CAPÍTULO 4 / TEMA 6

Fenómenos ondulatorios

Las ondas pueden comportarse de distintas maneras según el medio en el que se encuentren. Así, la manera de propagarse varía según los obstáculos, los choques o los cuerpos a atravesar. Esto produce varios fenómenos que veremos a continuación.

¿QUÉ ES UNA ONDA?

Es una oscilación o perturbación que se caracteriza por propagarse en el espacio y por transportar energía, no materia.

Por ejemplo, al tomar una soga de un extremo y sacudirla se puede observar que se genera un movimiento ondulatorio, pero la soga no ha sido modificada. En consecuencia, al imaginar que la soga está compuesta por infinitos puntos uno al lado del otro, se puede decir que cada uno de ellos es desplazado verticalmente por el movimiento. En otras palabras, la soga vibra.

A diario, las ondas se pueden observar en el mar, al tirar una piedra en un cuerpo tranquilo de agua, al tocar las cuerdas de una guitarra o al hablar.

¿Cuáles son las características de una onda?

Elongación (y): es la distancia que existe en cualquier instante entre la posición de equilibrio y la posición de la partícula. En el SI se mide en metros (m).

Amplitud (A): es la elongación máxima que puede alcanzar una partícula con respecto a la línea de equilibrio. En el SI se mide en metros (m).

Cresta y Valle: la cresta es el punto más alejado de la línea de equilibrio del medio donde se propaga la onda, y el valle es el punto más alejado de la línea de equilibrio donde se propaga la onda, pero opuesta a la ubicación de la cresta.

Longitud de onda (λ): es la distancia existente entre dos puntos de la onda que se encuentra en un instante dado en el mismo estado de vibración, es decir, es la distancia que la onda recorre en un ciclo, puede ser entre dos valles sucesivos o dos crestas sucesivas y se mide en metros (m).

Periodo (T): es el tiempo que tarda una oscilación que se propaga en recorrer un espacio igual a la longitud de onda. Se mide en segundos (s).

Velocidad de propagación (v): es la velocidad con la que puede propagarse una onda. Se mide en m/s.

Frecuencia (f): es el número de oscilaciones o vibraciones completas que se realizan en un segundo. Es la inversa de periodo. Se mide en hercios (Hz).

¿QUÉ ES EL MOVIMIENTO ONDULATORIO?

Para comprender mejor la definición de onda hay que saber que la materia que nos rodea, como el agua, el aire o una mesa, está formada por partículas. Éstas están más apretadas en los sólidos y más dispersas en los líquidos o gases. Sin embargo, en todos los casos la vibración de una partícula puede transmitirse a una partícula contigua.

Partículas en una cuerda.

Por lo tanto, cuando se propaga una onda, las partículas vibran alrededor de sus posiciones pero no se mueven con la onda. Por ejemplo: cuando se tira una piedra en el agua, las partículas de agua no avanzan lateralmente sino que suben y bajan al mismo tiempo que transmiten energía a las partículas vecinas. De este modo se forman pequeñas olas: son ondas que viajan a través del agua y transmiten la energía de un sitio a otro.

Radio AM

La radio AM es un medio de comunicación que transmite con amplitud modulada (AM): una manera de transmitir información por medio de una onda transversal. Se usa también en radios de aviones y torres de control.

¿CUÁLES SON LOS TIPOS DE ONDAS?

Ondas según la dirección de propagación

Longitudinales: la alteración o perturbación es paralela al desplazamiento de la onda.

Transversales: la alteración o perturbación es perpendicular al desplazamiento de la onda.

Ondas según la dimensión de propagación

Unidimensionales: se propagan en una sola dirección.

Por ejemplo: la propagación de movimiento en una cuerda.

Bidimensionales: se propagan sobre una superficie en dos dimensiones.

Por ejemplo: las olas en la superficie de un líquido.

Tridimensionales: Se propagan por el espacio en tres dimensiones.

Por ejemplo: el sonido.

Según el medio que necesitan para propagarse

Mecánicas: necesitan un medio material para propagarse. Por ejemplo: las ondas sonoras y las generadas en la superficie del agua.

Electromagnéticas: pueden propagarse en medios materiales y en el vacío. Por ejemplo: la luz, los rayos x y el láser.

¿CUÁLES SON LOS FENÓMENOS ONDULATORIOS?

Fenómenos ondulatorios
Reflexión Refracción Difracción Interferencia
Es el cambio de dirección en la onda cuando choca con una superficie lisa. No cambia el medio de propagación. Es el cambio de dirección y velocidad de la onda cuando pasa de un medio de propagación a otro. Es la desviación de la onda cuando llega a una abertura de tamaño comparable con su longitud. Es la adición o superposición de dos o más ondas.
Ejemplo Ejemplo Ejemplo Ejemplo
Espejo. Lápiz sumergido en agua. Rompeolas. Varios objetos lanzados al agua.

 

Ejemplo de refracción: lápiz dentro de un vaso de agua.

ONDA SONORA

Las ondas sonoras son ondas longitudinales.

Son las responsables de producir un efecto que al llegar al oído identificamos como sonido. Estas ondas corresponden al grupo de las ondas mecánicas, porque requieren de un medio para propagarse.

¿Qué es el sonido?

 

El sonido es una onda, es decir, una perturbación que “viaja” en el espacio y propaga energía. Las ondas sonoras tienen la capacidad de transmitirse a través de la materia, es por eso que cuando una persona habla, el sonido se mueve por el aire o a través de alguna pared.

 

VER INFOGRAFÍA

Cualidades del sonido

VER INFOGRAFÍA

Intensidad

Es la energía que se transmite por la onda al atravesar una superficie por unidad de tiempo. Se mide en J/m2s o W/m2.

Sonoridad

La sonoridad es una cualidad que permite diferenciar entre los sonidos fuertes y débiles. Su unidad es el belio (B) y se mide en decibelios (dB).

Tono

Es la frecuencia de vibración que tienen las ondas sonoras. Éstas permiten determinar si un sonido es grave o agudo. Se mide en hercio (Hz).

Sonidos

Sonidos graves: 20 a 256 Hz.

Sonidos medios de 256 a 2.000 Hz.

Sonidos agudos de 2.000 a 16.000 Hz.

Timbre

Es propio de cada fuente sonora. Cada material o voz humana vibra de una forma diferente y provoca ondas sonoras complejas que identifican el sonido.

Reflexión

Se produce cada vez que las ondas se encuentran con un cuerpo que no puede traspasar, y por lo tanto rebotan y se expanden o reflejan.

Fenómenos sonoros de la reflexión
Resonancia Reverberación Eco
Es el aumento de la amplitud y expansión de un sonido debido a los estímulos recibidos por parte de una fuente de ondas externas. Es el alargamiento de un sonido causado por repetidos procesos de reflexión. Se produce comúnmente en lugares cerrados y vacíos. Es producido por el choque directo de un sonido contra algún cuerpo. Este reflejo tarda más de una décima de segundo en ser escuchado.

Refracción

Cuando las ondas sonoras se desplazan y cambian de posición, la distancia y el movimiento producen una variación en el sonido.

¿Sabías qué?
Las ondas sonoras también se consideran ondas de compresión u ondas de compresibilidad porque producen compresión (zonas de alta presión y densidad) y rarefacción (zonas de baja presión y densidad) cuando viajan a través de un medio.

Propagación del sonido

El sonido se propaga de manera tridimensional, por lo que puede llegar a cualquier sitio del espacio. De este modo, la velocidad de su propagación depende del medio: si las partículas están muy próximas y de las fuerzas de cohesión.

Dirección de una onda de sonido

El sonido puede considerarse como una serie de ondas de compresión y de rarefacción propagadas por el aire.

En consecuencia, la velocidad de propagación de una onda sonora es mayor en los sólidos que en los líquidos, y en los líquidos es mayor que en los gases.

¿Sabías qué?
La velocidad del sonido a condiciones normales de presión y temperatura es de 5.600 m/s en el acero, 1.460 m/s en el agua y 340 m/s en el aire.

Efecto Doppler

Este efecto se percibe cuando se acerca al observador una onda sonora, su longitud de onda se acorta y el sonido se percibe a un mayor volumen. Es por este motivo que la altura de una fuente que se aleja, se reduce. Este efecto se puede percibir siempre que la fuente de ondas se mueva con respecto al observador o viceversa. Como resultado se podrá observar una aparente variación de la altura del sonido.

Efecto Doppler en la calle

Al escuchar a lo lejos la sirena de una ambulancia, la intensidad del sonido de su sirena aumenta a medida que el vehículo se acerca a nosotros a toda velocidad, pero justo después de que nos pasa por un lado y se aleja de nosotros su intensidad disminuye y la frecuencia de pulsos de sonidos se hace más larga, este fenómeno se conoce como efecto Doppler.

 

LUZ

VER INFOGRAFÍA

En 1817, un físico inglés llamado Thomas Young afirmó que la luz tiene las propiedades de una onda. En su experimento calculó la longitud de onda de la luz a partir de un patrón de interferencia y descubrió no sólo que la longitud de onda es una millonésima de metro (1 μm) o menos, sino también que la luz es una onda transversal. Este fenómeno no se puede explicar a menos que la luz se considere una onda.

Las ondas electromagnéticas son ondas transversales.

Más tarde, en 1864, el físico escocés James Clerk Maxwell estableció que la luz es una forma de energía electromagnética que viaja en ondas. La razón de cómo lo hace en ausencia de un medio se explica por la naturaleza de las vibraciones electromagnéticas.

La luz se comporta como una onda, sufre reflexión, refracción y difracción.

Reflexión Refracción  Difracción
El reflejo de las ondas de luz en una superficie da como resultado la formación de una imagen. Cuando la luz pasa de un medio a otro se observa una desviación debido a las velocidades de propagación que difieren entre sí. Si la luz encuentra un obstáculo en su camino, éste la bloquea y tiende a causar la formación de una sombra en la parte de atrás del mismo.

Espectro electromagnético

VER INFOGRAFÍA

La luz está compuesta por ondas electromagnéticas que pueden poseer diversas frecuencias, que se clasifican y conforman el denominado espectro electromagnético.

La luz visible es una pequeña parte del espectro electromagnético que comprende longitudes de onda entre 380 nm y 740 nm. Un elemento de las ondas electromagnéticas es su longitud de onda, la cual determina el color; por ejemplo: el violeta posee una longitud de onda más corta y el rojo una más larga.

Espectro electromagnético.

Propagación de la luz

La luz puede propagarse en el vacío así como en otros medios, por lo tanto, su velocidad dependerá de dicho medio. Asimismo, la luz se propaga tridimensionalmente en el espacio.

¿Sabías qué?
La velocidad de propagación de la luz en el vacio o en el aire es de 3 · 108 m/s.

Si el medio es homogéneo, la luz se propagará linealmente y se podrán distinguir:

  • Las áreas de sombra que no reciben luz.
  • Las áreas de penumbra que reciben parte de la luz.
  • Las áreas iluminadas que reciben todos los rayos de luz.
La sombra es una zona donde la luz es obstaculizada.
RECURSOS PARA DOCENTES

Video “Efecto Doppler”

Recurso audiovisual que explica cómo se produce este efecto relacionado con la variación de frecuencia en las ondas.

VER

Artículo destacado “Acústica y sonido: cualidades del sonido”

Este artículo diferencia acústica y sonido, y describe las cualidades de este último: intensidad, altura o tono y timbre.

VER

Artículo destacado “El sonido: Fenómeno vibratorio”

Recurso que ahonda en detalle en las particularidades del fenómeno vibratorio, el sonido y su transmisión.

VER

Artículo destacado “Ondas electromagnéticas”

Artículo que describe las características y tipos de ondas electromagnéticas.

VER

Microscopio

Durante el primer siglo después de Cristo, el vidrio fue inventado y los romanos miraban a través del cristal para probar y experimentar. Más adelante, descubrieron que si se tenía una de estas lentes sobre un objeto, el objeto parecería más grande.

¿Qué es el microscopio?

Un microscopio es un instrumento utilizado para ampliar un objeto y verlo en detalle. Existen muchos tipos de microscopios que cuentan con diferentes niveles de ampliación y que producen diferentes tipos de imágenes. Algunos de los microscopios más avanzados permiten incluso ver átomos.

 

Un microscopio se utiliza comúnmente en un laboratorio microbiológico y se emplea para el estudio de organismos.

Invención del microscopio

Como muchas invenciones en las que existen disputas sobre quienes fueron los inventores originales, el microscopio no es una excepción.

Data del primer siglo, los romanos investigaron el uso del vidrio y cómo la visión de objetos a través de él hacía que los objetos parecieran más grandes.

¿Sabías qué...?
A Robert Koch, un médico alemán y microbiólogo, se le atribuye el descubrimiento de los bacilos del cólera y la tuberculosis.

Las primeras formas simples de la ampliación eran lupas, por lo general alrededor de 6x a 10x y se utilizaron para inspeccionar diminutos insectos, como las pulgas.

Los primeros microscopios se utilizaron para estudiar los insectos y fueron apodados “vidrios de pulgas”.

Zacharias Jansen y el primer microscopio compuesto

En la década de 1590, dos fabricantes holandeses Zacharias Jansen y su padre Hans comenzaron a experimentar con estas lentes. Colocaron varias de ellas en un tubo y descubrieron que el objeto cerca del extremo del tubo se veía mucho más grande que en cualquier lupa simple.

Sus primeros microscopios eran más una novedad que una herramienta científica, ya que la máxima ampliación era solo alrededor de 9x y las imágenes eran algo borrosas.

Los primeros microscopios tenían solamente una lente y fueron referidos como microscopios simples.

Se cree que el padre de Zacharias Jansen le ayudó a construir el primer microscopio en 1595. Zacharias le escribió a William Boreel sobre la invención, y en la década de 1650, Boreel relató el diseño del microscopio.

Anton van Leeuwenhoek

Fue uno de los pioneros de la microscopía. A finales del siglo 17 se convirtió en el primer hombre en fabricar y utilizar un microscopio real.

Van Leeuwenhoek logró un mayor éxito que sus contemporáneos puesto que desarrolló maneras de hacer lentes superiores. Creó un nuevo tubo de lente que tenía un poder de ampliación de 270x.

 

Van Leeuwenhoek fue el primero en ver y describir las bacterias, la levadura y la circulación de los glóbulos sanguíneos en los capilares.

El trabajo de Van Leewenhoek fue verificado y desarrollado por el científico inglés Robert Hooke, que publicó el primer trabajo de estudios microscópicos llamado Micrographia en 1665. Los estudios detallados de Hooke fomentaron el estudio en el campo de la microbiología y la ciencia biológica avanzada.

Tipos de microscopios

El tipo más común de microscopio es un microscopio óptico que utiliza lentes para formar imágenes de la luz visible.

Otros microscopios

Un microscopio electrónico utiliza electrones en lugar de luz para crear la imagen ampliada. El primer microscopio electrónico fue el microscopio electrónico de transmisión, inventado en 1931 por Ernst Ruska y el microscopio electrónico de barrido en 1935 por Max Knoll.

Un microscopio óptico con una sola lente se conoce como microscopio simple y uno con dos lentes se conoce como microscopio compuesto.

Partes del microscopio

  • Sistema mecánico: funcionan como soporte de las lentes y otros elementos.
  • Brazo: soporta el tubo y lo conecta a la base.
El brazo es la parte por donde se debe sujetar el microscopio para transportarlo.
  • Base o pie: parte inferior del microscopio, se utiliza para el apoyo y le proporciona estabilidad.
  • Platina: plataforma plana donde se coloca el portaobjetos con la muestra a observar.
  • Pinzas de sujeción: sirve para sujetar la preparación.
  • Tornillo macrométrico: se emplea para el movimiento rápido hacia arriba o hacia abajo del tubo o la platina, y además con él se puede localizar la imagen a observar.
  • Tornillo micrométrico: permite colocar en la posición adecuada, cualquiera de los objetivos que se encuentran en él.
  • Tubo: conecta el ocular a las lentes objetivas.
  • Sistema de iluminación: elementos que transmiten, reflejan y regulan tanto la intensidad como la cantidad de luz que va a incidir sobre la muestra.
  • Fuente de iluminación: luz fija utilizada en lugar de un espejo. Si el microscopio tiene un espejo, se utiliza para reflejar la luz de una fuente externa a través de la parte inferior de la platina.
La fuente de luz es de 110 voltios.
  • Condensador: el propósito de la lente del condensador es enfocar la luz sobre la muestra; las lentes condensadoras son más útiles en las potencias más altas, 400x y más.
  • Diafragma: se utiliza para variar la intensidad y el tamaño del cono de luz que se proyecta hacia arriba en la diapositiva.
  • Sistema óptico: conjunto de lentes responsables del aumento y resolución.
  • Objetivo: tiene como función colectar la luz proveniente de la muestra y proyectar una imagen nítida, real, invertida y aumentada hacia el cuerpo del microscopio.
  • Ocular: sirve para observar la imagen real e invertida que produce el objetivo por medio de dos funciones, una es la de aumentar la imagen y transformarla en una imagen virtual derecha con respecto a la imagen del objetivo que posteriormente el ojo endereza, y otra es aclarar el campo óptico o plano circular en el que aparece el objeto.

 

Hoy en día los microscopios compuestos son tan avanzados que pueden ampliar hasta 1.000 veces el tamaño de la muestra.