CAPÍTULO 1 / TEMA 1

EL UNIVERSO DE LOS NÚMEROS

La vida sería más complicada si no existieran los números. Tareas como contar o sumar cosas no serían posibles y eso traería muchos problemas. A lo largo de la historia el ser humano ha inventado diferentes sistemas de numeración, porque si hay algo que no ha cambiado es nuestra necesidad de contar. 

Lectura y representación de números naturales

El sistema de numeración usado en la actualidad presenta dos características principales: es decimal, porque emplea diez dígitos (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) y es posicional, porque el valor de cada cifra obedece al lugar que ocupa dentro de un número. Como ya sabemos, a los números los agrupamos de diez en diez, de menor a mayor.

10 U = 1 D

10 D = 1 C

10 C = 1 UM

Donde:

U: unidad

D: decena

C: centena

UM: unidad de mil

¡Y así sucesivamente hasta el infinito!

En el número 3.145 la cifra 1 ocupa la posición de las centenas, como puede verse en el siguiente esquema:

¿Sabías qué?
La palabra “dígito” proviene del latín dígitus, que significa dedo, y surge al comparar el número de dedos de las manos con el número de dígitos.

En números de 6 cifras el esquema sería el siguiente:

Donde:

DM: decena de mil

CM: centena de mil

Para leer un número de seis cifras se comienza leer la cantidad del orden de los miles y luego se lee el resto de la cantidad.

Por ejemplo el número 254.873 se lee de la siguiente forma: doscientos cincuenta y cuatro mil ochocientos setenta y tres.

¡A practicar!

¿Cómo se leen estos números?

  • 145.254
Solución
Ciento cuarenta y cinco mil doscientos cincuenta y cuatro.
  • 927.630
Solución
Novecientos veintisiete mil seiscientos treinta.
  • 501.588
Solución
Quinientos un mil quinientos ochenta y ocho.
  • 470.625
Solución
Cuatrocientos setenta mil seiscientos veinticinco.
Con solo diez dígitos en el sistema decimal se pueden formar infinitos números al combinarlos. Estos símbolos son: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9. En la actualidad se considera el sistema más usado para expresar cantidades y magnitudes, pero existen otros sistemas menos conocidos como el binario y el octal, que son aplicados en áreas específicas.

Sistema de numeración romana

Hace muchos años, se desarrolló en la Antigua Roma un sistema de numeración basado en letras, dicho sistema fue implementado en todo el Imperio romano. La extensión de este era tal que ocupaba gran parte de los países europeos actuales y de algunos países de África y Asia, esto permitió que su influencia se mantuviera por mucho tiempo después de la caída del imperio.

A pesar de que se encuentran en desuso, todavía existen ciertas aplicaciones de los números romanos. Tanto en capítulos de libros como incluso en relojes están presentes los números romanos.

El Imperio romano fue, sin duda, uno de los imperios más influyentes de toda la historia. Se destacan sus aportes en la arquitectura, la escultura, la pintura y el derecho, además de novedosos inventos como el acueducto y el hormigón. También en el área de los números desarrollaron el sistema de numeración romano que surgió entre el 900 y el 800 a. C.

Características de los números romanos

– Es un sistema predominantemente aditivo, es decir; los valores de cada signo se suman (aunque hay ocasiones en los que se restan).

– Emplea letras del abecedario para representar a los números, por eso, podría catalogarse como un sistema alfanumérico.

– Los romanos, para ese momento, no conocían el número cero (que fue introducido más adelante a Europa con la numeración arábiga) y por ello no lo representaban.

– Las letras en este sistema siempre deben escribirse en mayúscula.

A pesar de su popularidad en el pasado, la numeración romana no era perfecta y presentaba ciertas limitaciones tales como la ausencia del número cero y la imposibilidad de representar fracciones o números decimales. Luego, con la llegada de la numeración arábiga (sistema decimal) los números romanos resultaban poco prácticos y entraron en desuso.

Reglas para escribir números romanos

Lo primero que se debe tener en cuenta es que este sistema emplea 7 letras del abecedario que se suman o restan entre ellas de acuerdo a ciertos criterios.

I = 1

V = 5

X = 10

L = 50

C = 100

D = 500

M = 1.000

Con los símbolos anteriores y a veces con algún símbolo auxiliar se pueden construir el resto de los números de acuerdo a los siguientes criterios:

Valores que se suman

– Las letras que se escriben a la derecha de otra de igual o mayor valor se suman:

VI = 5 + 1 = 6

XX = 10 + 10 = 20

CLI = 100 + 50 + 1 = 151

MMDCLII = 1.000 + 1.000 + 500 + 100 + 50 + 1 + 1 = 2.652

 

– Los símbolos I, X, C y M son los únicos que pueden repetirse dos o tres veces consecutivas:

III = 1 + 1 + 1 = 3

XXX = 10 + 10 + 10 = 30

CC = 100 + 100 = 200

MMM = 1.000 + 1.000 + 1.000 = 3.000

 

Los símbolos V, L y D pueden escribirse solo una vez en cada número y por ende no pueden repetirse nunca a diferencia del resto de los símbolos. A pesar de que hoy en día los usos de este sistema de numeración son muy limitados, pueden observarse en ciertos contextos como: siglos, nombres, capítulos de libros y monumentos o placas conmemorativas.

Valores que se restan

– Solo los símbolos I, X y C pueden restarse al símbolo siguiente. Esto sucede cuando el símbolo siguiente es mayor.

IV = 5 − 1 = 4

IX = 10 − 1 = 9

XL = 50 − 10 = 40

XC = 100 − 10 = 90

CD = 500 − 100 = 400

CM = 1.000 − 100 = 900

VER INFOGRAFÍA

¿Qué hacer con cantidades más grandes?

Números mayores a 3.999 (MMMCMXCIX) necesitan símbolos auxiliares, en estos caso se emplea una raya horizontal arriba de la letra para multiplicar su valor por 1.000.

\overline{IV} = 4 \times 1.000 = 4.000

\overline{XL} = 40 \times 1.000 = 40.000

\overline{CXX} = 120 \times 1.000 = 120.000

¿Sabías qué?
Si se colocan dos rayas horizontales sobre un número romano su valor se multiplica por 1 millón.

Ejercicios

1. Escribe con letra los siguientes números

  1. 45.987
    Solución
    Cuarenta y cinco mil novecientos ochenta y siete.
  2. 120.501
    Solución
    Ciento veinte mil quinientos uno.
  3. 197.234
    Solución
    Ciento noventa y siete mil doscientos treinta y cuatro.
  4. 100.985
    Solución
    Cien mil novecientos ochenta y cinco.

2. Escribe en número:

  1. Doscientos mil.
    Solución
    200.000
  2. Setenta y nueve mil ochocientos treinta y dos.
    Solución
    79.832
  3. Ciento veinticuatro mil quinientos sesenta y nueve.
    Solución
    124.569
  4. Cuarenta mil trescientos uno.
    Solución
    40.301

3. Escribe el valor de cada número:

  1. XXIV
    Solución
    24
  2. CLX
    Solución
    160
  3. MMMCLIX
    Solución
    3.159
  4. MMCMLXIV
    Solución
    2.964
  5. CLVIII
    Solución
    158

4. Escribe los siguientes números en número romanos:

  1. 2.157
    Solución
    MMCLVII
  2. 739
    Solución
    DCCXXXIX
  3. 1.199
    Solución
    MCXCIX
  4. 3.578
    Solución
    MMMDLXXVIII
  5. 5.000
    Solución
     
RECURSOS PARA DOCENTES

Artículo destacado “Sistema de numeración”

El siguiente artículo destacado te permitirá conocer más sobre los sistemas de numeración, desde los más antiguos hasta los más actuales.

VER

Infografía “Números romanos”

Con este recurso podrás saber más sobre la historia de los números romanos, sus características y aplicaciones.

VER