Carga formal y estructura de Lewis

Los químicos lograron comprender cómo se forman las moléculas tras el desarrollo de la tabla periódica y el concepto de “configuración electrónica”. Lewis contribuyó con estos avances gracias a un sistema de puntos para representar electrones de valencia de un átomo, ion o molécula; la distribución de estos se conoce por su carga formal.

De acuerdo a Gilbert Lewis, los átomos se combinan entre ellos para obtener la configuración electrónica más estable, la cual es igual al del gas noble más cercano.

Gilbert lewis y su aporte a la química

Gilbert Newton Lewis fue un químico estadounidense que realizó significativos aportes en el estudio de los enlaces químicos. Según Lewis, los átomos se combinan para alcanzar una configuración electrónica más estable; y la estabilidad máxima se alcanza cuando el átomo es isoelectrónico con un gas noble.

Átomos isoelectrónicos

Dos átomos o iones son isoelectrónicos si tienen el mismo número de electrones, y por lo tanto, la misma configuración electrónica. Por ejemplo:

  • El catión K+ es isoelectrónico con el átomo de Ar porque:

K+ → 1s2 2s2 2p6 3s2 3p6

Ar → 1s2 2s2 2p6 3s2 3p6

  • El anión F es isoelectrónico con el átomo de Ne porque:

F → 1s2 2s2 2p6

Ne → 1s2 2s2 2p6

Símbolos de puntos de Lewis

Un símbolo de puntos de Lewis contiene el símbolo del elemento y un punto por cada electrón de valencia del átomo de un elemento. Los electrones de valencia son los más externos en un átomo y los que se utilizan en los enlaces químicos.

– Ejemplos:

Nombre del elemento Configuración electrónica Electrones de valencia Puntos de Lewis
Calcio 1s2 2s2 2p6 3s2 3p6 4s2 2
Nitrógeno 1s2 2s2 2p3 5
Cloro 1s2 2s2 2p6 3s2 3p5 7

En la configuración electrónica de cada elemento se resaltan las capas de electrones más externas o capa de valencia.

Símbolos de puntos de Lewis de los elementos representativos y los gases nobles.

Observa que, a excepción del helio, la cantidad de electrones de valencia de cada átomo es igual al grupo en el que se encuentra el elemento en la tabla periódica.

Escritura de las estructuras de Lewis

La estructura de Lewis es una forma de representar un enlace covalente, en el que el par de electrones compartidos se muestran con líneas o como pares de puntos entre dos átomos. Los pares libres no compartidos se dibujan como pares de puntos en los átomos individuales.

¿Sabías qué?
Gilbert Lewis propuso la regla del octeto, la cual afirma que un átomo, excepto el hidrógeno y el helio, tiende a formar enlaces hasta rodearse de ocho electrones de valencia.

Los pasos para escribir la estructura de Lewis de una molécula como NF3 son los siguientes:

1. Escribe el esqueleto de la estructura.

Por lo general, el átomo menos electronegativo ocupa la posición central mientras que los átomos de H y F suelen estar en las posiciones terminales.

 

2. Cuenta el número total de electrones de valencia.

La molécula NF3 tiene un átomo de N y tres átomos de F. Así que debemos determinar los electrones de valencia de cada átomo y luego sumarlos.

N → 1s2 2s2 2p3 → 5 electrones de valencia.

F → 1s2 2s2 2p5 → 7 electrones de valencia.

Como solo hay un átomo de N, los electrones de valencia para N son 5 (1 × 5 = 5); en cambio, hay tres átomos de F, así que multiplicamos la cantidad de átomos de F por sus electrones de valencia, lo que da como resultado 21 electrones de valencia (3 × 7 = 21 ) para F. Luego sumamos:

Electrones de NF3 = 5 + 21 = 26

 

3. Dibuja los enlaces covalentes.

Al principio coloca enlaces sencillos entre el átomo central y cada átomo terminal. Completa el octeto de cada átomo con puntos de Lewis. El número total de electrones (tanto en los pares enlazados como los pares libres) debe ser igual a los calculados anteriormente: 26.

 

4. Comprueba la regla del octeto.

Cada átomo de F tiene un par de electrones compartidos (una línea) y 3 pares de electrones libres no compartidos (6 puntos). Cada átomo de F cumple con la regla del octeto porque tienen 8 electrones alrededor. El átomo de N tiene 3 pares de electrones compartidos (3 líneas) y un par de electrones libres no compartidos (2 puntos). El átomo de N cumple con la regla del octeto porque tiene 8 electrones alrededor.

Si contamos la cantidad de electrones compartidos (representados con líneas) y no compartidos (representados con puntos) en toda la molécula el resultado debe ser 26. Observa:

Electrones de NF3 = 6 electrones compartidos + 20 electrones no compartidos = 26

 

Estructura de Lewis del ion carbonato (CO3)2−

1. Dibujamos la estructura básica o esqueleto. Como el carbono es el átomo menos electronegativo va en el centro.

 

2. Calculamos la cantidad total de electrones de valencia de la forma que se muestra a continuación:

C → 1s2 2s2 2p2 → 4 electrones de valencia.

O → 1s2 2s2 2p4→ 6 electrones de valencia.

Hay un átomo de C y 3 átomos de O, además, todo el ion tiene 2 cargas negativas, por lo tanto debemos sumar 2 electrones al total:

Electrones de (CO3)2− = (1 × 4) + (3 × 6) + 2 = 4 + 18 + 2 = 24

 

3. Dibujamos un enlace covalente sencillo entre el átomo de C y cada átomo de O. Esta estructura muestra los 24 electrones. Sin embargo, la regla del octeto se cumple solo en los oxígenos y no en el átomo de carbono.

Entonces movemos un par de electrones libres de uno de los átomos de O para formar un enlace doble con C. También debemos señalar las 2 cargas negativas del ion, para eso colocamos toda la estructura entre corchetes y colocamos las cargas como superíndice.

4. Verificamos que se cumpla la regla del octeto en los átomos.

Cada átomo de O cumple con la regla del octeto porque está rodeado de 8 electrones. 2 átomos de O tienen un par de electrones compartidos y 3 pares de electrones libres. Un átomo de O tiene 2 pares de electrones compartidos y 2 pares libres. El átomo de C cumple con la regla del octeto porque está rodeado de 8 electrones: un enlace doble (4 electrones compartidos) y 2 enlaces simples, en los que se comparte 2 electrones en cada uno.

carga formal

Una vez que hemos determinado el número total de electrones de valencia para una estructura de Lewis no es posible saber de qué átomo proceden los electrones de esta estructura. No obstante, después de tener una estructura de Lewis aceptable es posible establecer de dónde proceden los electrones si evaluamos la carga formal.

La carga formal nos permiten conservar la pista de los electrones de valencia y hallar una imagen cualitativa de la distribución de carga en una molécula.

La carga formal es la diferencia de carga eléctrica que existe entre los electrones de valencia de un átomo aislado y el número de electrones asignados a ese mismo átomo en una estructura de Lewis.

Carga formal del ozono O3

La configuración electrónica del átomo de O es 1s2 2s2 2p4; por lo tanto, cada átomo tiene 6 electrones de valencia y la molécula debe tener 18 electrones totales (3 × 6 = 18). La estructura básica del ozono (O3) con enlaces simples es esta:

Aunque la estructura de Lewis anterior cuenta con los 18 electrones, la regla del octeto no se cumple para el átomo de O central; así que tenemo que convertir un par de electrones libres en un segundo enlace compartido.

Ahora podemos calcular la carga formal a los átomos, para esto restamos la cantidad de electrones asignados a cada átomo a la cantidad de electrones de valencia.

Las líneas rojas representan la ruptura de los enlaces. Al hacer esto solo consideramos la mitad de los electrones por cada enlace covalente.

Las cargas formales de todos los átomos de O3 se expresan de la siguiente forma:

La molécula de O3 es neutra porque +1 −1 = 0.

Reglas para escribir las cargas formales

  • La suma de las cargas formales de una molécula debe ser cero porque son especies neutras.
  • La suma de las cargas formales de un catión debe ser igual a la carga positiva.
  • La suma de las cargas formales de un anión debe ser igual a la carga negativa.

Carga formal del ion carbonato (CO3)2−

La estructura de Lewis de este ion fue descrita anteriormente. Para determinar la carga formal de cada átomo tenemos que romper los enlaces:

Luego realizamos la resta entre los electrones asignados y los de valencia:

Escribimos la estructura de Lewis con las cargas formales:

Nota que la suma de las cargas formales es −2, que es igual a la carga del ion carbonato.

CAPÍTULO 9 / TEMA 6

EVIDENCIAS DE DEGRADACIÓN DE LA CAPA DE OZONO

El ozono es un gas de color azul conformado por tres átomos de oxígeno. Puede hallarse en dos zonas de la atmósfera de forma natural: en la tropósfera y en la estratósfera. En la tropósfera, se encuentra aproximadamente el 10 % de la masa total de ozono, mientras que el 90 % restante se localiza en la estratósfera. Esta región es conocida como la capa de ozono.

La capa de ozono se localiza entre los 15 y 30 kilómetros de altura.

Importancia de la capa de ozono

La capa de ozono u ozonósfera es una capa profunda de la estratósfera que rodea la Tierra. Su característica principal es que tiene grandes cantidades de ozono. Esta capa protege nuestro planeta de gran parte de la radiación ultravioleta proveniente del Sol, a pesar de que es la radiación ultravioleta en sí la que forma el ozono en primer lugar.

¿Quiénes descubrieron la capa de ozono?

 

Sus descubridores fueron Charles Fabry y Henri Buisson, dos físicos franceses, hacia 1913. Más tarde, el meteorólogo británico G.M.B. Dobson analizó sus propiedades y creó un espectrofotómetro para medir el ozono.

Charles Fabry, uno de los científicos que halló la capa de ozono.

¿CÓMO ACTÚA LA CAPA DE OZONO?

El ozono actúa como una especie de escudo protector que filtra las radiaciones, evita el paso de aquellas nocivas y de alta energía, y permite el paso de las radiaciones ultravioletas de onda larga. Esta es una energía de vital importancia porque le brinda calor a la superficie terrestre, interviene en el clima y permite a las plantas realizar la fotosíntesis.

¿Sabías qué?
La unidad de medida del ozono es el Dobson, en honor al meteorólogo británico que estudió sus propiedades, y además creó estaciones de monitoreo de ozono.

Aunque este gas es venenoso, incluso letal si se respira, es necesario para la vida. Algunos tipos de cáncer de piel y enfermedades visuales han sido relacionados con la exposición a la radiación ultravioleta. Algunas especies, como los corales, se han visto afectadas por este tipo de radiación.

AGUJERO EN LA CAPA DE OZONO

El agujero de la capa de ozono es una zona en donde la cantidad de ozono está reducida de manera anormal. La disminución ocurre principalmente en la Antártida durante la primavera.

Estas disminuciones se comenzaron a notar desde finales de la década 1970, durante las mediciones de ozono. Esto se atribuyó a la actividad del hombre y al uso de productos refrigerantes a base de cloro o clorofluorocarbonados (CFC).

¿Qué son los clorofluorocarbonados?

Son una serie de compuestos químicos formados en su mayoría por átomos de flúor, carbono y cloro. Se caracterizan por tener muy baja toxicidad, no ser inflamables y servir como refrigerantes. Sin embargo, a pesar de sus usos, provocan la disminución del ozono de la siguiente manera:

  • Los compuestos CFC llegan hasta la estratósfera sin desnaturalizarse. Allí la radiación UV los descompone y se libera un átomo de cloro que reacciona con el ozono, lo que produce la liberación de oxígeno y óxido de cloro.
  • El óxido de cloro reacciona nuevamente con los átomos de oxígeno y deja como resultado un cloro libre.
  • El cloro libre se unirá nuevamente con otra molécula de ozono. De esta manera, se repite el ciclo y el porcentaje de ozono en la estratósfera disminuye.

Agujero de la capa de ozono en la actualidad

Gracias al Convenio de Viena (1985), el Protocolo de Montreal (1987) y a la prohibición del uso de los CFC (1989), el agujero de la capa de ozono ha disminuido. Las mediciones realizadas en el 2018 muestran que la capa de ozono se ha recuperado cerca de un 1-3 % por década desde el 2000. De seguir así, los científicos esperan que el ozono del hemisferio norte y latitudes medias se recupere cerca del año 2030; el hemisferio sur en el 2050, y en las regiones polares en el 2060.

CONSECUENCIAS DE LA DEGRADACIÓN DE LA CAPA DE OZONO

El descubrimiento de que la capa de ozono se encontraba en disminución alarmó tanto a científicos como a la sociedad, ya que los efectos podrían ser devastadores para el ambiente y la salud. Entre las consecuencias están:

  • Aumento de la temperatura del planeta, lo que a la larga puede provocar derretimiento de  los polos y aumento del nivel del mar.
  • Tormentas tropicales más frecuentes o más intensas.
  • Inundaciones considerables.
  • Cambios en zonas agrícolas y en niveles de producción.
  • Cambios en ecosistemas naturales.
  • Escasez de agua potable.
  • Contaminación y lluvia ácida.
  • Amenaza a la vida silvestre.
  • Mayores tasas de cáncer de piel.
  • Daños al sistema inmunológico.
  • Daños a los ojos.
  • Posibles quemaduras severas.
  • Aumento del riesgo de dermatitis alérgica y tóxica.
  • Alteración del ADN.
  • Desplazamiento de vectores de enfermedades tropicales.
El aumento de las tormentas tropicales es una consecuencia de la degradación de la capa de ozono.

¿CÓMO PROTEGER LA CAPA DE OZONO?

  • Corroborar que los productos que se compran especifiquen que están libres de compuestos que dañen la capa de ozono.
  • No utilizar productos que contengan sustancias que alteren la capa de ozono, como los que contienen cloro y bromo.
  • Sustituir los extintores que usen gases halones por aquellos elaborados a base de agua, gas carbónico, nitrógeno o argón.
MATERIAL PARA EL DOCENTE

Infografía “Capa de ozono”

En esta infografía encontrará información didáctica sobre las características de la capa de ozono, su funcionamiento y las consecuencias de su pérdida.

VER

Artículo “Capa de Ozono”

Este artículo contiene mayor información sobre la capa de ozono y los clorofluorocarbonos.

VER

 

 

CAPÍTULO 9 / REVISIÓN

Impacto ambiental y catástrofes naturales | ¿qué aprendimos?

IMPACTO SOBRE LA BIÓSFERA

La biósfera es el subsistema que sustenta la vida de la superficie de la Tierra, se extiende desde la atmósfera hasta las zonas más profundas del océano. La biósfera es un ecosistema global compuesto por organismos vivos (biota) y factores abióticos (no vivos). De todos los seres vivos que habitan en el planeta, el hombre, con su modo de vida, provoca que su impacto en la Tierra sea mayor que el causado por cualquier otra especie. Dentro de las actividades humanas que afectan la biósfera se encuentran: el uso de energías a base de carbón, las cuales aumentan los gases de efecto invernadero; la deforestación, la cual contribuye con eliminar a los pulmones naturales del planeta; y la quema de basura, que genera gases tóxicos para el ambiente.

El término “biósfera” fue utilizado por primera vez en 1875 por Eduard Suess.

IMPACTOS EN LA TRAMA TRÓFICA

Se conoce como red trófica a la interconexión natural entre las cadenas tróficas de un ecosistema determinado. Cada uno de los compartimentos por los que fluye la energía recibe el nombre de nivel trófico, y a su vez están conformados por las especies o los eslabones. Para que las relaciones entre los organismos que conforman cada una de las redes funcionen de manera adecuada debe existir un equilibrio. Entre las actividades que dañan las redes tróficas se encuentran: la deforestación, los incendios provocados, la minería, los vertidos industriales y la pesca indiscriminada. A largo plazo, todas ellas provocan la desaparición o disminución de varios eslabones, lo cual a su vez trae como consecuencia la desaparición de otras especies y por lo tanto un desequilibrio en los ecosistemas.

El concepto de red alimenticia tiene su origen en los escritos de Charles Darwin.

DESASTRES NATURALES E INDUCIDOS

Se define como desastre natural a la pérdida de vidas humanas o bienes materiales a causa de fenómenos naturales. En esta categoría se incluyen los terremotos, los cuales ocurren cuando la tierra libera energía acumulada y hace que el suelo tiemble, los huracanes, los tifones y los ciclones, mismo tipo de fenómeno meteorológico en el que una gran tormenta gira en círculos y supera los 118 km/h, los tsunamis, que se producen a causa de una erupción o un deslizamiento, las mangas de agua, fenómeno natural que ocurre en aguas tropicales, y las sequías e inundaciones. Por otro lado, los desastres inducidos son aquellos provocados por la acción del ser humano, como los incendios, la deforestación y la contaminación.

Los desastres naturales pueden causar serios daños, entre ellos, pérdidas de vidas.

MOVIMIENTOS DE MASAS TERRESTRES

Las placas tectónicas se encuentran en constante movimiento. Sus bordes son activos, por lo que es frecuente que se produzcan fenómenos como los sismos, terremotos, tsunamis y erupciones volcánicas. Estas últimas, además de provocar la pérdida de muchas vidas humanas, tienen impactos graves en el medio ambiente, por ejemplo: la lluvia de cenizas, que modifica las características del agua, el humo, que posee gases nocivos tanto para el ser humano como para los seres vivos, y la lluvia ácida, la cual destruye la capa vegetal. Ante estas catástrofes existen medidas que suponen una prevención y garantizaran la posibilidad de sobrevivir, entre ellas se encuentran: identificar lugares seguros dentro o fuera del hogar, utilizar ropa que proteja la piel, alejarse de postes o cualquier objeto que tenga electricidad y, la más importante de todas, mantener la calma.

Las consecuencias de los desastres naturales generalmente son catastróficas, pero en los países subdesarrollados recuperarse económicamente es más difícil que en los desarrollados.

TEMPERATURA AMBIENTAL

El efecto invernadero es un proceso natural que calienta la superficie de la Tierra gracias a la presencia de ciertos gases que se encuentran en la atmósfera, como el dióxido de carbono, el vapor de agua, el metano, el ozono y los clorofluorocarbonos. Sin embargo, la actividad humana ha intensificado este fenómeno y algunas de las consecuencias de ello son: aumento de la radiación solar, acidificación de los océanos y derretimiento de los polos. Por otro lado, el calentamiento global es el aumento de la temperatura media de la atmósfera terrestre y del agua del mar. Algunas de las consecuencias de este fenómeno son: el deshielo de los casquetes polares, la disminución de la superficie cubierta por nieve o por hielo y la muerte de muchas especies, entre otras.

Si los gases de efecto invernadero siguen aumentando, la temperatura de la Tierra también lo hará.

EVIDENCIAS DE DEGRADACIÓN DE LA CAPA DE OZONO

La capa de ozono es una capa profunda de la estratósfera que rodea la Tierra y protege todo nuestro planeta de gran parte de la radiación ultravioleta. A lo largo de los años, la capa de ozono se ha visto afectada por las actividades humanas. El agujero de la capa de ozono es una de las consecuencias de ello, es una zona donde la cantidad de ozono está reducida de manera anormal. Para evitar la continua degradación de la capa, se recomienda corroborar que los productos que se compran estén libres de compuestos dañinos, no utilizar productos que contengan sustancias que alteren la capa de ozono, como cloro y bromo y, sustituir los extintores que usen gas halón por aquellos elaborados a base de agua, gas carbónico, nitrógeno o argón.

El ozono es un gas de color azul conformado por tres átomos de oxígeno en cada una de sus moléculas.