Instrumentos de medición

Existen magnitudes físicas que pueden ser medidas, tales como la masa, longitud, tiempo o temperatura, para lo cual empleamos instrumentos de medición. Estos instrumentos están disponibles en una variedad de modelos, pero todos deben contener una escala graduada que se emplea para expresar la medida.

Una de las aplicaciones de los instrumentos de medición es que nos permiten elaborar diseños geométricos con precisión, por tal razón, son una valiosa herramienta para la escuela y en profesiones como arquitectura, ingeniería, construcción y carpintería.

La medición consiste en la comparación de la magnitud física de un objeto con un patrón considerado como unidad, con la finalidad de determinar cuántas veces está contenido dicho patrón en la medida.

Tipos de medidas

Decimos que las mediciones son directas cuando el valor de la cantidad física se obtiene directamente de la lectura dada por el instrumento, por ejemplo, si queremos saber la altura de una puerta, tomamos la medida con una cinta métrica y esta nos dará el valor de la altura.

En la construcción civil es muy importante el uso adecuado de los instrumentos de medición, ya que de ello depende en gran medida que la construcción se ajuste con precisión al diseño.

Por otra parte, las medidas son indirectas cuando el valor de la cantidad física se obtiene a partir de una fórmula a la cual debemos sustituirle el resultado de dos o más mediciones, por ejemplo, si para calcular el volumen de un objeto utilizamos una ecuación donde tengamos que sustituir las mediciones de la base, la altura y la profundidad, entonces el volumen es una medida indirecta.

Regla graduada

Una regla graduada es un instrumento formado por una barra plana delgada y escalada que podemos utilizar para hacer trazos rectos o bien para medir longitudes, y puede estar elaborada de plástico, metal o madera.

La escala graduada del instrumento de medición dependerá básicamente del sistema de unidades que se utilice. Si se trabaja en sistema internacional, las reglas vienen escaladas en centímetros (o algún múltiplo de la unidad metro); y si trabajamos en sistema inglés, las reglas estarán en pulgadas.

¿Sabías qué?
La apreciación se conoce como la menor medida que se puede leer con certeza de un instrumento.

Tipos de reglas graduadas

Las reglas graduadas comerciales más comunes empleadas son:

  • Reglas de escritorio: representan las reglas más comunes utilizadas a nivel escolar, específicamente para el trazado de líneas y la medición de longitudes. Por lo general, en Latinoamérica, se usan con la escala principal en centímetros y las subdivisiones en milímetros. Sus tamaños varían, pero las más populares suelen medir 30 cm.
Una regla graduada puede contener una o varias escalas, por ejemplo, puede tener en uno de los bordes una escala principal en centímetros con subdivisiones en milímetros, y en el otro borde, la escala principal en pulgadas y las subdivisiones representadas en 1:16 de pulgadas.
  • Metros plegables: su uso es muy frecuente en el área de construcción y carpintería. Consiste en una cinta metálica o de nailon flexible que viene enrollada en un cajetín plástico o metálico. Las longitudes más comunes varían entre 1, 3 o 5 metros.

La escala de las cintas metálicas enrollables puede venir impresa o grabada sobre la cinta, y en la punta tienen un pequeño ángulo metálico para enganchar la cinta durante una medición.
  • Cinta métrica: es una cinta flexible elaborada de plástico o nailon. Durante años ha sido muy utilizada en la costura, sin embargo, su flexibilidad las hace muy versátiles para otras mediciones.
Normalmente, la cinta métrica posee una longitud de 1,5 m.

¿Cómo usar una regla graduada?

Para una medición simple de longitud, solo debemos colocar el cero (0) de la regla en la escala deseada al inicio del objeto o línea que deseamos medir. La lectura de longitud deberá tomarse mirando de frente el punto del objeto o línea hasta donde se quiere medir y el valor de la medida de la regla:

Para el trazado de líneas, simplemente colocamos el borde de la regla por donde deseamos que quede la línea, y con un lápiz trazamos la línea con el borde de la regla como guía:

Escuadras

Son instrumentos de medición y trazado con forma triangular plana y con escala en al menos uno de sus lados.

A diferencia de las reglas graduadas que pueden ser flexibles, las escuadras suelen estar elaboradas de un material rígido.

Tipos de escuadra

  • Escuadra de 45°: esta escuadra forma un triángulo isósceles rectángulo, es decir, tiene un ángulo recto y dos ángulos internos de 45°. Se puede emplear para medir longitudes o realizar trazos rectos.
Las escuadras pueden estar elaboradas de una gran variedad de materiales, como plástico, madera o metal.
  • Escuadras cartabón: esta escuadra forma un triángulo escaleno con un ángulo de 30º, uno de 60º y el otro de 90º. Al igual que la escuadra de 45º, el cartabón se puede emplear para hacer trazos o para medir longitudes.
Las escuadras sirven para tomar medidas de longitud o para realizar trazos de líneas rectas horizontales o con inclinación de 30º, 60º y 90º.

¿Cómo usar las escuadras?

Para realizar mediciones de longitud, se emplea el mismo método que con la regla graduada.

Una de las aplicaciones más importantes de las escuadras es que nos permiten realizar trazos rectos con inclinaciones de 30º, 45º, 60º y 90º. El proceso del trazado sería el mismo que el descrito para una regla graduada.

Además, combinando las dos escuadras podemos trazar varias rectas paralelas. Para ello, colocamos una de las escuadras con un borde paralelo a las líneas que queremos trazar y con el borde perpendicular apoyado sobre uno de los lados de la otra escuadra. Al trazar cada recta, debemos deslizar la primera escuadra tomando la segunda escuadra como guía:

Transportador

Es un instrumento de medición con forma de semicircunferencia o circunferencia y se emplea para medir ángulos. Su apreciación suele ser de 0,1°. Están elaborados de plástico, madera, metal o cualquier material rígido.

¿Cómo se usa el transportador?

  • Se coloca la base del transportador sobre la línea de referencia respecto a la cual se desea medir el ángulo.
  • A partir del cero del transportador ubicamos en la escala el valor del ángulo de la línea a la que queremos medirle su inclinación:
Como se observa, la recta AB tiene una inclinación de 75º.

Otros instrumentos de medición

Escalímetro: es un instrumento exclusivamente de medición empleado en dibujo técnico, geometría y áreas afines. Consiste en una barra de sección prismática que posee diferentes escalas en cada uno de sus seis bordes. No debe ser empleado para realizar trazos, ya que esto puede a lago plazo deteriorar el borde el instrumento.

Calibre: conocido también como vernier o pie de rey, es un instrumento de medición de longitudes con una apreciación mayor al de una regla graduada. Está formado por una escala fija, una escala móvil o nonio, mandíbulas exteriores, orejas interiores, varilla de profundidad y tornillo de ajuste. Existen modelos en escala milimétrica y otros en pulgadas. En la actualidad, es común encontrarlos con la lectura digital.

¿Sabías qué?
La apreciación de un calibre en la escala milimétrica es de 0,05 mm.

Carga formal y estructura de Lewis

Los químicos lograron comprender cómo se forman las moléculas tras el desarrollo de la tabla periódica y el concepto de “configuración electrónica”. Lewis contribuyó con estos avances gracias a un sistema de puntos para representar electrones de valencia de un átomo, ion o molécula; la distribución de estos se conoce por su carga formal.

De acuerdo a Gilbert Lewis, los átomos se combinan entre ellos para obtener la configuración electrónica más estable, la cual es igual al del gas noble más cercano.

Gilbert lewis y su aporte a la química

Gilbert Newton Lewis fue un químico estadounidense que realizó significativos aportes en el estudio de los enlaces químicos. Según Lewis, los átomos se combinan para alcanzar una configuración electrónica más estable; y la estabilidad máxima se alcanza cuando el átomo es isoelectrónico con un gas noble.

Átomos isoelectrónicos

Dos átomos o iones son isoelectrónicos si tienen el mismo número de electrones, y por lo tanto, la misma configuración electrónica. Por ejemplo:

  • El catión K+ es isoelectrónico con el átomo de Ar porque:

K+ → 1s2 2s2 2p6 3s2 3p6

Ar → 1s2 2s2 2p6 3s2 3p6

  • El anión F es isoelectrónico con el átomo de Ne porque:

F → 1s2 2s2 2p6

Ne → 1s2 2s2 2p6

Símbolos de puntos de Lewis

Un símbolo de puntos de Lewis contiene el símbolo del elemento y un punto por cada electrón de valencia del átomo de un elemento. Los electrones de valencia son los más externos en un átomo y los que se utilizan en los enlaces químicos.

– Ejemplos:

Nombre del elemento Configuración electrónica Electrones de valencia Puntos de Lewis
Calcio 1s2 2s2 2p6 3s2 3p6 4s2 2
Nitrógeno 1s2 2s2 2p3 5
Cloro 1s2 2s2 2p6 3s2 3p5 7

En la configuración electrónica de cada elemento se resaltan las capas de electrones más externas o capa de valencia.

Símbolos de puntos de Lewis de los elementos representativos y los gases nobles.

Observa que, a excepción del helio, la cantidad de electrones de valencia de cada átomo es igual al grupo en el que se encuentra el elemento en la tabla periódica.

Escritura de las estructuras de Lewis

La estructura de Lewis es una forma de representar un enlace covalente, en el que el par de electrones compartidos se muestran con líneas o como pares de puntos entre dos átomos. Los pares libres no compartidos se dibujan como pares de puntos en los átomos individuales.

¿Sabías qué?
Gilbert Lewis propuso la regla del octeto, la cual afirma que un átomo, excepto el hidrógeno y el helio, tiende a formar enlaces hasta rodearse de ocho electrones de valencia.

Los pasos para escribir la estructura de Lewis de una molécula como NF3 son los siguientes:

1. Escribe el esqueleto de la estructura.

Por lo general, el átomo menos electronegativo ocupa la posición central mientras que los átomos de H y F suelen estar en las posiciones terminales.

 

2. Cuenta el número total de electrones de valencia.

La molécula NF3 tiene un átomo de N y tres átomos de F. Así que debemos determinar los electrones de valencia de cada átomo y luego sumarlos.

N → 1s2 2s2 2p3 → 5 electrones de valencia.

F → 1s2 2s2 2p5 → 7 electrones de valencia.

Como solo hay un átomo de N, los electrones de valencia para N son 5 (1 × 5 = 5); en cambio, hay tres átomos de F, así que multiplicamos la cantidad de átomos de F por sus electrones de valencia, lo que da como resultado 21 electrones de valencia (3 × 7 = 21 ) para F. Luego sumamos:

Electrones de NF3 = 5 + 21 = 26

 

3. Dibuja los enlaces covalentes.

Al principio coloca enlaces sencillos entre el átomo central y cada átomo terminal. Completa el octeto de cada átomo con puntos de Lewis. El número total de electrones (tanto en los pares enlazados como los pares libres) debe ser igual a los calculados anteriormente: 26.

 

4. Comprueba la regla del octeto.

Cada átomo de F tiene un par de electrones compartidos (una línea) y 3 pares de electrones libres no compartidos (6 puntos). Cada átomo de F cumple con la regla del octeto porque tienen 8 electrones alrededor. El átomo de N tiene 3 pares de electrones compartidos (3 líneas) y un par de electrones libres no compartidos (2 puntos). El átomo de N cumple con la regla del octeto porque tiene 8 electrones alrededor.

Si contamos la cantidad de electrones compartidos (representados con líneas) y no compartidos (representados con puntos) en toda la molécula el resultado debe ser 26. Observa:

Electrones de NF3 = 6 electrones compartidos + 20 electrones no compartidos = 26

 

Estructura de Lewis del ion carbonato (CO3)2−

1. Dibujamos la estructura básica o esqueleto. Como el carbono es el átomo menos electronegativo va en el centro.

 

2. Calculamos la cantidad total de electrones de valencia de la forma que se muestra a continuación:

C → 1s2 2s2 2p2 → 4 electrones de valencia.

O → 1s2 2s2 2p4→ 6 electrones de valencia.

Hay un átomo de C y 3 átomos de O, además, todo el ion tiene 2 cargas negativas, por lo tanto debemos sumar 2 electrones al total:

Electrones de (CO3)2− = (1 × 4) + (3 × 6) + 2 = 4 + 18 + 2 = 24

 

3. Dibujamos un enlace covalente sencillo entre el átomo de C y cada átomo de O. Esta estructura muestra los 24 electrones. Sin embargo, la regla del octeto se cumple solo en los oxígenos y no en el átomo de carbono.

Entonces movemos un par de electrones libres de uno de los átomos de O para formar un enlace doble con C. También debemos señalar las 2 cargas negativas del ion, para eso colocamos toda la estructura entre corchetes y colocamos las cargas como superíndice.

4. Verificamos que se cumpla la regla del octeto en los átomos.

Cada átomo de O cumple con la regla del octeto porque está rodeado de 8 electrones. 2 átomos de O tienen un par de electrones compartidos y 3 pares de electrones libres. Un átomo de O tiene 2 pares de electrones compartidos y 2 pares libres. El átomo de C cumple con la regla del octeto porque está rodeado de 8 electrones: un enlace doble (4 electrones compartidos) y 2 enlaces simples, en los que se comparte 2 electrones en cada uno.

carga formal

Una vez que hemos determinado el número total de electrones de valencia para una estructura de Lewis no es posible saber de qué átomo proceden los electrones de esta estructura. No obstante, después de tener una estructura de Lewis aceptable es posible establecer de dónde proceden los electrones si evaluamos la carga formal.

La carga formal nos permiten conservar la pista de los electrones de valencia y hallar una imagen cualitativa de la distribución de carga en una molécula.

La carga formal es la diferencia de carga eléctrica que existe entre los electrones de valencia de un átomo aislado y el número de electrones asignados a ese mismo átomo en una estructura de Lewis.

Carga formal del ozono O3

La configuración electrónica del átomo de O es 1s2 2s2 2p4; por lo tanto, cada átomo tiene 6 electrones de valencia y la molécula debe tener 18 electrones totales (3 × 6 = 18). La estructura básica del ozono (O3) con enlaces simples es esta:

Aunque la estructura de Lewis anterior cuenta con los 18 electrones, la regla del octeto no se cumple para el átomo de O central; así que tenemo que convertir un par de electrones libres en un segundo enlace compartido.

Ahora podemos calcular la carga formal a los átomos, para esto restamos la cantidad de electrones asignados a cada átomo a la cantidad de electrones de valencia.

Las líneas rojas representan la ruptura de los enlaces. Al hacer esto solo consideramos la mitad de los electrones por cada enlace covalente.

Las cargas formales de todos los átomos de O3 se expresan de la siguiente forma:

La molécula de O3 es neutra porque +1 −1 = 0.

Reglas para escribir las cargas formales

  • La suma de las cargas formales de una molécula debe ser cero porque son especies neutras.
  • La suma de las cargas formales de un catión debe ser igual a la carga positiva.
  • La suma de las cargas formales de un anión debe ser igual a la carga negativa.

Carga formal del ion carbonato (CO3)2−

La estructura de Lewis de este ion fue descrita anteriormente. Para determinar la carga formal de cada átomo tenemos que romper los enlaces:

Luego realizamos la resta entre los electrones asignados y los de valencia:

Escribimos la estructura de Lewis con las cargas formales:

Nota que la suma de las cargas formales es −2, que es igual a la carga del ion carbonato.

Configuración electrónica: principios y fundamentos

Las propiedades químicas de todos los elementos dependen de la corteza electrónica de los átomos que lo constituyen. Por esta razón es importante conocer los principios para la distribución de electrones en los diversos niveles y subniveles de energía, cuya representación abreviado se conoce como “configuración electrónica”.

Toda la materia está formada por partículas de pequeño tamaño conocidas como “átomos”.

Estructura del átomo

El átomo es la unidad fundamental de un elemento y, por lo tanto, la unidad constituyente más pequeña de toda la materia. Está formado por partículas más pequeñas o subatómicas llamadas protones, neutrones y electrones.

  • Los protones tienen carga positiva (+).
  • Los neutrones tienen carga neutra (0).
  • Los electrones tienen carga negativa (−).

El átomo consta de un núcleo positivo, donde se encuentran los protones y los neutrones; y una corteza electrónica por donde giran los electrones organizados en órbitas.

Átomo con 6 protones, 6 neutrones y 6 electrones. Los electrones se organizan en distintos niveles de energía; en el primero (n = 1) hay 2 electrones y en el segundo (n = 2) hay 4 electrones.

¿Qué son los niveles de energía?

Son las capas en los que se reparten los electrones de un átomo. Mientras mayor sea el valor del nivel de energía (n = 1, 2, 3, …), mayor será la distancia entre el electrón en el orbital de un átomo y el núcleo; por lo tanto, el orbital es de mayor tamaño. Así, los orbitales del nivel de energía 3 (n = 3) son más grandes que los orbitales del nivel de energía 2 (n = 2).

orbitales atómicos

Los orbitales atómicos son regiones en las que hay alta probabilidad de hallar un electrón y poseen una determinado nivel de energía. Si bien los distintos tipos de orbitales no tienen forma definida es posible imaginar una forma particular de acuerdo a la distancia entre el núcleo del átomo y la posible localización del electrón. Según su forma, los orbitales se nombran con las letras s, p, d, f, …

Orbitales s

Se caracteriza por tener una forma esférica que aumenta de tamaño al aumentar el nivel de energía.

Los orbitales s tienen capacidad para 2 electrones.

orbital 1s orbital 2s orbital 3s

Orbitales p

Podemos imaginar a los orbitales p como dos lóbulos ubicados uno del lado opuesto del otro. Existen tres tipos de orbitales p: px, py y pz, cuyos subíndices representan los ejes sobre los cuales se orientan los orbitales.

Los orbitales p tienen capacidad para 6 electrones, 2 electrones por cada orientación.

orbital py orbital px orbital pz

Orbitales d y otros de mayor energía

Estos orbitales tienen forma de lóbulos en cinco orientaciones diferentes. Los orbitales con mayor energía que los orbitales d se representan con las letras f, g, h, …

Los orbitales d tienen capacidad para 10 electrones, 2 electrones por cada orientación.

orbital dz2 orbital dxz orbital dxy

 

orbital dyz orbital dx2-y2

Cabe destacar que a medida que aumenta el nivel de energía también aumenta la capacidad de contener orbitales, por ejemplo, en n = 1 solo encontramos orbitales s, en n = 2 orbitales s y p, y en n = 3 orbitales s, p y d, y así sucesivamente. A manera de resumen podemos organizar esta información en una tabla como la siguiente:

Nivel de energía Orbitales Capacidad electrónica del orbital Capacidad electrónica del nivel
1 s 2 2
2 s 2 8
p 6
3 s 2 18
p 6
d 10
4 s 2 32
p 6
d 10
f 14
La forma en la que se organizan los electrones alrededor del núcleo atómico determina el tipo de enlace en las sustancias y sus propiedades químicas.

Configuración electrónica

La información dada en la tabla anterior puede ilustrarse gráficamente en un esquema conocido como “regla Möller”, “regla de las diagonales” o “método de la lluvia”. Este se utiliza en el llenado de arriba hacia abajo de los subniveles de un átomo en la dirección y sentido que señalan las flechas.

Regla de Moeller para escribir la configuración electrónica del átomo de un elemento.

Recordemos que el número de electrones de un átomo en su estado fundamental es igual a su número atómico (Z). Así, la configuración electrónica del átomo de hidrógeno (Z = 1) en estado fundamental es 1s1, donde:

Por lo tanto, podemos decir que el electrón del átomo de hidrógeno está en un orbital s del nivel de energía 1. La expresión 1s1 se lee “uno ese uno”.

¿Sabías qué?
El estado fundamental, también llamado “estado basal”, es el estado de menor energía en el que se puede encontrar un átomo.

¿Cómo escribir la configuración electrónica de un átomo?

  • Litio (Li)

El número atómico (Z) del Li es 3, por lo tanto, el átomo de Li tiene 3 electrones en su estado fundamental. Para escribir su configuración electrónica empezamos a contar desde el primer nivel de energía hasta llegar a los 3 electrones.

Empezamos con 1s2 y seguimos hasta llegar a 2s, orbital en el que caben 2 electrones. Como solo falta un electrón para llegar a 3, escribimos la designación del orbital con un solo electrón, es decir, 2s1.

 

Configuración electrónica de Li → 1s2 2s1


  • Carbono (C)

Como el número atómico (Z) de C es 6, los electrones de este átomo son 6. Así que contamos de forma progresiva en el diagrama hasta llegar a 6 electrones.

Si iniciamos con 1s2 y luego pasamos por 2s2 ya tenemos 4 electrones. Como faltan 2 electrones seguimos hasta 2p y escribimos la designación del orbital con 2 electrones: 2p2.

 

Configuración electrónica de C → 1s2 2s2 2p2


  • Magnesio (Mg)

El número atómico (Z) del Mg es 12, por lo que debemos repetir el mismo procedimiento de los ejemplos anteriores hasta llegar a 12 electrones.

Tras llenar los primeros 10 electrones hasta el 2p6, seguimos con 3s2 y de ese modo ya se tienen los 12 electrones correspondientes al átomo en su estado fundamental.

 

Configuración electrónica de Mg → 1s2 2s2 2p6 3s2

Configuración electrónica de los primero 15 elementos de la tabla periódica

Elemento Símbolo Número atómico (Z) Número de electrones en estado fundamental Configuración electrónica
Hidrógeno H 1 1 1s1
Helio He 2 2 1s2
Litio Li 3 3 1s2 2s1
Berilio Be 4 4 1s2 2s2
Boro B 5 5 1s2 2s2 2p1
Carbono C 6 6 1s2 2s2 2p2
Nitrógeno N 7 7 1s2 2s2 2p3
Oxígeno O 8 8 1s2 2s2 2p4
Flúor F 9 9 1s2 2s2 2p5
Neón Ne 10 10 1s2 2s2 2p6
Sodio Na 11 11 1s2 2s2 2p6 3s1
Magnesio Mg 12 12 1s2 2s2 2p6 3s2
Aluminio Al 13 13 1s2 2s2 2p6 3s2 3p1
Silicio Si 14 14 1s2 2s2 2p6 3s2 3p2
Fósforo P 15 15 1s2 2s2 2p6 3s2 3p3

Diagrama de orbitales

Los diagramas de orbitales son otra forma de mostrar la configuración electrónica, el cual plasma de forma más precisa la posición del espín del electrón. Los posibles giros de un electrón son dos y se representan con flechas: una hacia arriba y otra hacia abajo. Cada caja representa un orbital. Por ejemplo:

H →  He → 

¿Sabías qué?
El espín, o momento angular de rotación del electrón, está relacionado con los dos movimientos de giros que puede tener el electrón, los cuales se representan con flechas.

Regla para la distribución de los electrones

  • Principio de exclusión de Pauli

“Un orbital no puede tener más de dos electrones, cuyos espines deben tener valores opuestos, es decir, una flecha hacia arriba y otra hacia abajo”.

Observa las tres posibles maneras de organizar los 2 electrones en el orbital 1s del helio (He). Solo el diagrama c) cumple con el principio de exclusión de Pauli.

a) b) c)
He →
Incorrecto Incorrecto Correcto
  • Principio de máxima multiplicidad de carga o regla de Hund

“La distribución electrónica más estable es aquella que tiene la mayor cantidad de espines paralelos o no apareados”.

Observa los distintos diagramas de orbitales en los que se muestra la distribución de electrones del átomo de carbono (C). Aunque los tres cumple con el principio de exclusión de Pauli solo el diagrama c) cumple con la regla de Hund y por lo tanto es el adecuado.

a) C →  Incorrecto
b) C →  Incorrecto
c) C →  Correcto

Nota que se dibujan tres cajas para los orbitales p porque estos tienen tres orientaciones diferentes (px, py y pz) en las cuales caben 2 electrones respectivamente.

  • Principio de Aufbau

“Mientras se añaden protones al núcleo del átomo de uno en uno, los electrones se suman de la misma forma en los orbitales atómicos”.

Por ejemplo, el tercer electrón del átomo de litio (Li) no puede acomodarse en el orbital 1s, así que se coloca en el siguiente orbital de menor nivel de energía, el 2s.

He → 

Li → 

Con excepción del hidrógeno y del helio, la configuración electrónica de todos los elementos puede ser representada por un kérnel de gas noble, el cual muestra entre corchetes el símbolo del gas noble que antecede a un elemento. Ejemplo:

Símbolo de elemento Número atómico (Z) Configuración electrónica
H 1 1s1
He 2 1s2
Li 3 [He]2s1
Be 4 [He]2s2
B 5 [He]2s2 2p1
C 6 [He]2s2 2p2
N 7 [He]2s2 2p3
O 8 [He]2s2 2p4
F 9 [He]2s2 2p5
Ne 10 [He]2s2 2p6
Na 11 [Ne]3s1
Mg 12 [Ne]3s2
Al 13 [Ne]3s2 3p1
Si 14 [Ne]3s2 3p2
P 15 [Ne]3s2 3p3
¿Sabías qué?
Los electrones más externos que se ubican luego del kérnel del gas noble son llamados “electrones de valencia”.

¡a practicar!

Escribe la configuración electrónica de los siguientes elementos en su estado fundamental. En cada caso, realiza el diagrama de orbitales.

a) Calcio

b) Hierro

c) Zinc

d) Bromo

Respuestas

a) Calcio

 

  • Símbolo: Ca
  • Número atómico (Z): 20
  • Configuración electrónica: 1s2 2s2 2p6 3s2 3p6 4s2 → [Ar]4s2
  • Diagrama de orbitales:

b) Hierro

 

  • Símbolo: Fe
  • Número atómico (Z): 26
  • Configuración electrónica: 1s2 2s2 2p6 3s2 3p6 4s2 3d6 → [Ar]4s2 3d6
  • Diagrama orbitales: 

c) Zinc

 

  • Símbolo: Zn
  • Número atómico (Z): 30
  • Configuración electrónica: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 → [Ar]4s2 3d10
  • Diagrama de orbitales: 

d) Bromo

 

  • Símbolo: Br
  • Número atómico (Z): 35
  • Configuración electrónica: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p5 → [Ar]4s2 3d10 4p5
  • Diagrama de orbitales:

 

Estructuras de Lewis

Estudiar cómo se combinan los elementos químicos en la naturaleza es primordial para la química aplicada, es por ello que a lo largo de los años se han planteado diversas teorías y formas de representación que facilitan el entendimiento de los compuestos químicos.

Los átomos se combinan entre sí para formar diversos compuestos o sustancias químicas, esto implica la formación de enlaces químicos entre los átomos involucrados en las reacciones químicas. En función de la naturaleza química se conocen tres tipos de enlace:

  • Enlace iónico: se forma como resultado de las fuerzas electrostáticas existentes entre iones de carga opuesta. Este tipo de enlace implica la transferencia de electrones de un átomo a otro.
  • Enlace covalente: es aquel donde dos átomos comparten electrones, en función del número de electrones compartidos se distinguen tres tipos de enlaces covalente: simple (2 e), doble (4 e) y triple (6 e).
  • Enlace metálico: en este tipo de enlaces los electrones se mueven dentro de la red tridimensional del metal, lo que le confiere al mismo su propiedad característica, la conductividad eléctrica.

Los electrones que participan en un enlace químico se denominan electrones de valencia y son aquellos que se encuentran en la capa más externa de los átomos.

 

Átomo de nitrógeno.

Estructuras de Lewis

Lewis fue un químico estadounidense que propuso simbolizar los electrones de valencia mediante el uso de puntos que se ubican arriba, abajo y a los lados del símbolo químico de cada elemento, esta forma de representación se conoce como símbolos de Lewis.


Los símbolos punto-electrón para construir las denominadas estructuras de Lewis de diversas moléculas o compuestos son una herramienta útil al momento de estudiar los enlaces químicos, formación y tipos.

Regla del octeto

Cuando se forma un enlace químico los átomos pierden, ganan o comparten electrones con la finalidad de emular la configuración electrónica del gas noble más cercano a ellos, los cuales deben su estabilidad al número de electrones que contienen en su capa de valencia.

Símbolos de Lewis de los gases nobles.

 

Con excepción del helio, todos los gases nobles poseen ocho electrones en la capa de valencia, hecho en el que se fundamenta la denominada regla del octeto: los átomos tienden a ganar, perder o compartir electrones hasta estar rodeados por ocho electrones de valencia.

A continuación se muestran algunos ejemplos de estructuras de Lewis:

  • Metano
    • Fórmula química: CH4
    • Tipo de enlace: covalente
    • Configuración electrónica:


  • Estructura de Lewis:


  • Dióxido de carbono
    • Fórmula química: CO2
    • Tipo de enlace: covalente
    • Configuración electrónica:


  • Estructura de Lewis:


  • Agua
    • Fórmula química: H2O
    • Tipo de enlace: covalente
    • Configuración electrónica:


  • Estructura de Lewis:


Estructura de Lewis en compuestos iónicos

Uno de los compuestos iónicos más utilizados es la sal de mesa, compuesta por cloruro de sodio dibujar su estructura de Lewis sigue el siguiente procedimiento:

  1. Escribir la formula química: NaCl
  2. Conocer el tipo de enlace: iónico.
  3. Realizar la configuración electrónica, considerando el efecto de las cargas en el anión y catión.

 

  1. Realizar la estructura de Lewis.


Excepciones de la regla del octeto

La regla del octeto no se cumple para todos los compuestos químicos, las excepciones se pueden resumir en tres casos:

  • Moléculas que tienen un número impar de electrones

La presencia de un número de electrones impar hace imposible que los mismos se apareen totalmente y por tanto al menos uno de los átomos involucrados no alcanza el octeto. Por ejemplo el monóxido de nitrógeno (NO).

Estructura de Lewis del monóxido de nitrógeno.

 

  • Moléculas con menos de ocho electrones

Son aquellas moléculas donde un átomo o ion de la misma no puede alcanzar el octeto, un caso emblemático es el trifloruro de boro (BF3).

Estructura de Lewis del trifloruro de boro.

 

  • Moléculas con más de ocho electrones

Son compuestos químicos donde al menos uno de los átomos o iones sobrepasa los ocho electrones en la capa de valencia. Algunos ejemplos representativos son el pentacloruro de fosforo (PCl5).

Estructura de Lewis del pentacloruro de fosforo.

¿Qué debes saber para dibujar estructuras de Lewis?

Para dibujar una estructura de Lewis es necesario dominar los conceptos básicos de la química y sus elementos. Algunas de las consideraciones a tener en cuenta son:

  1. Determinar los electrones de valencia de los elementos involucrados, para ello se puede usar una tabla periódica. También es importante recordar que en el caso de los iones se deben sumar o restar electrones en la capa de valencia; para los aniones cada carga negativa significa que se debe sumar un electrón, en tanto, para los cationes una carga positiva implica que se debe restar un electrón.
  2. Escribir los símbolos químicos e indicar que tipo de enlace los une. Por lo general, las fórmulas químicas indican el orden de unión de los átomos mientras que la naturaleza del enlace está determinada por la diferencia de electronegatividad que existe entre los mismos.
  3. Completar primero los octetos de los elementos unidos al átomo central.
  4. Colocar los electrones faltantes en el átomo central aun si no cumplen con la regla del octeto.
  5. Cuando el átomo central no cumple con el octeto es recomendable probar con enlaces múltiples.
  6. Conocer las excepciones de la regla del octeto.