Conceptos fundamentales de cinemática: componentes de la aceleración 

En un movimiento curvilíneo, el vector velocidad está situado sobre la recta tangente a la trayectoria en el punto considerado. En general, es imposible hacer una afirmación de la misma sencillez sobre la dirección del vector aceleración, pero si éste se descompone según dos ejes, uno tangente a la trayectoria y otro normal a éste (componentes intrínsecas de la aceleración) es fácil comprender la variación que la aceleración impone a la velocidad.

Ejemplo

La utilidad de esta descomposición estriba en que, en el caso general, en un movimiento curvilíneo, la aceleración tiene dos efectos:

  1. Cambia el módulo del vector velocidad
  2. Curva la trayectoria o, lo que es lo mismo, cambia la dirección del vector velocidad.

La primera de estas dos acciones se debe a la aceleración tangencial at, que es la componente de la aceleración sobre la recta tangente a la trayectoria en el punto considerado. Esta aceleración, por tener la misma línea de acción que la velocidad, no afecta a la dirección de ésta, sino sólo a su módulo. La segunda acción de la aceleración se debe a la aceleración normal a, que, por ser perpendicular a la dirección del vector velocidad, no afecta a su módulo, pero sí a su dirección.

Mediante métodos propios de la geometría diferencial es posible hallar fórmulas que dan los módulos de at, y apara un movimiento según una trayectoria cualquiera. Dichas fórmulas son:

Cuando 

Donde ρ es el radio de curvatura de la trayectoria en el punto considerado.

Caída libre

La caída libre es un tipo de movimiento rectilíneo uniformemente acelerado porque su desplazamiento se realiza en línea recta con una aceleración constante igual a la gravedad, lo que hace que la velocidad de los cuerpos que describen este movimiento aumente en el transcurso de su trayectoria.

La caída libre

En este movimiento, el móvil cae de forma vertical desde cierta altura sin ningún obstáculo. Es un tipo de movimiento rectilíneo uniformemente acelerado (MRUA) o movimiento rectilíneo uniformemente variado (MRUV) porque su aceleración es constante y coincide con el valor de la gravedad.

La gravedad

Al encontrarse cerca de la superficie terrestre, los cuerpos experimentan una fuerza de atracción que les confiere una aceleración. Cuando una manzana cae de un árbol lo hace por acción de dicha fuerza. En el caso de la Tierra, la gravedad puede considerarse constante y su dirección es hacia abajo. Generalmente se designa con la letra g y sus valores aproximados para algunos sistemas de medición son:

Sistema M.K.S → g = 9,8 m/s²

Sistema c.g.s → g = 980 cm/s²

Sistema inglés → g = 32 ft/s² (pies por segundo al cuadrado)

En algunas ocasiones la gravedad de la Tierra suele aproximarse a 10 m/s², pero el valor más usado en la resolución de problemas es el de 9,8 m/s².
En algunas ocasiones la gravedad de la Tierra suele aproximarse a 10 m/s², pero el valor más usado en la resolución de problemas es el de 9,8 m/s².
 En el movimiento de caída libre se considera que el rozamiento con el aire es despreciable.
En el movimiento de caída libre se considera que el rozamiento con el aire es despreciable.

Características del movimiento de caída libre

  • Es un tipo de movimiento uniformemente acelerado o variado.
  • Su trayectoria es vertical.
  • La altura inicial es mayor que la final.
  • La velocidad inicial es igual a cero, es decir, el cuerpo se deja caer.

Ecuaciones de caída libre

Dónde:

Vo = velocidad inicial

Vf = velocidad final

h = altura

g = gravedad

t = tiempo

La velocidad inicial en este tipo de movimiento es igual a 0 m/s si el objeto se deja caer, por el contrario, si el objeto no se deja caer sino que se lanza, se le confiere una velocidad inicial diferente a 0 m/s.

Los paracaidistas describen un movimiento de caída libre hasta el momento en el que abren su paracaídas.
Los paracaidistas describen un movimiento de caída libre hasta el momento en el que abren su paracaídas.

Ejercicios

1.- Se deja caer desde la parte alta de un edificio una roca, la cual tarda 4 segundos en llegar al suelo. Determinar:

a) La altura del edificio.
b) La velocidad con la que impacta la roca al suelo.

Datos:

V0 = 0 m/s a la velocidad inicial es cero porque la roca se dejó caer.
t = 4 s

a) Para calcular la altura del edificio se debe emplear la ecuación número 4 mostrada anteriormente, ya que es la que involucra el término de altura.

El único dato no proporcionado es el valor de la gravedad, pero como se explicó anteriormente, la gravedad de la Tierra se aproxima a 9,8 m/s². Al sustituir los datos en la ecuación quedaría:

Recuerda simplificar las unidades iguales.

El edificio tiene una altura de 78,4 metros.

b) Para determinar la velocidad con la que impactó la roca al suelo se aplica la ecuación 1 de las fórmulas mostradas anteriormente.

Al sustituir los datos en la ecuación se tiene:

La roca golpeó el suelo con una velocidad de 39,2 m/s.

Otra forma de calcular la velocidad de impacto con el suelo es aplicar la fórmula 3, la cual involucra la altura, pero como se calculó ese valor en la primera parte (78,4 m) se puede aplicar. En caso de no conocer el valor de la altura, se debería aplicar la ecuación 1.

Como podrás observar, se obtuvo el mismo resultado que el obtenido con la ecuación 1.

2.- Desde lo alto de un balcón de 6 m se lanza hacia abajo una pelota con una velocidad inicial de 4 m/s. Determinar:

a) La velocidad final de la pelota.
b) El tiempo que tarda en llegar al suelo.

Datos:

h = 6 m
V0 = 4 m/s → La velocidad no es de 0 m/s porque la pelota no se dejó caer desde el reposo.

a) Para calcular la velocidad de la pelota se emplea la ecuación 3 porque no se ha calculado el tiempo aún.

La velocidad final de la pelota es aproximadamente igual a 11,56 m/s.

En el movimiento de caída libre, la velocidad aumenta de forma constante hasta que el cuerpo llega al suelo.
En el movimiento de caída libre, la velocidad aumenta de forma constante hasta que el cuerpo llega al suelo.

b) Para determinar el tiempo que la pelota emplea en llegar al suelo, se utiliza la ecuación 2.

El tiempo que tarda la pelota en llegar al suelo es aproximadamente igual a 0,77 segundos.

Otra forma de calcular el tiempo

Para los casos en los que se conoce la altura y la velocidad inicial se puede calcular el tiempo por medio de la ecuación 4, en este caso, se formaría una ecuación de segundo grado al sustituir los datos y de la cual se tomaría la raíz positiva.

En el problema anterior, al sustituir los valores en la ecuación 4 quedarían de la siguiente forma:

(Para efectos ilustrativos no se colocaron las unidades)

Organizando los términos en la ecuación quedaría de la siguiente forma:

4,9t2+4t6=0

Al calcular las raíces de la ecuación anterior se tienen:

t1 = 0,77 s (Es el valor verdadero y coincide con el que se calculó anteriormente)

t2 = -1,58 s (No se considera este valor ya que no hay tiempos negativos)

No todos los ejercicios siguen una misma metodología por ello debes reconocer muy bien los datos con los que cuentas y las ecuaciones que debes usar.