bacteriana se eliminan sustancias contaminantes.

Luego de esta etapa, se llevan a cabo procesos iguales al de la potabilización del agua.

  1. Coagulación.
  2. Filtración.
  3. Cloración y desinfección.
  4. Devolución al ambiente.
El tratamiento del agua residual contribuye con el mantenimiento de este recurso natural.
RECURSOS PARA DOCENTES

Artículo “El agua”

Un artículo destacado con más información sobre el agua como sustancia vital para las especies.

VER

 

Galería de Infografías

Material gráfico referido a diferentes tópicos sobre el agua

VER

VER

VER

 

Ley de Coulomb y ley de gravitación universal

La ley de Coulomb y la ley de gravitación universal son de gran importancia para entender el comportamiento de dos de las fuerzas fundamentales en la naturaleza: la eléctrica y la gravitacional. Ambas leyes se representan por medio de expresiones matemáticas muy similares, sin embargo sus diferencias son notorias.

Ley de Coulomb Ley Gravitacional universal
Enunciado La fuerza eléctrica de atracción y repulsión entre dos cargas es directamente proporcional al producto de las mismas e inversamente proporcional al cuadrado de la distancia que los separa. La fuerza gravitacional de atracción entre dos masas es directamente proporcional al producto de las mismas e inversamente proporcional al cuadrado de la distancia que los separa.
Interacción Fuerza entre cargas. Puede ser atractiva o repulsiva. Fuerza entre masas. Siempre es atractiva.
Efectos Más evidente en cuerpos pequeños: los átomos. Más evidente en cuerpos grandes: galaxias, planetas y estrellas.
Expresión matemática F_{E} = K \frac{q_{1}q_{2}}{r^{^{2}}} F_{G} = G \frac{m_{1}m_{2}}{r^{2}}
Cuerpos implicados Cargas: q_{1}q_{2} Masas: m_{1}m_{2}
La distancia entre: Los centros de las cargas es r Los centros de las masas es r
Constante K = 9 . 10^{9} N.m^{2}/C^{2} G = 6,67 . 10^{-11} N.m^{2}/kg^{2}
Fuerza sobre el átomo de hidrógeno Carga del electrón del átomo de H

q_{1} = - 1,6 . 10^{-19} C

 

Carga del protón del átomo de H

q_{2} = 1,6 . 10^{-19} C

Masa del electrón del átomo de H

m_{1} = 9,1 . 10^{-31} kg

 

Masa del protón del átomo de H

m_{2} = 1,67 . 10^{-27} kg

Características de las estrellas

Básicamente, las estrellas son grandes bolas de gas en explosión, principalmente hidrógeno y helio. Nuestra estrella más cercana, el Sol, está tan caliente que la enorme cantidad de hidrógeno experimenta una reacción nuclear constante en toda la estrella, como en una bomba de hidrógeno.

¿Qué son las estrellas?

Las estrellas son astros gaseosos e incandescentes (por ejemplo, el Sol) y aparecen como simples puntos de luz a causa de la enorme distancia a que se encuentran. En una noche sin luna se pueden observar a simple vista entre 2.500 y 3.000 estrellas en cada hemisferio. El catálogo estelar o mapa celeste más antiguo conocido es el confeccionado por Claudio Tolomeo (hacia el 150 d. C.), basado probablemente en el de Hiparco (130 a. C.). Tolomeo catalogó 1.022 estrellas y las subdividió en seis clases de magnitudes: desde las más brillantes, Sirio y Vega, que definen la primera magnitud, hasta llegar a las más débiles, que corresponden a la sexta magnitud. El término galaxia designa los sistemas independientes de estrellas que se hallan situados fuera del nuestro, la denominada Vía Láctea. Contienen entre 3.000 millones y un billón de estrellas, además de una gran cantidad de polvo y gas interestelar.

¿Sabías qué...?
Con un pequeño telescopio se pueden ver unas 300.000 estrellas; con uno de tamaño mediano hasta 250 millones, y más de 3.000 millones con los más perfeccionados.

Las estrellas constituyen uno de los principales tipos de cuerpos que pueblan el universo. Una estrella es una bola caliente de gas que brilla como consecuencia de las reacciones de fusión nuclear que se producen en su núcleo. Al igual que los demás cuerpos celestes, están compuestas en su mayor parte por hidrógeno, el más simple y ligero de los elementos.

Resto de la supernova conocida como Casiopea.

Características de las estrellas

Además del brillo, las características físicas más importantes de una estrella son el color, el diámetro y la masa.

El color

A mediados del siglo pasado se clasificaban las estrellas por su color, se creía que éste dependía de la temperatura superficial, del mismo modo que una barra de hierro calentada hasta la incandescencia se vuelve primero roja, luego anaranjada, más tarde amarilla y finalmente blanca, a medida que la temperatura aumenta. En la actualidad está correctamente establecida la relación entre la temperatura y el color.

El espectro del Sol y las estrellas forma un continuo surco de rayas oscuras, a veces brillantes, a partir de las cuales es posible identificar los elementos químicos presentes y el porcentaje de los mismos. De tales rayas es posible obtener también la temperatura y características físicas como la presión o los campos magnéticos y eléctricos.

Por tanto, es evidente que debe existir también una relación entre el color y las características del espectro lineal, siendo ambos esencialmente dependientes de la temperatura.

El diámetro y la masa

Determinar el diámetro de las estrellas es también un gran problema ya que los mayores telescopios muestran sólo puntos y no discos. En 1930, Albert Michelson (1852-1931), mediante el uso de interferómetros (aparatos para realizar mediciones muy precisas basadas en los fenómenos de interferencia de la luz que incide sobre ellos), logró medir el diámetro de algunas estrellas supergigantes relativamente cercanas, como Antares y Betelgeuse; resultaron tener, respectivamente, unos diámetros 400 y 300 veces mayores que el del Sol.

Existen estrellas con diámetros centenares de veces mayores que el del Sol y otras con diámetros casi iguales al de éste. Puede afirmarse que los diámetros estelares varían desde 10.000 kilómetros a 1.000 millones de kilómetros, pero la mayoría de las estrellas de la secuencia principal tienen diámetros comprendidos entre 0,5 (enanas rojas) y 10 veces el diámetro del Sol.

La estrella Beta Pictoris, segunda en importancia de la constelación del Pintor, está a 50 años luz de la Tierra. Como puede apreciarse en la imagen, la rodea un disco de materia que se extiende hasta 60 billones de km.

Para calcular las masas de las estrellas, Arthur Stanley Eddington (1882-1944), en 1924, halló de manera teórica la existencia de una relación entre masa y luminosidad (las estrellas de masa mayor son también las más luminosas), relación que había sido ya demostrada empíricamente a partir de las pocas estrellas cuyas masa y luminosidad se conocían.

Las variaciones de las distintas masas son bastante más reducidas que las de los volúmenes, pasando de unas 0,2 a 50 veces la masa solar. Por consiguiente, la densidad media de las estrellas gigantes rojas resulta del orden de 0,0001 g/cm3, y la de las enanas blancas es de 105 g/cm3. Véanse algunos ejemplos: el Sol, que es una estrella, tiene una densidad poco mayor que la del agua, o sea 1,41 g/cm3; Antares, una estrella supergigante roja, una millonésima parte de la densidad del agua; una estrella enana blanca, como la compañera de Sirio, llamada Sirio B, con la misma masa que el Sol y un diámetro sólo cuatro veces el de nuestro planeta, la Tierra, tiene una densidad de 1.000 000 veces la del agua. Con tan enorme densidad, el gas que constituye la enana blanca se encuentra en un estado degenerado.

S. Eddington

Astrónomo y físico británico (1882-1944). Desarrolló métodos para la determinación de la masa, la temperatura y la constitución interna de las estrellas.

Propiedades y nomenclatura de aminas

Las aminas son compuestos orgánicos nitrogenados conocidos por su importancia a nivel biológico y medicinal. Ejemplo de ello es la serotonina, un neurotransmisor involucrado en diversos procesos de tipo afectivo a nivel del sistema nervioso central.

Las aminas son compuestos orgánicos derivados del amoniaco, conformados por uno o más grupos alquilo o arilo enlazados al átomo de hidrógeno mediante un enlace simple.


En función del número de grupos alquilo o arilo unido al nitrógeno las aminas se clasifican en:

Amina primaria: están constituidas por un grupo amino unido a un sustituyente alquilo o arilo (R- NH2).

Amina secundaria: están formadas por dos grupos alquilo o arilo (R-NH-R´) unidos al átomo de hidrógeno.


Amina terciaria: tienen tres grupos alquilo o arilo unidos al nitrógeno (NR3).


IMPORTANCIA BIOLÓGICA DE LAS AMINAS

En el cuerpo humano hay diferentes aminas que cumplen funciones vitales en el organismo, entre las cuales se encuentran:

Histamina: es la sustancia responsable de las reacciones típicas de la alergia como la dilatación de los vasos sanguíneos, también es un importante neurotransmisor.

Niacina: es una vitamina que ayuda al buen funcionamiento de órganos como la piel, además interviene en procesos del sistema digestivo y nervioso.

Dopamina: es un neurotransmisor del sistema nervioso central y periférico.

PROPIEDADES DE LAS AMINAS

Las propiedades de las aminas están asociadas a su estructura química y la forma en que ésta determina las interacciones moleculares. En general, las aminas son polares y presentan interacciones del tipo dipolo-dipolo, además, aquellas que contienen enlaces de N-H pueden interactuar mediante enlaces de hidrógeno. Debido a que el nitrógeno es menos electronegativo que el oxígeno presente en los alcoholes (R-OH), los puentes de hidrógeno en las aminas son más débiles y por tanto sus puntos de ebullición suelen ser menores a los de los alcoholes de igual masa molecular.

¿Sabías que incluso las aminas terciarias pueden interaccionar con otras moléculas que formen enlaces de hidrógeno? Esto debido al par de electrones libre del nitrógeno.

En cuanto a la solubilidad, las aminas con menos de siete átomos de carbono son solubles en agua, propiedad que disminuye al aumentar el número de carbonos.

Las aminas se comportan como bases débiles en presencia de un ácido, tal como muestra el siguiente ejemplo:


AMINAS MEDICINALES

En la medicina hay drogas o fármacos que pertenecen al grupo de las aminas, como son los antihistamínicos recetados en los casos de alergias y gripes, también la morfina administrada en dosis pequeñas a pacientes que sufren dolor crónico y agudo.

Sin embargo, algunas aminas como la cocaína, la nicotina y la metanfetamina generan adicción y demás efectos negativos sobre el sistema nervioso central y la salud en general.

¿Sabías que el nombre de vitaminas se debe a que inicialmente se creía dichas biomoléculas eran todas aminas?

NOMENCLATURA DE AMINAS

Las aminas se nombran como alcanoaminas o alquilaminas, es decir, se nombran utilizando el nombre del alcano o sustituyente alquilo, respectivamente. En ambos casos se utiliza la terminación –amina.


En aquellos casos donde hay más de un sustituyente se deben nombrar en orden alfabético, así mismo, si alguno de estos se repite varias veces se utilizan los prefijos de cantidad: di, tri y tetra, entre otros.


También es posible nombrar los sustituyentes empleando la letra N como localizador, siempre que los sustituyentes estén unidos al átomo de nitrógeno.


En compuestos donde la prioridad corresponde a otra función química, las aminas se nombran empleando el término amino- precedido por el localizador.


SALES CUATERNARIAS

Las sales cuaternarias se forman cuando una amina reacciona con un ácido. Se utilizan como producto de limpieza y en medicamentos, ya que son más estables y resistentes que las aminas de las cuales provienen.



¡Aplica lo aprendido!

Indica el nombre del siguiente compuesto.


  1. Enumera la cadena carbonada más larga.

  1. Identificar los sustituyentes.

  1. Nombrar el compuesto.

Los enlaces químicos

La energía de un agregado de dos o más átomos puede ser menor que la suma de las energías de esos átomos aislados y de ahí que, siguiendo la tendencia de cualquier sistema a alcanzar su estado de mínima energía, los átomos se unan unos con otros de diversos modos para formar moléculas estables. Así, sólo los gases nobles y los metales en estado de vapor están constituidos por átomos aislados.

Todas las demás sustancias están constituidas por moléculas integradas por un número de átomos que puede ir desde dos hasta cientos de miles (polímeros). En la formación del enlace químico intervienen únicamente los electrones de la última capa, los llamados electrones de valencia, que pueden ser parcialmente compartidos entre dos átomos (enlace covalente) o bien cedidos por uno a otro (enlace electrovalente). Es importante destacar que desde el punto de vista de la teoría química actual el enlace químico tiene carácter unitario, basándose siempre en compartir electrones por pares.

Las moléculas están constituidas por la unión de cierto número de átomos iguales o distintos. Se plantea, pues, la cuestión de saber cuál es el nexo que mantiene a los átomos unidos entre sí para formar moléculas. En todos los casos, este nexo se establece únicamente a partir de los electrones que forman la última capa de los átomos, los llamados electrones de valencia.

Hablaremos de cinco tipos de enlace distintos: iónico o electrovalente, covalente, metálico, de hidrógeno y covalente coordinado.

El fundamento del enlace químico es la Ley Física Fundamental según la cual todo sistema evoluciona hacia su estado de energía más bajo. Esta ley explica, por ejemplo, el hecho de que una bola que se encuentra en un recipiente cóncavo se sitúe en el punto más bajo del mismo o bien que, si dos disoluciones de distinta concentración están separadas por un tabique poroso, la concentración de ambas tienda a igualarse por migración del soluto a través del tabique.

 

Existen cinco tipos de enlaces: iónico o electrovalente, covalente, metálico, de hidrógeno y covalente coordinado.

Para poder aclarar la naturaleza de cada uno de los distintos tipos de enlace listados, antes deberemos explicar algunos conceptos importantes, en particular el concepto de ion, y formular la teoría del octete (u octeto).

Con respecto a la mayor o menor facilidad con que permiten el paso de la corriente eléctrica, los cuerpos se clasifican en:

  • Aislantes
  • Conductores:
    • de primera clase
    • de segunda clase o electrólitos

Los conductores de primera clase son aquellos que, como los metales, no se alteran con el paso de la corriente eléctrica.

Por el contrario, los conductores de segunda clase o electrólitos se descomponen cuando son atravesados por una corriente eléctrica. Los electrólitos son exclusivamente ácidos, bases o sales fundidos o disueltos en agua u otros líquidos.

El primero que formuló una explicación científica coherente de la descomposición de los electrólitos por el paso de una corriente eléctrica (electrólisis) fue Arrhenius, quien, en 1883-1887, propuso su teoría de la disociación electrolítica. Aunque inicialmente fue recibida sin entusiasmo por los medios científicos, esta teoría ha sido una de las más fecundas de la química moderna, ya que sentó las bases para el desarrollo de la electroquímica, que hoy constituye una de las bases de la química industrial.

Teoría de Arrhenius de la disociación electrolítica

Se denomina ion a un átomo o una partícula formada por varios átomos que posee una carga eléctrica debida a un defecto o un exceso de electrones planetarios. Según sea su carga eléctrica, los iones se clasifican en positivos o cationes y negativos o aniones.

De acuerdo con la teoría formulada por Arrhenius:

  1. Los electrólitos, en disolución o fundidos, se disocian parcialmente en iones dotados de carga eléctrica, siendo la carga total de los iones positivos igual a la carga total de los iones negativos; la disolución en su conjunto permanece neutra.
  2. Las sustancias químicamente análogas se disocian en los mismos iones (por ejemplo, el grupo NO3 de los nitratos, PO4 de los fosfatos o Na de las sales sódicas). La carga eléctrica del ion es igual a su valencia y es negativa para los no metales y radicales no metálicos (aniones) y positiva para los metales (cationes).

Así, por ejemplo, al disociarse electrolíticamente el cloruro de hidrógeno (un ácido), el cloruro de calcio (una sal) y el hidróxido de sodio (una base) tendremos respectivamente:

HCl  H+ (1 ion positivo) + Cl- (1 ion negativo)

CaCl2   Ca2+ (1 ion positivo) + 2Cl- (dos iones negativos)

NaOH  Na+ (1 ion positivo) + (OH)- (1 ion negativo)

Los iones positivos son más pequeños que los átomos metálicos de los que proceden (por ejemplo, el radio del ion Na+ es sólo muy poco mayor que la mitad del radio del átomo de sodio), mientras que los iones negativos son siempre mayores que los átomos de los no metales a partir de los que se han formado (por ejemplo, el radio del ion Cl- es casi el doble que el radio del átomo de cloro).

Steve August Arrehnius (1859-1927) fue un reconocido científico sueco.

Ionización

La formación de iones se explica por la cesión o admisión de electrones, generalmente en la capa más externa, por parte de un átomo. Es decir, si un átomo X acepta un electrón se rompe el equilibrio eléctrico en que se encontraba, al pasar a poseer una carga negativa más; tendremos así un ion negativo X-. Si el átomo X hubiera aceptado dos electrones estaríamos ante un ion X2-, etcétera.

Por el contrario, si un átomo X cede un electrón pasará a convertirse en un ion positivo, X+, puesto que su número de cargas negativas será entonces inferior en una unidad al número de cargas positivas del núcleo (protones); en el caso de que cediera dos electrones, se tendría el ion X2+, etcétera.

La ionización no es un fenómeno que pueda producirse únicamente a causa de la disociación de un electrólito en disolución. También por efecto del calor, las radiaciones ionizantes o el choque con otras partículas, un átomo puede perder uno o más electrones o bien absorber electrones extraños. Por ejemplo, en las capas altas de la atmósfera (ionosfera), los átomos del aire son constantemente bombardeados por radiaciones solares de alta energía, las cuales les arrancan electrones. Asimismo, los meteoritos, al atravesar la atmósfera a gran velocidad, producen un calentamiento local del aire, ionizándolo a lo largo de su trayectoria.

Un ion se forma cuando una molécula le “cede” electrones a otra.

Los iones presentes en el aire atraen el polvo y las gotitas de agua, y por esta razón se emplean iones para que actúen como núcleos de condensación con el fin de provocar artificialmente la lluvia. En un proceso esencialmente análogo, en las cámaras de ionización la observación de las trayectorias de las partículas atómicas se basa en la condensación que provocan a su paso.

En determinadas condiciones, un gas puede hallarse completamente ionizado, es decir, con todos sus átomos en defecto de electrones; en ese caso se le denomina plasma. Sin embargo, el propio plasma se encuentra en estado neutro, ya que, al hallarse íntimamente mezclados en todo el espacio ocupado, sus electrones y sus iones positivos compensan sus cargas entre sí.

Teoría del octete

Los gases nobles constituyen el grupo 0 de la Tabla Periódica. Las moléculas de estos gases son monoatómicas, ya que la característica más destacada de estos elementos es que sus átomos carecen prácticamente de capacidad para unirse con otros átomos de su misma o de otra especie.

Todos los gases nobles, a excepción del primer elemento del grupo, el helio, poseen ocho electrones en la última órbita. Este hecho llevó a considerar que ésta era la configuración electrónica más estable. Por ello, Lewis introdujo en 1916 la teoría del octete u octeto: “Cuando los átomos reaccionan entre sí tienden a adquirir la estructura electrónica del gas noble de número atómico más próximo.” Sorprendentemente, esta ingeniosa teoría se ajusta muy bien a la realidad, aunque en el momento en que fue propuesta carecía por completo de verdadera justificación teórica.

Los gases nobles son los elementos que, en las condiciones normales de la Tierra, están formados por un solo tipo de átomos.

Los alcanos

Los alcanos son compuestos que están formados solo por enlaces entre átomos de carbono e hidrógeno. Comúnmente se los suele llamar también hidrocarburos.

El alcano más simple es el metano, cuya fórmula molecular es CH4. Admitiendo la tetravalencia del carbono y la monovalencia del hidrógeno, solamente es posible una estructura para el metano:

El alcano con dos átomos de carbono, el etano, tiene por fórmula molecular C2H6. Su fórmula estructural es:

Cuando el número de átomos de carbono es n, su fórmula molecular es CnH2n+2. Los alcanos pueden suponerse derivados del metano por sustitución sucesiva de un hidrógeno por un grupo metilo, CH3.

Los alcanos pueden ser de cadena lineal o de cadena ramificada. En la cadena normal cada átomo de carbono está unido directamente a lo sumo a otros dos, es decir, los carbonos son primarios o secundarios; en las cadenas ramificadas existen también átomos de carbono terciarios o cuaternarios:

 

El metano es el alcano más simple.

Una cadena ramificada se puede considerar como una cadena normal en la que la parte de sus átomos de hidrógeno han sido sustituidos por grupos CnH2n+1, que se denominan cadenas laterales.

Dado que la fórmula estructural desarrollada ocupa mucho espacio, para los alcanos de cadena larga se acostumbra usar la fórmula estructural abreviada, que se escribe poniendo entre paréntesis las cadenas laterales (y los sustituyentes) para indicar que esos átomos o grupos están directamente unidos al átomo de carbono precedente no escrito entre paréntesis. Por ejemplo, la última fórmula que hemos escrito en forma desarrollada, en forma abreviada se escribiría:

CH3 CH(CH3)CH2 C(CH3)3

Nomenclatura de los alcanos

Los primeros químicos nombraban en general los compuestos haciendo referencia a su origen. Esto dio lugar a una nomenclatura vulgar que, en muchos casos, aún se emplea. A medida que fue aumentando el número de compuestos orgánicos conocidos se fue haciendo evidente la necesidad de sistematizar la nomenclatura, de manera que el nombre de un compuesto reflejara su estructura. La nomenclatura actual se basa en la establecida en el Congreso de Química de Ginebra de 1892 (nomenclatura de Ginebra), que ha sido revisada repetidas veces, siendo las últimas reglas las que recomendó en 1957 la Comisión de Nomenclatura de la Unión Internacional de Química Pura y Aplicada (IUPAC). En esta obra seguiremos el sistema de la IUPAC, aunque usaremos nombres vulgares cuando éstos estén muy arraigados.

Los cuatro primeros alcanos tienen nombres especiales (relacionados con su historia); a partir del quinto término se nombran según el prefijo griego o latino correspondiente al número de átomos seguido de la terminación -ano.

Los alcanos de cadena normal se indican colocando una n delante del nombre (n-butano) cuando se los quiere diferenciar de los que tienen el mismo número de átomos de carbono pero cadena ramificada en el primer enlace, a los que se antepone el prefijo iso- (iso-butano).

Los radicales monovalentes que se forman eliminando un átomo de hidrógeno de un carbono extremo de un alcano se denominan radicales alquilo. El nombre de cada radical se obtiene cambiando el sufijo -ano del nombre del alcano por -ilo, o bien por -il si el nombre del radical antecede en el nombre del compuesto (por ejemplo, el radical metilo o metil es CH3).

Para nombrar a los hidrocarburos ramificados se elige la cadena más larga y el compuesto se nombra como derivado de ese alcano de cadena normal. La cadena de carbonos se numera de un extremo a otro, eligiendo empezar por el extremo que permita que los números usados para ubicar las cadenas laterales sean lo más bajos posible. Por ejemplo, el 2-etil-3-metil-pentano sería:

Al examinar las fórmulas de los alcanos se observa que dos cualesquiera de ellos se diferencian en uno o más CH2. Una serie de compuestos en la que, como en las parafinas, los sucesivos términos se diferencian en un CH2 se denomina serie homóloga, denominándose homólogos los términos de la misma.

Los constantes físicas (densidad, solubilidad, punto de fusión, índice de refracción, etc.) de los términos de una misma serie homóloga suelen variar de un modo continuo con el aumento del peso molecular, sobre todo los puntos de fusión y de ebullición.

Propiedades generales de los alcanos

Las propiedades físicas de los alcanos siguen la gradación propia de los términos de una serie homóloga. Los cuatro primeros términos de los alcanos normales son gaseosos, del 5 al 16 son líquidos y los términos superiores, sólidos. Son incoloros e inodoros, insolubles en agua, miscibles entre sí y fácilmente solubles en disolventes orgánicos, tales como éter, sulfuro de carbono, benceno, etc. Fácilmente combustibles, arden con llama tanto más luminosa cuanto mayor es el número de carbonos de su molécula. Son estables y químicamente inertes puesto que a temperatura ambiente no son atacados por los ácidos ni las bases fuertes; ésta es la razón por la que se les denomina también parafinas (poca afinidad). Los halógenos se combinan con ellos por sustitución, formándose el derivado halogenado y el hidrácido correspondiente. Así, el metano reacciona con gas cloro dando cloruro de metilo y cloruro de hidrógeno:

CH4 + Cl2 → CH3Cl + HCl

El proceso puede proseguir hasta la sustitución de todos los hidrógenos por átomos de Cl, formándose tetracloruro de carbono.

El alcano más importante es el metano, que es muy estable, ya que sólo empieza a descomponerse por encima de los 600 °C.

Los alcanos son incoloros, inoloros e insolubles en agua.

Estado natural de los alcanos

Los alcanos son compuestos muy abundantes en la naturaleza. El primer término de la serie, el metano, se desprende en los pantanos como producto de la descomposición de sustancias orgánicas por acción de bacterias anaerobias (es decir, en ausencia de aire); de ahí su antiguo nombre de gas de los pantanos. También se desprende en las minas de carbón (grisú), donde puede provocar peligrosas explosiones. Es el principal componente del gas natural, cada día más utilizado por ser un combustible limpio y de elevado poder calorífico. Los demás alcanos se hallan contenidos en el gas natural y en el petróleo, del que pueden obtenerse muchos hidrocarburos saturados por destilación fraccionada. El propano y el butano son constituyentes del gas natural y del gas de los pozos petrolíferos, de los cuales se pueden separar por fraccionamiento. Se utilizan como combustibles, comercializándose licuados bajo presión en bombonas, a diferencia del gas natural, que se suministra por cañerías.

Compuestos orgánicos

Seguramente has escuchado a alguien decir “somos química”, pues no hay nada más cierto que esta afirmación. Ya que a nivel molecular, el ser humano está constituido por diversos compuestos orgánicos, como: proteínas, carbohidratos, aminas y azúcares.

En la química orgánica existe una gran variedad de compuestos, formados en su mayoría por combinaciones de átomos de carbono. El carbono es un elemento químico capaz de formar enlaces fuertes con otros átomos de carbono, oxígeno, hidrógeno, nitrógeno, entre otros.

La química orgánica es la rama de la química que estudia los compuestos de carbono.

Los compuestos de carbono hidrógeno, también conocidos como hidrocarburos están formados por átomos de carbono e hidrógeno unidos mediante enlaces covalentes simples o múltiples, estos últimos tienen gran influencia en el comportamiento químico de los hidrocarburos.Compuestos carbono hidrógeno

¿Qué es la cadena carbonada?

La cadena carbonada es la unión de varios átomos de carbono a través de enlaces sigma (σ) y pi (π), también se le denomina esqueleto carbonado.

De acuerdo a la estructura de su cadena carbonada, los hidrocarburos se clasifican de la siguiente manera:

Alifáticos acíclico: son aquellos compuestos formados por cadenas de carbono abiertas, las cuales pueden ser lineales o ramificadas.

 

Tipos de carbono
En el esqueleto carbonado de una molécula se distinguen varios tipos de carbono:

Carbono primario: enlazado a 1 átomo de carbono y 3 hidrógenos.

Carbono secundario: enlazado a 2 átomos de carbono y 2 hidrógenos.

Carbono terciario: enlazado a 3 átomos de carbono y 1 hidrógeno.

Carbono cuaternario: enlazado a 4 átomos de carbono.

Inténtalo en casa, ¿cuál de las siguientes opciones es la correcta?

  1. El 2,2,5-trimetilhexano tiene 5C 1rio, 2C 2rio, 2C 3rio y 1C 4rio
  2. El 2,2,5-trimetilhexano tiene 6C 1rio, 2C 2rio, 1C 3rio y 1C 4rio
  3. El 2,2,5-trimetilhexano tiene 5C 1rio, 3C 2rio, 1C 3rio y 1C 4rio
  4. El 2,2,5-trimetilhexano tiene 5C 1rio, 2C 2rio, 1C 3rio y 1C 4rio
 

 

 

  • Insaturados: compuestos de carbono hidrógeno que tienen enlaces simples y múltiples, se dividen en:
    • Alquenos: son aquellos que contienen un doble enlace (uno σ y otro π) en su cadena carbonada.
    • Alquinos: poseen un triple enlace (uno σ y dos π) en su cadena carbonada.

Las bolsas plásticas están hechas de polietileno [-(CH2-CH2)n-], un polímero formado a partir del eteno.
Alicíclicos: son los compuestos formados por cadenas de carbono cerradas, estas pueden tener ramificaciones.

  • Saturados: cadenas carbonadas cerradas formadas únicamente por enlaces simples (σ), se conocen como cicloalcanos.

  • Insaturados: cadenas carbonadas cerradas que tienen enlaces simples y múltiples, se clasifican en:
    • Cicloalquenos: son los que poseen dobles enlaces (uno σ y otro π) no alternados.
    • Cicloalquinos: constituidos por al menos un triple enlaces (uno σ y dos π).

Aromáticos: son los hidrocarburos que poseen enlaces π conjugados, cuya deslocalización de electrones π disminuye la energía electrónica de la molécula. Existen moléculas donde la deslocalización de electrones π aumenta la energía electrónica de la misma, estos compuestos se conocen como antiaromáticos.

Los hidrocarburos aromáticos se clasifican en:

Benceno y derivados, algunos ejemplos de este tipo de compuestos son:

¿Cómo saber si es aromático o antiaromático?

Para saber si un hidrocarburo con enlaces π conjugados es aromático o antiaromático se utiliza la Regla de Hückel, la cual nos indica que para que un compuesto sea considerado aromático el número de electrones π deslocalizados debe ser igual a 4N+2, en caso de ser igual a 4N se dice que la estructura es antiaromática.

3 enlace π 4 enlace π
Cada enlace tiene 2 electrones (e), entonces hay 6 e π Cada enlace tiene 2 electrones (e), entonces hay 8 e π
4N + 2 = 6 e π 4N = 8 e π
Se cumple para N igual 1, por lo cual es aromático. Se cumple para N igual 2, por lo cual es antiaromático.

Polinucleares, las cuales están constituidas por dos o más ciclos unidos entre sí, algunos de los compuestos más representativos de este grupo son:

El petróleo está constituido por una mezcla de diferentes hidrocarburos.

Compuestos carbono halógenos

Son aquellos compuestos que poseen al menos un enlace simple (σ) entre un átomo de carbono y un halógeno (-C-X, donde X = Cl, F, I, Br), se les denomina haluros. Entre los más representativos están:

Compuestos carbono oxígeno

Son los compuestos que tienen enlaces simples o múltiples entre un átomo de carbono y uno oxígeno. Entre los compuestos carbono oxígeno se encuentran:

  • Alcoholes: son lo compuestos que contienen en su estructura al menos un enlace C-OH.

Alcohol ≠ Fenol

Los fenoles son compuestos carbono oxígeno que poseen enlaces entre un átomo de carbono aromático y el oxígeno del grupo -OH. Las propiedades químicas de los fenoles son distintas a la de los alcoholes, por lo cual se les considera un tipo de compuesto o familia diferente.

 

 

 

Algunas sustancias como el vino contienen polifenoles, los cuales tienen una gran capacidad antioxidante.

  • Éteres: tienen un átomo de oxígeno enlazado a través de enlaces simples a dos átomos de carbono (R-O-R´).

  • Ácidos carboxílicos: poseen en su esqueleto carbonado la función –COOH.

  • Cetonas: tienen la siguiente forma R-CO-R, donde R puede ser un radical alifático, alicíclico o aromático.

  • Aldehídos: son los que contienen el grupo funcional –CHO.

  • Ésteres: son derivados de los ácidos carboxílicos, su grupo funcional es –COOR, donde R puede ser un radical alifático, alicíclico o aromático.

Algunos ésteres se emplean en la fabricación de fragancias o perfumes.

Compuestos carbono nitrógeno

Como su nombre lo indica, son los compuestos que contienen enlaces simples o múltiples entre un átomo de carbono y uno de nitrógeno. Entre los tipos de moléculas orgánicas con enlace C-N se encuentran:

  • Aminas: contienen enlaces simples carbono nitrógeno, pueden ser primarias (-NH2), secundarias (-NRH) o terciarias (-NR2)

  • Nitrilos: en su esqueleto carbonado tienen un enlace triple carbono nitrógeno (-C≡N).

A continuación un resumen de los grupos funcionales característicos de algunos compuestos carbono oxígeno:

Normas generales de nomenclatura orgánica

Para poder identificar los diferentes compuestos orgánicos que existen se aplican una serie de normas establecidas por la Unión Internacional para la Química Pura y Aplicada (IUPAC por sus siglas en inglés), dichas normas consisten en lo siguiente:

  1. Identificar según el orden de prioridad de los grupos funcionales el tipo de compuesto, para ello se emplea la siguiente tabla:
Orden de prioridad Grupo funcional

presente

Sufijo
1 Ácidos carboxílicos ico
2 Ésteres (y otros derivados de ácidos carboxílicos) ato
3 Nitrilos nitrilo
4 Aldehídos al
5 Cetonas ona
6 Alcoholes y fenoles ol
7 Aminas amina
8 Alquenos eno
9 Alquinos ino
10 Alcanos ano
  1. Seleccionar la cadena principal, la cual siempre es la más larga y la que contiene el grupo funcional de mayor prioridad.
  1. Enumerar la cadena principal, para ello se debe asigna la numeración más baja posible al grupo funcional de mayor prioridad y a los radicales e insaturaciones presentes.
  1. Identificar los radicales o sustituyentes presentes, se entiende por radicales todas aquellas ramificaciones que quedan unidas a la cadena.
  1. Se nombran los radicales por orden alfabético, en casos donde los sustituyentes se encuentran repetidos se utilizan prefijos de cantidad, por ejemplo: di = 2, tri = 3, tetra = 4, penta = 5, hexa = 6 y así sucesivamente.
  1. Por último se indica el nombre del compuesto en base al grupo funcional principal y al número de carbonos que forman la cadena principal, cada tipo de compuesto tiene una terminación o sufijo particular.
Reconociendo grupos funcionales
El anís estrellado debe su sabor a un compuesto químico denominado anetol, indica los grupos funcionales presentes en su estructura química:

¡Inténtalo en casa! , indica los grupos funcionales presentes en la estructura química del GABA y la aspirina.

Los compuestos de tipo orgánico se encuentran en diversos productos de nuestra vida cotidiana, algunos ejemplos se describen a continuación:

Compuestos orgánicos en la vida cotidiana
Uso cotidiano Estructura química Grupo funcional

El gas natural se emplea en las cocinas domésticas.

Propano

Alcano lineal

Las bolas de naftalina se emplean como insecticida.

Naftaleno

Aromático polinuclear

El ibuprofeno es un medicamento antiinflamatorio no esteroideo.

Ácido 2-(4-isobutilfenil)propanoico

Ácido carboxílico

Las bebidas alcohólicas como el vino contienen etanol.

Etanol

Alcohol

La canela debe su olor característico al cinamaldehído.

Cinamaldehído

Aldehído