Carga formal y estructura de Lewis

Los químicos lograron comprender cómo se forman las moléculas tras el desarrollo de la tabla periódica y el concepto de “configuración electrónica”. Lewis contribuyó con estos avances gracias a un sistema de puntos para representar electrones de valencia de un átomo, ion o molécula; la distribución de estos se conoce por su carga formal.

De acuerdo a Gilbert Lewis, los átomos se combinan entre ellos para obtener la configuración electrónica más estable, la cual es igual al del gas noble más cercano.

Gilbert lewis y su aporte a la química

Gilbert Newton Lewis fue un químico estadounidense que realizó significativos aportes en el estudio de los enlaces químicos. Según Lewis, los átomos se combinan para alcanzar una configuración electrónica más estable; y la estabilidad máxima se alcanza cuando el átomo es isoelectrónico con un gas noble.

Átomos isoelectrónicos

Dos átomos o iones son isoelectrónicos si tienen el mismo número de electrones, y por lo tanto, la misma configuración electrónica. Por ejemplo:

  • El catión K+ es isoelectrónico con el átomo de Ar porque:

K+ → 1s2 2s2 2p6 3s2 3p6

Ar → 1s2 2s2 2p6 3s2 3p6

  • El anión F es isoelectrónico con el átomo de Ne porque:

F → 1s2 2s2 2p6

Ne → 1s2 2s2 2p6

Símbolos de puntos de Lewis

Un símbolo de puntos de Lewis contiene el símbolo del elemento y un punto por cada electrón de valencia del átomo de un elemento. Los electrones de valencia son los más externos en un átomo y los que se utilizan en los enlaces químicos.

– Ejemplos:

Nombre del elemento Configuración electrónica Electrones de valencia Puntos de Lewis
Calcio 1s2 2s2 2p6 3s2 3p6 4s2 2
Nitrógeno 1s2 2s2 2p3 5
Cloro 1s2 2s2 2p6 3s2 3p5 7

En la configuración electrónica de cada elemento se resaltan las capas de electrones más externas o capa de valencia.

Símbolos de puntos de Lewis de los elementos representativos y los gases nobles.

Observa que, a excepción del helio, la cantidad de electrones de valencia de cada átomo es igual al grupo en el que se encuentra el elemento en la tabla periódica.

Escritura de las estructuras de Lewis

La estructura de Lewis es una forma de representar un enlace covalente, en el que el par de electrones compartidos se muestran con líneas o como pares de puntos entre dos átomos. Los pares libres no compartidos se dibujan como pares de puntos en los átomos individuales.

¿Sabías qué?
Gilbert Lewis propuso la regla del octeto, la cual afirma que un átomo, excepto el hidrógeno y el helio, tiende a formar enlaces hasta rodearse de ocho electrones de valencia.

Los pasos para escribir la estructura de Lewis de una molécula como NF3 son los siguientes:

1. Escribe el esqueleto de la estructura.

Por lo general, el átomo menos electronegativo ocupa la posición central mientras que los átomos de H y F suelen estar en las posiciones terminales.

 

2. Cuenta el número total de electrones de valencia.

La molécula NF3 tiene un átomo de N y tres átomos de F. Así que debemos determinar los electrones de valencia de cada átomo y luego sumarlos.

N → 1s2 2s2 2p3 → 5 electrones de valencia.

F → 1s2 2s2 2p5 → 7 electrones de valencia.

Como solo hay un átomo de N, los electrones de valencia para N son 5 (1 × 5 = 5); en cambio, hay tres átomos de F, así que multiplicamos la cantidad de átomos de F por sus electrones de valencia, lo que da como resultado 21 electrones de valencia (3 × 7 = 21 ) para F. Luego sumamos:

Electrones de NF3 = 5 + 21 = 26

 

3. Dibuja los enlaces covalentes.

Al principio coloca enlaces sencillos entre el átomo central y cada átomo terminal. Completa el octeto de cada átomo con puntos de Lewis. El número total de electrones (tanto en los pares enlazados como los pares libres) debe ser igual a los calculados anteriormente: 26.

 

4. Comprueba la regla del octeto.

Cada átomo de F tiene un par de electrones compartidos (una línea) y 3 pares de electrones libres no compartidos (6 puntos). Cada átomo de F cumple con la regla del octeto porque tienen 8 electrones alrededor. El átomo de N tiene 3 pares de electrones compartidos (3 líneas) y un par de electrones libres no compartidos (2 puntos). El átomo de N cumple con la regla del octeto porque tiene 8 electrones alrededor.

Si contamos la cantidad de electrones compartidos (representados con líneas) y no compartidos (representados con puntos) en toda la molécula el resultado debe ser 26. Observa:

Electrones de NF3 = 6 electrones compartidos + 20 electrones no compartidos = 26

 

Estructura de Lewis del ion carbonato (CO3)2−

1. Dibujamos la estructura básica o esqueleto. Como el carbono es el átomo menos electronegativo va en el centro.

 

2. Calculamos la cantidad total de electrones de valencia de la forma que se muestra a continuación:

C → 1s2 2s2 2p2 → 4 electrones de valencia.

O → 1s2 2s2 2p4→ 6 electrones de valencia.

Hay un átomo de C y 3 átomos de O, además, todo el ion tiene 2 cargas negativas, por lo tanto debemos sumar 2 electrones al total:

Electrones de (CO3)2− = (1 × 4) + (3 × 6) + 2 = 4 + 18 + 2 = 24

 

3. Dibujamos un enlace covalente sencillo entre el átomo de C y cada átomo de O. Esta estructura muestra los 24 electrones. Sin embargo, la regla del octeto se cumple solo en los oxígenos y no en el átomo de carbono.

Entonces movemos un par de electrones libres de uno de los átomos de O para formar un enlace doble con C. También debemos señalar las 2 cargas negativas del ion, para eso colocamos toda la estructura entre corchetes y colocamos las cargas como superíndice.

4. Verificamos que se cumpla la regla del octeto en los átomos.

Cada átomo de O cumple con la regla del octeto porque está rodeado de 8 electrones. 2 átomos de O tienen un par de electrones compartidos y 3 pares de electrones libres. Un átomo de O tiene 2 pares de electrones compartidos y 2 pares libres. El átomo de C cumple con la regla del octeto porque está rodeado de 8 electrones: un enlace doble (4 electrones compartidos) y 2 enlaces simples, en los que se comparte 2 electrones en cada uno.

carga formal

Una vez que hemos determinado el número total de electrones de valencia para una estructura de Lewis no es posible saber de qué átomo proceden los electrones de esta estructura. No obstante, después de tener una estructura de Lewis aceptable es posible establecer de dónde proceden los electrones si evaluamos la carga formal.

La carga formal nos permiten conservar la pista de los electrones de valencia y hallar una imagen cualitativa de la distribución de carga en una molécula.

La carga formal es la diferencia de carga eléctrica que existe entre los electrones de valencia de un átomo aislado y el número de electrones asignados a ese mismo átomo en una estructura de Lewis.

Carga formal del ozono O3

La configuración electrónica del átomo de O es 1s2 2s2 2p4; por lo tanto, cada átomo tiene 6 electrones de valencia y la molécula debe tener 18 electrones totales (3 × 6 = 18). La estructura básica del ozono (O3) con enlaces simples es esta:

Aunque la estructura de Lewis anterior cuenta con los 18 electrones, la regla del octeto no se cumple para el átomo de O central; así que tenemo que convertir un par de electrones libres en un segundo enlace compartido.

Ahora podemos calcular la carga formal a los átomos, para esto restamos la cantidad de electrones asignados a cada átomo a la cantidad de electrones de valencia.

Las líneas rojas representan la ruptura de los enlaces. Al hacer esto solo consideramos la mitad de los electrones por cada enlace covalente.

Las cargas formales de todos los átomos de O3 se expresan de la siguiente forma:

La molécula de O3 es neutra porque +1 −1 = 0.

Reglas para escribir las cargas formales

  • La suma de las cargas formales de una molécula debe ser cero porque son especies neutras.
  • La suma de las cargas formales de un catión debe ser igual a la carga positiva.
  • La suma de las cargas formales de un anión debe ser igual a la carga negativa.

Carga formal del ion carbonato (CO3)2−

La estructura de Lewis de este ion fue descrita anteriormente. Para determinar la carga formal de cada átomo tenemos que romper los enlaces:

Luego realizamos la resta entre los electrones asignados y los de valencia:

Escribimos la estructura de Lewis con las cargas formales:

Nota que la suma de las cargas formales es −2, que es igual a la carga del ion carbonato.

Configuración electrónica: principios y fundamentos

Las propiedades químicas de todos los elementos dependen de la corteza electrónica de los átomos que lo constituyen. Por esta razón es importante conocer los principios para la distribución de electrones en los diversos niveles y subniveles de energía, cuya representación abreviado se conoce como “configuración electrónica”.

Toda la materia está formada por partículas de pequeño tamaño conocidas como “átomos”.

Estructura del átomo

El átomo es la unidad fundamental de un elemento y, por lo tanto, la unidad constituyente más pequeña de toda la materia. Está formado por partículas más pequeñas o subatómicas llamadas protones, neutrones y electrones.

  • Los protones tienen carga positiva (+).
  • Los neutrones tienen carga neutra (0).
  • Los electrones tienen carga negativa (−).

El átomo consta de un núcleo positivo, donde se encuentran los protones y los neutrones; y una corteza electrónica por donde giran los electrones organizados en órbitas.

Átomo con 6 protones, 6 neutrones y 6 electrones. Los electrones se organizan en distintos niveles de energía; en el primero (n = 1) hay 2 electrones y en el segundo (n = 2) hay 4 electrones.

¿Qué son los niveles de energía?

Son las capas en los que se reparten los electrones de un átomo. Mientras mayor sea el valor del nivel de energía (n = 1, 2, 3, …), mayor será la distancia entre el electrón en el orbital de un átomo y el núcleo; por lo tanto, el orbital es de mayor tamaño. Así, los orbitales del nivel de energía 3 (n = 3) son más grandes que los orbitales del nivel de energía 2 (n = 2).

orbitales atómicos

Los orbitales atómicos son regiones en las que hay alta probabilidad de hallar un electrón y poseen una determinado nivel de energía. Si bien los distintos tipos de orbitales no tienen forma definida es posible imaginar una forma particular de acuerdo a la distancia entre el núcleo del átomo y la posible localización del electrón. Según su forma, los orbitales se nombran con las letras s, p, d, f, …

Orbitales s

Se caracteriza por tener una forma esférica que aumenta de tamaño al aumentar el nivel de energía.

Los orbitales s tienen capacidad para 2 electrones.

orbital 1s orbital 2s orbital 3s

Orbitales p

Podemos imaginar a los orbitales p como dos lóbulos ubicados uno del lado opuesto del otro. Existen tres tipos de orbitales p: px, py y pz, cuyos subíndices representan los ejes sobre los cuales se orientan los orbitales.

Los orbitales p tienen capacidad para 6 electrones, 2 electrones por cada orientación.

orbital py orbital px orbital pz

Orbitales d y otros de mayor energía

Estos orbitales tienen forma de lóbulos en cinco orientaciones diferentes. Los orbitales con mayor energía que los orbitales d se representan con las letras f, g, h, …

Los orbitales d tienen capacidad para 10 electrones, 2 electrones por cada orientación.

orbital dz2 orbital dxz orbital dxy

 

orbital dyz orbital dx2-y2

Cabe destacar que a medida que aumenta el nivel de energía también aumenta la capacidad de contener orbitales, por ejemplo, en n = 1 solo encontramos orbitales s, en n = 2 orbitales s y p, y en n = 3 orbitales s, p y d, y así sucesivamente. A manera de resumen podemos organizar esta información en una tabla como la siguiente:

Nivel de energía Orbitales Capacidad electrónica del orbital Capacidad electrónica del nivel
1 s 2 2
2 s 2 8
p 6
3 s 2 18
p 6
d 10
4 s 2 32
p 6
d 10
f 14
La forma en la que se organizan los electrones alrededor del núcleo atómico determina el tipo de enlace en las sustancias y sus propiedades químicas.

Configuración electrónica

La información dada en la tabla anterior puede ilustrarse gráficamente en un esquema conocido como “regla Möller”, “regla de las diagonales” o “método de la lluvia”. Este se utiliza en el llenado de arriba hacia abajo de los subniveles de un átomo en la dirección y sentido que señalan las flechas.

Regla de Moeller para escribir la configuración electrónica del átomo de un elemento.

Recordemos que el número de electrones de un átomo en su estado fundamental es igual a su número atómico (Z). Así, la configuración electrónica del átomo de hidrógeno (Z = 1) en estado fundamental es 1s1, donde:

Por lo tanto, podemos decir que el electrón del átomo de hidrógeno está en un orbital s del nivel de energía 1. La expresión 1s1 se lee “uno ese uno”.

¿Sabías qué?
El estado fundamental, también llamado “estado basal”, es el estado de menor energía en el que se puede encontrar un átomo.

¿Cómo escribir la configuración electrónica de un átomo?

  • Litio (Li)

El número atómico (Z) del Li es 3, por lo tanto, el átomo de Li tiene 3 electrones en su estado fundamental. Para escribir su configuración electrónica empezamos a contar desde el primer nivel de energía hasta llegar a los 3 electrones.

Empezamos con 1s2 y seguimos hasta llegar a 2s, orbital en el que caben 2 electrones. Como solo falta un electrón para llegar a 3, escribimos la designación del orbital con un solo electrón, es decir, 2s1.

 

Configuración electrónica de Li → 1s2 2s1


  • Carbono (C)

Como el número atómico (Z) de C es 6, los electrones de este átomo son 6. Así que contamos de forma progresiva en el diagrama hasta llegar a 6 electrones.

Si iniciamos con 1s2 y luego pasamos por 2s2 ya tenemos 4 electrones. Como faltan 2 electrones seguimos hasta 2p y escribimos la designación del orbital con 2 electrones: 2p2.

 

Configuración electrónica de C → 1s2 2s2 2p2


  • Magnesio (Mg)

El número atómico (Z) del Mg es 12, por lo que debemos repetir el mismo procedimiento de los ejemplos anteriores hasta llegar a 12 electrones.

Tras llenar los primeros 10 electrones hasta el 2p6, seguimos con 3s2 y de ese modo ya se tienen los 12 electrones correspondientes al átomo en su estado fundamental.

 

Configuración electrónica de Mg → 1s2 2s2 2p6 3s2

Configuración electrónica de los primero 15 elementos de la tabla periódica

Elemento Símbolo Número atómico (Z) Número de electrones en estado fundamental Configuración electrónica
Hidrógeno H 1 1 1s1
Helio He 2 2 1s2
Litio Li 3 3 1s2 2s1
Berilio Be 4 4 1s2 2s2
Boro B 5 5 1s2 2s2 2p1
Carbono C 6 6 1s2 2s2 2p2
Nitrógeno N 7 7 1s2 2s2 2p3
Oxígeno O 8 8 1s2 2s2 2p4
Flúor F 9 9 1s2 2s2 2p5
Neón Ne 10 10 1s2 2s2 2p6
Sodio Na 11 11 1s2 2s2 2p6 3s1
Magnesio Mg 12 12 1s2 2s2 2p6 3s2
Aluminio Al 13 13 1s2 2s2 2p6 3s2 3p1
Silicio Si 14 14 1s2 2s2 2p6 3s2 3p2
Fósforo P 15 15 1s2 2s2 2p6 3s2 3p3

Diagrama de orbitales

Los diagramas de orbitales son otra forma de mostrar la configuración electrónica, el cual plasma de forma más precisa la posición del espín del electrón. Los posibles giros de un electrón son dos y se representan con flechas: una hacia arriba y otra hacia abajo. Cada caja representa un orbital. Por ejemplo:

H →  He → 

¿Sabías qué?
El espín, o momento angular de rotación del electrón, está relacionado con los dos movimientos de giros que puede tener el electrón, los cuales se representan con flechas.

Regla para la distribución de los electrones

  • Principio de exclusión de Pauli

“Un orbital no puede tener más de dos electrones, cuyos espines deben tener valores opuestos, es decir, una flecha hacia arriba y otra hacia abajo”.

Observa las tres posibles maneras de organizar los 2 electrones en el orbital 1s del helio (He). Solo el diagrama c) cumple con el principio de exclusión de Pauli.

a) b) c)
He →
Incorrecto Incorrecto Correcto
  • Principio de máxima multiplicidad de carga o regla de Hund

“La distribución electrónica más estable es aquella que tiene la mayor cantidad de espines paralelos o no apareados”.

Observa los distintos diagramas de orbitales en los que se muestra la distribución de electrones del átomo de carbono (C). Aunque los tres cumple con el principio de exclusión de Pauli solo el diagrama c) cumple con la regla de Hund y por lo tanto es el adecuado.

a) C →  Incorrecto
b) C →  Incorrecto
c) C →  Correcto

Nota que se dibujan tres cajas para los orbitales p porque estos tienen tres orientaciones diferentes (px, py y pz) en las cuales caben 2 electrones respectivamente.

  • Principio de Aufbau

“Mientras se añaden protones al núcleo del átomo de uno en uno, los electrones se suman de la misma forma en los orbitales atómicos”.

Por ejemplo, el tercer electrón del átomo de litio (Li) no puede acomodarse en el orbital 1s, así que se coloca en el siguiente orbital de menor nivel de energía, el 2s.

He → 

Li → 

Con excepción del hidrógeno y del helio, la configuración electrónica de todos los elementos puede ser representada por un kérnel de gas noble, el cual muestra entre corchetes el símbolo del gas noble que antecede a un elemento. Ejemplo:

Símbolo de elemento Número atómico (Z) Configuración electrónica
H 1 1s1
He 2 1s2
Li 3 [He]2s1
Be 4 [He]2s2
B 5 [He]2s2 2p1
C 6 [He]2s2 2p2
N 7 [He]2s2 2p3
O 8 [He]2s2 2p4
F 9 [He]2s2 2p5
Ne 10 [He]2s2 2p6
Na 11 [Ne]3s1
Mg 12 [Ne]3s2
Al 13 [Ne]3s2 3p1
Si 14 [Ne]3s2 3p2
P 15 [Ne]3s2 3p3
¿Sabías qué?
Los electrones más externos que se ubican luego del kérnel del gas noble son llamados “electrones de valencia”.

¡a practicar!

Escribe la configuración electrónica de los siguientes elementos en su estado fundamental. En cada caso, realiza el diagrama de orbitales.

a) Calcio

b) Hierro

c) Zinc

d) Bromo

Respuestas

a) Calcio

 

  • Símbolo: Ca
  • Número atómico (Z): 20
  • Configuración electrónica: 1s2 2s2 2p6 3s2 3p6 4s2 → [Ar]4s2
  • Diagrama de orbitales:

b) Hierro

 

  • Símbolo: Fe
  • Número atómico (Z): 26
  • Configuración electrónica: 1s2 2s2 2p6 3s2 3p6 4s2 3d6 → [Ar]4s2 3d6
  • Diagrama orbitales: 

c) Zinc

 

  • Símbolo: Zn
  • Número atómico (Z): 30
  • Configuración electrónica: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 → [Ar]4s2 3d10
  • Diagrama de orbitales: 

d) Bromo

 

  • Símbolo: Br
  • Número atómico (Z): 35
  • Configuración electrónica: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p5 → [Ar]4s2 3d10 4p5
  • Diagrama de orbitales:

 

La sociedad de la información

El fin de las fronteras

La información no se detiene, no reconoce fronteras, fluye constantemente por los mismos canales que permiten que alguien del otro lado del planeta nos escuche y nos vea en tiempo real. Hasta podemos trabajar en equipo sin estar en el mismo sitio. El sentido del tiempo y el espacio ya no es el mismo; el desarrollo de los medios de comunicación creó condiciones de instantaneidad y de ubicuidad que ha vuelto innecesarios muchos desplazamientos físicos. Esto es posible gracias a las tecnologías de la información y la comunicación, o simplemente TIC. Pero ¿qué son exactamente las TIC?

Las TIC son el conjunto de herramientas que permiten procesar, almacenar, sintetizar, recuperar y presentar información, a través de soportes y canales que facilitan el tratamiento, acceso y difusión de la misma.

Algunos ejemplos de los elementos más avanzados entre estas tecnologías son la pizarra digital (ordenador personal + proyector multimedia), los blogs, el podcast y, por supuesto, la web.

Pero no se trata de magia si no de ciencia, y como tal, no surgieron espontáneamente si no que tienen un origen y un desarrollo.

UNA HISTORIA EN LÍNEA

El largo camino hacia la “sociedad de la información” (como se conoce a este tiempo en el que imperan las TIC) se inició con el invento de la escritura. De ahí en adelante fue evolucionando lentamente y pasando diferentes etapas hasta comenzar su periodo de aceleración con el invento del telégrafo, y luego el teléfono, la radiotelefonía y la televisión. Si bien hoy hasta el ordenador resulta obsoleto como para considerarlo entre las nuevas tecnologías, bien puede decirse que todos los inventos mencionados forman parte, como elementos tecnológicos destinados a la comunicación, del bagaje de antecedentes que condujo a internet.

La historia de internet comenzó públicamente en 1969. El proceso se inició con la red de la Agencia de Proyectos de Investigación Avanzada (ARPANET), creada por el Departamento de Defensa de Estados Unidos con el propósito de intercomunicar a los diferentes organismos públicos del país.

Las investigaciones se orientaban a la realización de una red descentralizada con múltiples caminos entre dos puntos, con los mensajes divididos en partes que transitaran caminos diferentes. Sin embargo la participación de numerosas universidades en el proyecto, multiplicó las formas de intercambiar información. Las creaciones siguientes fueron los correos, la mensajería y la página web. Pero la gran revolución de internet como fenómeno social se produjo a mediados de los años 90 del siglo pasado. De allí en adelante aparece lo que hoy conocemos como “tecnologías de la información y comunicación”. Entre estas tecnologías deben contarse no solamente la informática y sus tecnologías asociadas, telemática y multimedia, sino también los medios de comunicación de todo tipo: los medios de comunicación social (mass media) y los medios de comunicación interpersonales tradicionales con soporte tecnológico como el teléfono y el fax.

Hoy los beneficiarios de las TIC se extienden así como sus utilidades se multiplican. Los negocios, la educación y el ocio son parte de los múltiples usos que brindan. Así vemos como auxilian a la agricultura de precisión y la gestión del bosque, a la monitorización global del medio ambiente planetario o de la biodiversidad, a la democracia participativa (TIC al servicio del desarrollo sostenible), al comercio, la medicina, la información, la gestión de múltiples bases de datos, la bolsa, la robótica y los usos militares, sin olvidar la ayuda a los discapacitados (por ejemplo, ciegos que usan sintetizadores vocales avanzados), y por supuesto a la educación, la ciencia y las artes. El único límite es el que impone la misma tecnología.

CARACTERÍSTICAS

Las características principales de las TIC son las siguientes:

• Representan la innovación y la creatividad en la forma de acceder a la comunicación.
• Benefician en gran medida a la educación pues la hacen más accesible y dinámica.
• Su uso es motivo de debate público permanente ya que su constante evolución exige también un constante seguimiento y discusión sobre sus aplicaciones y consecuencias.
• Se relacionan con mayor frecuencia con el uso de la Internet y la informática.
• Afectan a numerosos ámbitos de las ciencias humanísticas como la sociología, la teoría de las organizaciones o la gestión.

Dentro de este amplio espectro que comprenden las TIC, las más rutilantes innovaciones son:

• Internet
• Robótica
• Computadoras de propósito específico
• Dinero electrónico

BENEFICIOS Y DIFICULTADES

La tecnología así como ofrece oportunidades y beneficios, también implica nuevos problemas que en el caso que nos ocupa están en plena etapa de discusión. A continuación ofrecemos un breve enunciado sobre las ventajas y desventajas de las TIC.

VENTAJAS

• La interactividad ha acelerado los cambios y las innovaciones en la sociedad.
• El acceso a la información y la comunicación posibilita el desarrollo de habilidades generando nuevas formas de construcción del conocimiento.
• La circulación de la información y las posibilidades de comunicación han provocado una revolución social al imponer la geografía virtual por sobre la geografía física.
• Sus utilidades y beneficios se extienden con éxito a campos tan demandantes como los de la salud y la educación.
• Sus recursos permiten el aprendizaje interactivo y la educación a distancia.

DESVENTAJAS

• En educación, las metodologías de enseñanza no han evolucionado a la par de la tecnología, lo que provoca un desfasaje que en algunos casos genera confusión.
• La educación a distancia no permite la atención personal del alumno.
• La facilidad en la obtención de información específica impide el recorrido general del tema.
• La información que se obtiene utilizando los buscadores de internetno siempre es confiable.
• Puede provocar dispersión y pérdida de tiempo.
• En el plano social, el desarrollo tecnológico de los medios de comunicación puede crear nuevas desigualdades o reforzar las ya existentes, por la dificultad económica que representa la accesibilidad al hardware.

CONCLUSIÓN

La siguiente cita resume con claridad y certeza la realidad de las TIC y su participación en el futuro de la humanidad:
“las tecnologías de la información y la comunicación no son ninguna panacea ni fórmula mágica, pero pueden mejorar la vida de todos los habitantes del planeta. Se disponen de herramientas para llegar a los objetivos de desarrollo del Milenio, de instrumentos que harán avanzar la causa de la libertad y la democracia, y de los medios necesarios para propagar los conocimientos y facilitar la comprensión mutua” (Kofi Annan, secretario general de la Organización de las Naciones Unidas, discurso inaugural de la primera fase de la WSIS, Ginebra 2003).