CAPÍTULO 2 / TEMA 6

operaciones combinadas

Las operaciones combinadas son aquellas operaciones formadas por diferentes operaciones aritméticas que son agrupadas por paréntesis, corchetes y llaves. Para llegar al resultado hay que seguir algunas reglas de los símbolos de agrupamiento y tener en cuenta la prioridad entre las operaciones.

símbolos de agrupamiento

Muchas veces necesitamos agrupar dos o más operaciones aritméticas para indicar qué orden se debe seguir al momento de resolver un problema. Para agrupar las operaciones se utilizan algunos signos que son denominados símbolos de agrupamiento. Estos son: los paréntesis (), los corchetes [] y las llaves {}.

Cómo eliminar los símbolos de agrupamiento

Cada símbolo de agrupamiento tiene un orden de eliminación:

  • Primero se eliminan los paréntesis, luego los corchetes y finalmente las llaves. Para lograrlo, se resuelven paulatinamente las operaciones que se encuentran dentro de ellos. Hay que tener presente el signo que hay delante. Cuando los signos que están dentro y fuera del paréntesis, corchete o llave son positivos (+) y negativos (−) se consideran los siguientes pasos:

1. Si el signo que está fuera del símbolo de agrupamiento es positivo, los signos que se encuentran en su interior no cambian.

2. Si el signo que está fuera del símbolo de agrupamiento es negativo, los signos que se ubican dentro este cambia.

Por ejemplo:

-(80-44+15)=-80+44-15=-51

Otra forma sería:

+(80-44+15)=80-44+15=51

Como se puede observar, de acuerdo al signo que se encuentre delante del paréntesis pueden cambiar o no los signos de los términos que se encuentran dentro del mismo. Estos términos pueden ser factores o simples sumandos.

¿Sabías qué?
Para resolver operaciones combinadas se suelen aplicar las propiedades de las operaciones.

operaciones combinadas

Las operaciones combinadas son expresiones formadas por diferentes operaciones aritméticas como: sumas, restas, multiplicaciones, divisiones y algunas veces potencias y raíces que son agrupadas en paréntesis, corchetes y llaves.

Veremos el siguiente ejemplo:

Observa que primero se resuelven las operaciones que están dentro de los paréntesis y el resultado se coloca en el lugar donde se ubicaban las mismas. Luego se realiza la misma acción con los corchetes y finalmente con las llaves.

Cuando ya no quedan símbolos de agrupación hay que tener presente que también hay un orden en las operaciones: primero se resuelven potencias y raíces, luego multiplicaciones y divisiones, y por último, sumas y restas.

Observa este otro ejemplo:

Como te podrás dar cuenta, luego de eliminar los símbolos de agrupamiento se resuelven los términos que están fuera de estos con los resultados obtenidos.

Símbolo de igualdad

El símbolo del igual “=” fue creado por el matemático inglés Robert Recorde en 1557 para evitar la expresión textual “es igual a” que se usaba hasta ese momento. Para justificar la forma que obtuvo el símbolo expresó que “dos cosas no pueden ser más iguales que dos rectas paralelas” y, por eso, desde ese día sigue vigente para expresar igualdades en las operaciones.

VER INFOGRAFÍA

ejercicios combinados

Los ejercicios combinados, como se comentó anteriormente, además de incluir las operaciones básicas como la adición, la sustracción, la multiplicación y la resta pueden presentar potencias, raíces, decimales, fracciones y demás expresiones matemáticas.

Observa el siguiente ejercicio:

En el ejercicio anterior, la única diferencia es que observamos una potencia y una raíz. Para resolver el problema se realizan dichas operaciones a medida que se resuelven  las operaciones según su orden de prioridad.

¿Sabías qué?
El símbolo de la raíz cuadrada fue introducido en 1525 por el matemático Christoph Rudolff.

Observa el siguiente ejemplo:

-Resolver 1,5\, +\left \{ \frac{3}{2}+\left [ 2,5\cdot \left ( 5-1 \right ) \right ] \right \}=

Lo primero que debemos tener en cuenta es que se resuelven primero las multiplicaciones y divisiones, luego las sumas y restas. En este caso, observamos fracciones y números decimales:

1,5\, +\left \{ \frac{3}{2}+\left [ 2,5\cdot \left ( 4 \right ) \right ] \right \}=

1,5\, +\left \{ \frac{3}{2}+\left [ 10 \right ] \right \}=

1,5\, +\left \{ 11,5 \right \}=13

Importancia de las operaciones combinadas

A menudo nos enfrentamos a problemas en los que se deben realizar dos o más operaciones aritméticas. Es por ello que para poder resolver dichas situaciones debemos tener conocimiento sobre cómo abordar las operaciones combinadas. En el cálculo avanzado, las operaciones combinadas se resuelven de manera rutinaria porque permiten resolver problemas de manera más rápida y simple.

¡A resolver!

  1. Resuelve las siguientes operaciones combinadas.

a)4\cdot \left \{ 6-\left [ 3\cdot \left ( 5+1 \right ) \right ] \right \}+49

Solución
1

b) 3+\left \{ 10\cdot \left [ 2+\left ( 5-1 \right ) \right ]\right \}-50

Solución
13

c) 7-\left \{ 4+\left [ 5-\left ( 2-1 \right ) \right ] \right \}

Solución
−1

d) \left \{ 5^{2} -\left [ 2\cdot \sqrt{4}\, + (6-5)\right ]\right \}

Solución
20

e) 2,5\, +\left \{ \frac{1}{2}+\left [ 1,5\cdot \left ( 3-1 \right ) \right ] \right \}

Solución
6

RECURSOS PARA DOCENTES

Artículo “Cálculos combinados”

Este artículo destacado permite entender como resolver una operación combinada de acuerdo al orden de prioridades que se debe seguir. También muestra unas series de ejemplos que facilitan su comprensión.

VER

Artículo “Ejercicios combinados con sus desarrollos y soluciones”

El siguiente recurso muestra una serie de ejercicios con su respectiva resolución que permite corroborar los resultados.

VER

CAPÍTULO 2 / TEMA 4

Operaciones con números decimales

Los números decimales son aquellos que tienen una parte entera y una parte decimal, separadas por una coma; son comunes en los precios de los productos del supermercado o en nuestro peso y altura. Los problemas con este tipo de números se resuelven casi de la misma forma que los que tienen números naturales. A continuación, aprenderás las reglas para resolver dichos cálculos.

suma de números decimales

Cuando sumamos número decimales el procedimiento es similar al de los números naturales. Colocamos las unidades, decenas y centenas una sobre otra; de este modo, las comas, décimas, centésimas y milésimas también estarán en las mismas columnas.

– Ejemplo:

432,61 + 54,3

Donde:

C = centena

D = decena

U = unidad

d = décima

c = centésima

m = milésima

 

Si la suma de las cifras de una columna es mayor a 9, colocamos el dígito de la unidad debajo de dicha columna y el dígito de la decena en la columna de la izquierda.

– Ejemplo:

523,4 + 74,86

¡Es tu turno!

Resuelve estas sumas de números decimales.

  • 0,816 + 26,5
  • 10,5 + 10,5
  • 129,836 + 345,26
  • 64,68 + 22,129
Solución

 

¿Sabías qué?
Además de la coma, también se puede usar un punto para separar la parte entera de la parte decimal. Todo depende de la convención del país en el que estés.

 

¿Notaste que la adición de los números decimales es muy similar a la adición de los números naturales? Lo más importante en esta operación es que las cifras estén en las mismas columnas según su valor posicional: unidades con unidades, decenas con decenas, centenas con centenas. De este modo, la coma siempre estará en el lugar adecuado.

resta de números decimales

Para restar números decimales colocamos cada números en las mismas columnas según el orden de cada cifra: unidades con unidades, décimas con décimas, etc. De ser necesario añadimos ceros para que ambos números tengan la misma cantidad de dígitos. Luego restamos como si fueran números naturales y colocamos la coma en el resultado.

– Ejemplo:

360,84 − 246,013

1. Colocamos los números uno sobre otro y agregamos un cero al minuendo.

2. Como no podemos restarle 3 a 0, tomamos “prestada” una décima de la columna de la izquierda. Ahora el 0 se transforma en 10 y el 4 de las centésimas se convierte en 3. Luego hacemos la resta: 10 − 3 = 7.

3. Restamos las centésimas: 3 − 1 = 2.

4. Restamos las décimas: 8 − 0 = 8.

5. Restamos las unidades. Como no podemos restarle 6 a 0, tomamos una decena de la columna de la izquierda. Así que el 0 se convierte en 10 y el 6 se transforma en 5. Luego restamos: 10 − 6 = 4.

6. Restamos las decenas: 5 − 4 = 1.

7. Restamos las centenas y colocamos la coma en la misma columna en la que están las comas.

¡Es tu turno!

Resuelve las siguientes restas de números decimales.

  • 95,371 − 24,98
  • 137 − 45,290
  • 348,6 − 26,696
  • 67,4 − 0,16
Solución

 

Décimas en una regla

La regla graduada es un instrumento de medición con el que también podemos trazar líneas rectas. Por lo general viene con marcas con números que indican los centímetros y marcas más pequeñas entre estas que muestran los milímetros. Recuerda que 1 milímetro es igual a 0,1 centímetros.

Multiplicación con números decimales

Cuando multiplicamos un número decimal por un número natural colocamos los factores uno sobre otro alineados a la derecha, luego multiplicamos tal como si ambos fueran números naturales. Al final colocamos la coma decimal de acuerdo a la cantidad de decimales que tenga el factor decimal.

– Ejemplo:

1,27 × 36

1. Colocamos los factores uno sobre otro.

2. Multiplicamos como hacemos con los números naturales.

3. Colocamos la coma decimal en el resultado. Como el 1,27 tiene dos números decimales, movemos dos espacios en el resultado y colocamos la coma.

Por lo tanto,

1,27 × 36 = 45,72

¡Es tu turno!

Resuelve la siguientes multiplicaciones.

  • 3,1 × 21
  • 132 × 5,3
  • 2,65 × 68
Solución

Los números decimales también se pueden representar como una fracción. Para esto colocamos un denominador con la unidad seguida de tantos ceros como sean necesarios para que el numerador sea un entero. Recuerda que se multiplican ambas partes de la fracción. Luego simplificamos. Por ejemplo, si amplificamos por 10 la expresión 0,5/1 nos queda 5/10 = 1/2.

 

¡A practicar!

Resuelve las siguientes operaciones.

421,78 + 100,1

Solución
421,78 + 100,1 = 521,88

500,999 − 500,159

Solución
500,999 − 500,159 = 0,84

131 × 12,4

Solución
131 × 12,4 = 1.624,4

0,92 × 53

Solución
0,92 × 53 = 48,76

0,578 + 0,9

Solución
0,578 + 0,9 = 1,478

36,9 − 0,806

Solución
36,9 − 0,806 = 36,094
RECURSOS PARA DOCENTES

Artículo “Números decimales”

Con este artículo podrás ampliar la información relacionada con los números decimales, su clasificación y las operaciones que los involucran.

VER

Artículo “Operaciones con números decimales”

Este recurso describe paso a paso cómo realizar sumas, restas, multiplicaciones y divisiones con números decimales.

VER

 

CAPÍTULO 3 / TEMA 5

PORCENTAJES

Los porcentajes son expresiones matemáticas que sirven para relacionar dos cantidades. Se emplean en diferentes situaciones como, por ejemplo, los descuentos. Están estrechamente relacionados con los números fraccionales, porque se emplean para representar una fracciones de denominador igual a 100. 

¿qUÉ ES UN PORCENTAJE?

Un porcentaje, al igual que una fracción, es una forma de indicar una parte de un todo. Los porcentajes se utilizan a diario, por ejemplo, en los siguientes casos:

  • El 30 % de los vuelos proviene de Europa.
  • El 40 % de las personas en la fiesta eran hombres y el 60 % eran mujeres.
  • El 60 % de la población mundial tiene acceso a Internet.

Esto quiere decir que:

  • De cada 100 vuelos, 30 proviene de Europa.
  • De cada 100 personas que había en la fiesta, 40 eran hombres y 60 eran mujeres.
  • De cada 100 personas, 60 tienen acceso a Internet.

Como vemos, el número 100 está presente en todos los casos como referencia. Esto sucede porque el porcentaje representa a una fracción decimal cuyo denominador es 100. Entonces, el número que utilizamos para indicar el porcentaje corresponde al numerador, y el denominador es siempre 100:

  • 20 % = 20/100
  • 60 % = 60/100
  • 33 % = 33/100
Un porcentaje, al igual que una fracción, es una forma de indicar una parte de un todo. Los porcentajes representan una fracción decimal cuyo denominador es 100. Se utiliza frecuentemente en la estadística para distinguir a ciertas porciones del total con respecto a otras. Por ejemplo, en esta imagen vemos un gráfico que divide al total en cuatro partes,  la porción más grande representa el 45 %, mientras que las otras representan el 20 %, el 10 % y el 25 % del total.

Símbolo de porcentaje

El símbolo que utilizamos para indicar un porcentaje es “%” y se lee “por ciento“. Podemos observar algunos ejemplos a continuación:

  • 100 % = “cien por ciento”.
  • 80 % = “ochenta por ciento”.
  • 44 % = “cuarenta y cuatro por ciento”.
  • 30 % = “treinta por ciento”.
El símbolo que utilizamos para indicar un porcentaje es %. Cuando un número está acompañado de dicho símbolo se trata de una expresión de este tipo. Por ejemplo, 100 % se lee “cien por ciento”. Los porcentajes también se utilizan en la economía para indicar los aumentos de precios, el crecimiento de las acciones de una empresa y la inflación de un país.

¿Sabías qué?
El agua constituye el 98 % de un melón, el 80 % de un pez y el 70 % de un ser humano.

Cálculo de porcentaje

Para calcular el porcentaje de una cantidad dada se deben seguir los siguientes pasos:

  1. Multiplicar el porcentaje por la cantidad conocida.
  2. Dividir el resultado obtenido entre cien.
  3. Escribir el resultado final.

Por ejemplo:

1. Calcular el 30 % de  60.

Para calcula cuánto es el 30 % de 60 se deben multiplicar ambos números y luego dividir el resultado entre cien de la siguiente forma:

\frac{30\times 60}{100}=\frac{1.800}{100}=18

En este caso el 30 % de 60 es 18.

2. ¿Cuánto es el 20 % de $ 150?

\frac{20\times 150}{100}=\frac{3.000}{100}=30

El 20 % de $ 150 son $ 30.

¿Cómo determinar qué porcentaje se aplicó?

Hay ocasiones en las que necesitamos calcular cuál es el porcentaje aplicado. Esto es muy útil cuando se va a realizar una compra. Por ejemplo, si un pantalón tiene un precio de $ 120 y el descuento es de $ 12, ¿Cuál es el porcentaje de descuento que se le aplicó?

En este caso se debe multiplicar el descuento por 100 y luego dividir el resultado entre el precio del pantalón que es $ 120:

\frac{12\times 100}{120}=\frac{1.200}{120} = 10\, %

El porcentaje de descuento en este caso fue del 10 %, es decir,  $ 12 representa el 10 % de $ 120.

Relación de porcentaje y fracción

Tanto los porcentajes como las fracciones son formas de representar una parte de un todo. Entonces, podemos convertir un porcentaje en una fracción y viceversa.

Convertir fracción a porcentaje

Para convertir cualquier fracción a porcentaje, debemos dividir el numerador con el denominador, y luego multiplicar dicho resultado por cien. Al número obtenido le agregamos siempre el símbolo de porcentaje (%) para indicar que nos referimos a un porcentaje. Por ejemplo, si convertimos 3/5 en porcentaje tenemos que:

Convertir porcentaje a fracción

En este caso, debemos colocar el porcentaje en el numerador de la fracción y agregar 100 como denominador. Luego, simplificamos hasta obtener una fracción irreducible. Por ejemplo, para convertir 20 % a fracción:

La fracción 20/100 se puede simplificar a 1/5 al dividir tanto al numerador como al denominador entre 5.

Los porcentajes y las fracciones son formas de representar una parte de un total. Entonces, podemos convertir tanto los porcentaje a fracciones como las fracciones a porcentajes. Los porcentajes son muy utilizados en las ofertas, para indicar el descuento sobre el total. Mientras mayor sea el porcentaje, mayor será el descuento.

¡A practicar!

1. ¿Cuánto es el 15 % de 300?

a) 150
b) 45
c) 100
d) 30

SOLUCIÓN
b) \frac{15\times 300}{100}=\frac{4.500}{100}=45

2. Convierte los siguientes porcentajes en fracciones.

a) 25 %
b) 35 %
c) 40 %
d) 90 %

SOLUCIÓN

a) \frac{1}{4}

b) \frac{7}{20}

c) \frac{2}{5}

d) \frac{9}{10}

3. Convierte las siguientes fracciones a porcentaje.

a) \frac{4}{5}

b) \frac{1}{2}

c) \frac{7}{50}

d) \frac{1}{4}

RESPUESTAS

a) 80 %
b) 50 %
c) 14 %
d) 25 %

RECURSOS PARA DOCENTES

Artículo “Porcentajes”

En este artículo se explican las características de los porcentajes y los diferentes métodos para calcularlos, como la regla de tres simple.

VER

Artículo “Porcentaje y proporcionalidad. Descuentos y recargos”

En este artículo se explican algunas aplicaciones de los porcentajes, como los descuentos y las recargas.

VER

 

CAPÍTULO 1 / TEMA 5

Potencias

La potencia es una expresión matemática en la que un número denominado base está elevado a un exponente, el cual indica las veces que la base debe multiplicarse por si misma. Este tipo de operación tiene múltiples aplicaciones en los cálculos combinados y en una forma especial de escribir números: la notación científica.

¿Qué es una potencia?

La potenciación es una operación matemática compuesta por dos partes principales: la base y el exponente.

Como podemos observar, el exponente se escribe en la parte superior derecha de la base y su tamaño es mucho menor.

El exponente de una potencia indica cuántas veces se debe multiplicar a la base por si misma. La potencia es el producto de esa multiplicación.

Por ejemplo:

Una potencia es una multiplicación sucesiva de la base por si misma. Por ejemplo si el exponente fuera 6 y la base 5, esta última se repetiría exactamente 6 veces dentro de la multiplicación, es decir:

 56 = × × × × × 5.

Resolver potencias

Al calcular una potencia debemos saber que el número correspondiente a la base se va a repetir sin alterarse en todas las multiplicaciones según indique el exponente. Por lo tanto, cuando el número del exponente sea grande, se deben resolver las multiplicaciones de forma separada. Esto quiere decir que se comienza a resolver el primer producto y luego el resultado se multiplica nuevamente por la base y así sucesivamente hasta obtener el resultado. Por ejemplo:

En este caso la base de esta potencia es 5 y se multiplica por si misma las veces que indica el exponente. Como el exponente es 3, se debe multiplicar el 5 tres veces por si mismo. Se recomienda resolver el primer producto 5 × 5 y luego volver a multiplicar por 5 al resultado.

Algunas propiedades de la potencia

Existen algunos casos en las potencias que cumplen con ciertas propiedades. Algunas de ellas son:

Exponente cero

Cuando el exponente es 0 (cero), la potencia siempre va a ser igual a 1 (uno). Esto sucede con cualquier número como base diferente de cero. Por ejemplo: 70 = 1.

Exponente igual a uno

Cuando el exponente es 1 (uno), la potencia siempre va a ser igual al número perteneciente a la base. Por ejemplo: 81 = 8.

Base igual a 10

Cuando la base de una potencia es 10 (diez), la potencia va a ser igual a la unidad  seguida de tantos ceros como indique el exponente. Por ejemplo: 10= 1.000.000. 

¿Sabías qué?
Cuando el exponente de una potencia es igual a uno, a menudo se escribe solo el valor de la base y se omite al exponente.

Elementos de la potencia

Los elementos de la potencia son los siguientes:

Base: es el número que se multiplica por si mismo las veces que indique el exponente.
Exponente: es el número que indica las veces en las se tiene que multiplicar la base por si misma. También se lo denomina índice.
Potencia: es el resultado.

¿Cómo leer una potencia?

La manera correcta es leer primero el número de la base, luego se dice la expresión “elevado a la” y por último se lee el valor del exponente en números ordinales (cuarta, quinta, sexta, etc.). De manera resumida se debe seguir la siguiente estructura:

Base + “elevado a la” + exponente

La expresión 34 se lee como “tres elevado a la cuarta“.

Otros ejemplos:

85 = ocho elevado a la quinta.

4= cuatro elevado a la novena.

17 = uno elevado a la séptima.

Exponentes particulares

Existen dos exponentes que particularmente se leen de forma distinta al restos. Estos son el dos y el tres.

  • Cuando el exponente es 2, se dice que el número de la base está elevado al cuadrado. Por ejemplo: 42 se lee “cuatro elevado al cuadrado”.
  • Cuando el exponente es 3, se dice que el número de la base está elevado al cubo. Por ejemplo: 33 se lee “tres elevado al cubo”.

¿Sabías qué?
Si la base es 1, sin importar el exponente,  la potencia siempre va a ser igual a 1.

Cálculo de potencias

Como vimos anteriormente, el cálculo de una potencia se realiza al multiplicar la base según indique el exponente. Sin embargo, hay ejercicios que contienen otras operaciones además de la potencia.

Suma o resta de un número y una potencia

En estos casos se resuelve primero la potencia y luego se resuelve la suma o resta.

Observemos el siguiente caso:

84

Lo primero que debemos resolver es la potencia; es decir, resolver  82:

82 = 8 × 8 = 64

Luego se sustituye el valor de la potencia en la expresión inicial y se resuelve:

64 4 = 60

De esta forma se obtiene que:

84 = 60

 

Paréntesis con suma o resta

Cuando la base de una potencia se encuentra entre paréntesis, lo primero que debemos resolver es la operación que se encuentra dentro del paréntesis, posteriormente se resuelve la potencia del resultado obtenido.

Observemos el siguiente caso:

(6 + 2)3 

Lo primero es resolver la operación dentro del paréntesis:

6 + 2 = 8

Luego se reemplaza el resultado obtenido en la operación ubicada dentro del paréntesis:

(8)3 

Al resolver dicha potencia obtenemos el resultado del problema:

(8)3 = 8 × 8 × 8 = 512

De esta forma tenemos que:

(6 + 2)3  512

Conocer las propiedades de las potencias permite resolver problemas de este tipo de forma rápida. Por ejemplo, si tenemos (100 + 93)0 podemos responder rápidamente que el resultado es 1 sin realizar ningún cálculo. Esto se debe a que una de las propiedades indica que la potencia de todo número diferente de cero que tenga exponente cero va a ser igual a uno.

¡A practicar!

1. Resuelve las siguientes potencias.

a. 5^{3}

b. 7^{4}

c. 2^{6}

d. 4^{5}

e. 5^{0}

f. 9^{2}

g. 2^{1}

RESPUESTAS

a. 5^{3}= 125

b. 7^{4}= 2.401

c. 2^{6} = 64

d. 4^{5}= 1.024

e. 5^{0}= 1

f. 9^{2}= 81

g.2^{1} = 2

2. Escribe cómo deberían leerse las siguientes potencias.

a. 8^{7}

b. 3^{4}

c. 4^{3}

d. 9^{5}

e. 6^{6}

f. 1^{2}

RESPUESTAS

a. 8^{7} = ocho elevado a la séptima.

b. 3^{4} = tres elevado a la cuarta.

c. 4^{3} = cuatro elevado al cubo.

d. 9^{5} = nueve elevado a la quinta.

e. 6^{6} = seis elevado a la sexta.

f. 1^{2} = uno elevado al cuadrado.

3. Resuelve los siguientes cálculos.

a. 5^{2}+9

b.\left ( 15-3 \right )^{1} 

c. \left ( 2\times 5 \right )^{3}

RESPUESTAS

a. 5^{2}+9= 25 + 9 = 34

b. \left ( 15-3 \right )^{1}= (12)^{1} = 12

c. \left ( 2\times 5 \right )^{3}= (10)^{3} = 1.000

RECURSOS PARA DOCENTES

Artículo destacado “Potenciación: operaciones de exponentes”

El siguiente artículo ayuda a conocer cómo leer y resolver las operaciones básicas de las potencias. De igual forma, explica sus propiedades.

VER

Artículo destacado “Ejercicios de potenciación”

Este artículo está enfocado en la forma de resolver problemas relacionados con las potencias a través del empleo de sus propiedades.

VER

CAPÍTULO 5 / TEMA 6

Aplicación de la geometría

La geometría se encuentra inmersa dentro de diferentes ciencias y situaciones de la vida. Muchos desarrollos de la actualidad no se habrían logrado sin los aportes de la geometría. La astronomía, la computación y la cartografía son algunos de los muchos campos donde la geometría es empleada. 

Cálculo de área de una superficie

Para el cálculo de superficies usamos las fórmulas de área de las principales figuras geométricas. Las principales fórmulas son las siguientes:

Nombre Figura Área
Cuadrado \boldsymbol{A = l^{2}}

 

Donde:

A = área

l = lado

Rectángulo \boldsymbol{A = a\times b}

 

Donde:

A = área

a = altura

b = base

Triángulo \boldsymbol{A = \frac{b\times h}{2}}

 

Donde:

A = área

b = base

h = altura

Rombo \boldsymbol{A = \frac{D\times d}{2}}

 

Donde:

A = área

D = diagonal mayor

d = diagonal menor

Paralelogramo \boldsymbol{A = b\times h}

 

Donde:

A = área

b = base

h = altura

Trapecio \boldsymbol{A = \left (\frac{a+ b}{2} \right )\times h}

 

Donde:

a = base menor

b = base mayor

h = altura

Círculo \boldsymbol{A = \pi \times r^{2}}

 

Donde:

A = área

π = número pi

r = radio

Polígono regular \boldsymbol{A = \frac{n\times b\times Ap}{2}}

 

Donde:

A = área

n = número de lados regulares

b = longitud de un lado

Ap = apotema

Las figuras compuestas

Una figura compuesta es aquella que está formada por dos o más figuras geométricas más simples. Para calcular el área de estas figuras se suelen calcular las áreas de las figuras más simples por separado y la sumatoria de estas será el área total de la figura. Por otra parte, para el cálculo de perímetro suelen usarse ecuaciones trigonométricas, y teoremas como el de Pitágoras para calcular las longitudes de los lados de la figura.

Ejercicios

– Una cancha de fútbol mide 105 metros de largo y 68 metros de ancho. ¿Cuántos metros cuadrados de césped artificial se necesitarían para cubrir toda la cancha?

Es un problema de área porque al calcular los metros cuadrados de césped artificial que se necesitan, se calcula la superficie. Como todos sabemos, una cancha de fútbol tiene una forma rectangular, por lo tanto se debe aplicar la fórmula del rectángulo:

A = a\times b
A = 105\, m\times 68\, m
A = \mathbf{7.140\, m^{2}}

Por lo tanto, para cubrir toda la cancha se necesitarían 7.140 m2 de césped artificial.


– La siguiente figura muestra el plano de una casa. ¿Cuántos metros cuadrados de cerámica se necesitan para cubrir el piso?

El piso de la casa forma una figura compuesta. Por lo tanto, antes de resolver el problema debemos separarlo en formas geométricas más simples:

La figura 1 corresponde a un rectángulo y la figura 2 a un cuadrado (ya que sus cuatro lados miden lo mismo). El área total del piso será igual a:

A_{t} = A_{1}+A_{2}

Donde:

At = área total del piso

A1 = área de la figura 1

A2 = área de la figura 2

Por lo tanto, para calcular el problema tenemos que resolver las áreas por separado:

En la figura 1 se cumple que:

A_{1} = a\times b

A_{1} = 13\, m\times 5\, m

A_{1} = 65\, m^{2}

En la figura 2 se cumple que:

A_{2} = l^{2}

A_{2} = (10\, m)^{2}

A_{2} = 100\, m^{2}

Al reemplazar los valores de A1 y A2 se tiene que:

A_{t} = 65\, m^{2}+100\, m^{2}

A_{t} = \mathbf{165\, m^{2}}

Por lo tanto, el piso de la casa necesita 165 m2 de cerámica para cubrirlo.

¿Sabías qué?
La hectárea (ha) es una medida de área que equivale a 10.000 m2.

Cálculo de volumen de un cuerpo

Todo cuerpo ocupa un lugar en el espacio. Se denomina volumen. Como ya sabemos, los principales cuerpos geométricos se calculan a través de fórmulas:

Nombre Figura Fórmula de volumen
Cubo \boldsymbol{V=l^{3}}

 

 

Donde:

V = volumen

l = lado

Prisma \boldsymbol{V = A_{b}\times h}

 

 

Donde:

V = volumen

Ab = área basal

h = altura

Pirámide \boldsymbol{V = \frac{A_{b}\times h}{3}}

 

 

Donde:

V = volumen

Ab = área basal

h = altura

Cilindro \boldsymbol{V =\pi \times r^{2}\times h}

 

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

h = altura

Cono \boldsymbol{V =\frac{\pi \times r^{2}\times h}{3}}

 

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

h = altura

Esfera \boldsymbol{V =\frac{4}{3}\times \pi \times r^{3}}

 

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

En el caso de las pirámides y los primas, las formas de sus bases pueden ser diferentes.

Estas ecuaciones pueden aplicarse a figuras similares para resolver diferentes problemas.

Ejercicios

– Calcula el volumen de la Gran Pirámide de Guiza, cuya base es un cuadrado de aproximadamente 230 m cada lado y de altura mide aproximadamente 186 m.

La fórmula para calcular el volumen de una pirámide es la siguiente:

V = \frac{A_{b}\times h}{3}

Lo primero es calcular el valor de Ab que es el área de la base. En este caso, su base es un cuadrado de 230 metros de cada lado. Por lo tanto:

A_{b} = l^{2}

A_{b} = (230\, m)^{2}

A_{b} = 52.900 \, m^{2}

Reemplazamos el valor del área de la base y el de la altura (que es 186 m) en la fórmula:

V = \frac{52.900\, m^{2}\times 186\, m}{3}

V = \frac{9.839.400\, m^{3}}{3}

V = \mathbf{3.279.800\, m^{3}}

El volumen aproximado de la pirámide de Guiza es de 3.279.800 m3 (si se considera la pirámide como un cuerpo rígido sin cámaras interiores).


– Calcula el volumen de una canica de 2 centímetros de diámetro.

La forma de una canica es igual a la de una esfera por lo tanto se utiliza la siguiente ecuación:

V =\frac{4}{3}\times \pi \times r^{3}

El problema nos dice que el diámetro de la canica es de 2 cm, pero la fórmula está expresada en función del radio. Como ya sabemos, el radio es la mitad del diámetro, por lo tanto, el radio de la canica es de 1 cm.

V =\frac{4}{3}\times \3,14 \times (1\, cm)^{3}

V =\frac{4}{3}\times \3,14 \times 1\, cm^{3}

V =\mathbf{4,18\, cm^{3}}

La leyenda de la corona

Hay una leyenda popular que cuenta cómo el rey Hieron II de Siracusa le encomendó al reconocido matemático griego Arquímedes que comprobara si la corona que había mandado a hacer era de oro puro o no. Arquímedes pasó mucho tiempo sin resolver el misterio y estaba frustrado hasta que un día, al meterse a la bañera, se percató que el agua que se desplazaba tenía el mismo volumen de su cuerpo. Enseguida dio un salto al tiempo que decía la frase “¡Eureka!”.

Posteriormente le demostró al rey que el volumen desplazado por la corona debía ser el mismo que el desplazado por un lingote de oro puro de la misma masa. Cuando realizó el experimento, la cantidad de agua desplazada no fue la misma y concluyó que la corona no era de oro puro.

Otros usos

Desde su aparición, la geometría ha permitido al ser humano destacarse en varios campos como la arquitectura, la escultura, la pintura y, por su puesto, en las ciencias aplicadas como la física o la química. Disciplinas como la ingeniería aplican la geometría para el cálculo de ángulo y otras medidas. La química emplea la geometría para entender las estructuras moleculares, la agrupación de los átomos y la forma de los cristales de algunos compuestos, entre otros usos.

En el ámbito de la cartografía y la agronomía, se aplica la geometría para determinar áreas, calcular perímetros y planos de terrenos. La astronomía y la computación son otras áreas que emplean conocimientos geométricos.

La geometría y la arquitectura

La arquitectura clásica no habría podido lograr obras de singular belleza o armonía sin hacer uso de conocimientos geométricos. En la actualidad, los arquitectos emplean la geometría para lograr estructuras que se vean bien estéticamente, que permitan un ahorro de materiales y un mejor aprovechamiento de los espacios.

¡A practicar!

1. Una fábrica de quesos compró una granja de 14.300 m2. ¿Cuáles son las medidas de la granja?

a) 150 m × 100 m
b) 130 m × 110 m
c) 40 m × 10 m
d) 280 m × 100 m

Solución
b) 130 m × 110 m

2. Un tablero de ajedrez mide 44 cm de alto y 44 cm de ancho, ¿cuál es el área del tablero?

a) 88 cm2
b) 1.936 cm2
c) 4.404 cm2
d) 3.854 cm2

Solución
b) 1.936 cm2

3. Una empresa inmobiliaria trabaja con propiedades que no superan los 20.000 m2. ¿Cuál de las siguientes propiedades no cumple con este requisito de la empresa inmobiliaria?

a) Casa de playa de 155 m de ancho por 84 m de alto.
b) Departamento en la ciudad de 18 m de ancho por 14 m de alto.
c) Cabaña en la montaña de 320 m de ancho por 124 m de alto.
d) Chalet de 24 m de ancho por 20 m de alto.

Solución
c) Cabaña en la montaña de 320 m de ancho por 124 m de alto. El área de esta propiedad es de 39.680 m2, por lo tanto, supera los 20.000 m2 aceptados por la inmobiliaria.

4. Una pelota de fútbol tiene 22 cm de diámetro, ¿cuál es su volumen?

a) 2026,34 cm3
b) 44 cm3
c) 220 cm3
d) 5.572,45 cm3

Solución
d) 5.572,45 cm3

5. Una lata de tomates es cilíndrica y tiene una altura de 9 cm y un radio de 3 cm, ¿cuál es su volumen?

a) 384,35 cm3
b) 127,17 cm3
c) 954.44 cm3
d) 506,58 cm3

Solución
c) 254.34 cm3

RECURSOS PARA DOCENTES

Artículo “Los números ocultos en el universo”

El artículo trata de mostrar cómo la mayoría de los fenómenos del universo pueden explicarse a través de los números. También explica algunas formas geométricas que podemos encontrar en nuestro planeta.

VER

Enciclopedia “Nana y Enriqueta en el país de las matemáticas”

En este tomo, se platean los principales elementos de la geometría de una manera didáctica y sencilla. También se dan ejemplos y aplicaciones de la geometría.

VER

Artículo “Superficies de figuras geométricas”

El artículo plantea el cálculo de superficie de las principales figuras geométricas. También resuelve una serie de ejercicios y muestra al final algunos problemas propuestos.

VER

CAPITULO 5 / TEMA 5

Circunferencia y círculo

El círculo es la superficie contenida dentro de una circunferencia. En algunas ocasiones suelen confundirse estos términos por error, pero lo cierto es que gozan de características únicas que desde tiempos antiguos han cautivado a los matemáticos. Su conocimiento es importante para entender conceptos como el número pi.

Diferencia entre la circunferencia y el círculo

Aunque son conceptos que están estrechamente relacionados, circunferencia y círculo son dos cosas geométricamente diferentes. La circunferencia es la línea o perímetro que bordea y delimita la superficie de un círculo. Todos los puntos de la circunferencia se encuentran a una misma distancia del centro. El círculo, por otra parte, es una figura geométrica que está delimitada por una circunferencia.

¿Sabías qué?
El matemático griego Eratóstenes de Cirene fue la primera persona en calcular la circunferencia de la Tierra en el 230 a. C.

En este sentido, cuando hablamos de circunferencia nos referimos a una curva cerrada y cuando hablamos de círculo nos referimos a una superficie o área que está contenida dentro de una circunferencia.

Instrumento muy útil

Desde su invención en el año 200 a. C. por parte de los chinos, el compás ha sido uno de los inventos más usados en la geometría y en otras áreas. Su utilidad ha ido más allá del trazado de arcos y circunferencias, también permite transportar medidas y puede emplearse en la construcción de polígonos y en el cálculo de distancias empleado por la navegación.

Elementos de la circunferencia

Los elementos principales de una circunferencia se detallan a continuación:

  • Centro: es el punto que se ubica a la misma distancia de todos los puntos que conforman la circunferencia.
  • Radio: es el segmento de recta que une al centro con cualquiera de los puntos de la circunferencia.
  • Cuerda: es la recta que une dos puntos de la circunferencia.
  • Diámetro: es el segmento de recta que une dos puntos de la circunferencia y pasa por el centro. Su longitud es igual al doble del radio.
  • Semicircunferencia: es la mitad de la circunferencia. El diámetro divide a la circunferencia en dos semicircunferencias.
  • Arco: es una porción de la circunferencia que se encuentra delimitada por una cuerda. Generalmente, a cada cuerda se le asocia el menor arco que delimita.

Relaciones entre rectas y circunferencias

Entre una circunferencia y una recta pueden darse tres tipos diferentes de relación:

  • Recta exterior: es aquella recta que nunca corta a la circunferencia.
  • Recta tangente: es aquella recta que corta a la circunferencia en uno de sus puntos.
  • Recta secante: es aquella recta que corta a la circunferencia en dos de sus puntos.

VER INFOGRAFÍA

Desde la Antigüedad, los geómetras se enfocaron en calcular la longitud de la circunferencia. Esta línea curva cerrada sin importar su tamaño siempre mide algo más que el triple de su diámetro. En este contexto, se emplea el número pi (π), un número con infinitos decimales que se obtiene al dividir la longitud de la circunferencia por su diámetro.

Trazado de circunferencias

Para trazar circunferencias empleamos el compás y debemos seguir los siguientes pasos:

  1. Conocer la distancia que hay desde el centro de la circunferencia hasta alguno de sus puntos (el radio). Para esto puedes usar una regla y abrir el compás a dicha distancia. Otra forma de hacerlo es trazar el segmento de recta igual a la longitud del radio deseado, colocar la aguja de acero sobre uno de los extremos y abrir el compás hasta que la mina de grafito toque el otro extremo.
  2. Apretar con suavidad la aguja de acero contra el papel para que no se mueva y girar el otro brazo de forma firme para trazar la circunferencia.
  3. Marcar el centro de la circunferencia que será el mismo punto donde se apoyó la aguja de acero durante el trazado de la circunferencia.

Área del círculo

Para calcular el área de un círculo simplemente necesitamos conocer la longitud de su radio. La fórmula es la siguiente:

A=\pi \times r^{2}

Donde:

A = área del círculo
π = número pi
r = longitud del radio

Como el número pi (π) es un número irracional, sus decimales son infinitos (3,141592653589793238…), por lo tanto, para efectos de cálculo de área se suele aproximar a 3,14.

¿Sabías qué?
Existe otra fórmula para calcular el área del círculo en función de su diámetro: A = \frac{\pi }{4}\times d^{2}.

– Calcula el área del siguiente círculo.

De acuerdo a la figura, la longitud del radio es 5 cm, por lo tanto, podemos aplicar la fórmula de área.

A=\pi \times r^{2}

A=3,14 \times (5 \, cm)^{2}

A=3,14 \times 25 \, cm^{2}

A=\mathbf{78,5 \, cm^{2}}

El sistema sexagesimal es uno de los sistemas usados para medir ángulos y tiempo. En el caso de los ángulos, el sistema emplea una circunferencia para establecer sus unidades de medición. Un grado (°) equivale a la 360 parte de una circunferencia, un minuto (′) equivale a la 60 parte de un grado y un segundo (″) equivale a la 60 parte de un minuto.

¡A practicar!

1. Calcula el área de los siguientes círculos.

a) 

Solución
A = 50,24 cm2

b)

Solución
A = 254,34 cm2

c)

Solución
A = 12,56 m2

d)

Solución
A = 314 mm2

e)

Solución
A =153,86 cm2

2. ¿Cuánto debe medir el radio de una circunferencia para que su área sea igual a 113,04 cm2?
a) 5 cm
b) 3 cm
c) 6 cm
d) 11 cm

Solución
c) 6 cm

RECURSOS PARA DOCENTES

Artículo “Circunferencia”

El artículo explica los elementos principales de la circunferencia y la relación que tiene esta con el número pi. En el artículo también se explica como calcular la longitud de una circunferencia y determinar el área de un círculo.

VER

Artículo “Círculo”

El artículo plantea de forma resumida cada uno de los elementos de un círculo como el semicírculo y el segmento circular. También presenta ilustraciones de cada uno para explicar el concepto de manera más clara.

VER

Infografía “Número pi (π)”

En esta infografía se explica más a detalle qué es el número pi, su desarrollo a través del tiempo y las diferentes aplicaciones del mismo.

VER

CAPÍTULO 5 / TEMA 4

Cuerpos geométricos

Uno de los objetos de estudio de la geometría son los cuerpos geométricos. Una pelota de fútbol, un cono de helado o un dado son algunos objetos cotidianos que podemos asociar con estos cuerpos, los cuales se caracterizan por ocupar volumen en el espacio y estar formados con figuras geométricas.

Principales cuerpos geométricos

Los cuerpos geométricos son infinitos y cada uno posee características propias. Los más comunes son el cubo, el prisma, la pirámide, el cilindro, el cono y la esfera. Ellos se clasifican en poliedros y cuerpos redondos.

  • Los poliedros son cuerpos geométricos. Todas sus caras son planas. Estos, a su vez, pueden ser regulares si sus caras son todas iguales o irregulares cuando son diferentes. Un ejemplo de poliedro es el cubo.
  • Los cuerpos redondos son cuerpos geométricos con al menos una cara curva, como sucede con el cilindro.

VER INFOGRAFÍA

¿Sabías qué?
Al cubo también se lo denomina hexaedro regular.

Elementos de los cuerpos geométricos

En la mayoría de los cuerpos geométricos se pueden identificar los siguientes elementos.

  • Cara: corresponde a cada una de las superficies planas que delimitan al cuerpo geométrico. Pueden ser caras basales, las que sirven de apoyo (base) al cuerpo en el plano, o caras laterales, que corresponden a las de los costados.
  • Vértice: es el punto en el que se juntan tres o más caras.
  • Arista: es el segmento de línea que se forma cuando dos caras se juntan.
La esfera y sus curiosidades

La esfera es un cuerpo geométrico que no posee ni caras, ni aristas ni vértice. Y se caracteriza porque todos los puntos de su superficie están a la misma distancia del centro.

Volumen de cuerpos geométricos

De acuerdo a su tipo, cada cuerpo geométrico tiene características propias que permiten calcular su volumen a través de fórmulas.

Nombre Figura Fórmula de volumen
Cubo \boldsymbol{V=l^{3}}

 

Donde:

V = volumen

l = lado

Prisma \boldsymbol{V = A_{b}\times h}

 

Donde:

V = volumen
Ab = área basal

h = altura

Pirámide \boldsymbol{V = \frac{A_{b}\times h}{3}}

 

Donde:

V = volumen

Ab = área basal

h = altura

Cilindro \boldsymbol{V =\pi \times r^{2}\times h}

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

h = altura

Cono \boldsymbol{V =\frac{\pi \times r^{2}\times h}{3}}

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

h = altura

Esfera \boldsymbol{V =\frac{4}{3}\times \pi \times r^{3}}

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

h = altura

VER INFOGRAFÍA

– Calcula el volumen de este cubo.

Un cubo se caracteriza porque todos sus lados miden lo mismo, de manera que al conocer solo la medida de un lado se puede aplicar la fórmula:

V=l^{3}

V=(3\, cm)^{3}

V=\mathbf{27\, cm^{3}}

Calcula el volumen del siguiente cilindro.

Según la fórmula, los únicos datos que se necesitan son el radio del cilindro y su altura. De la imagen se obtienen los datos:

V =\pi \times r^{2}\times h

V =\pi \times (2\, cm)^{2}\times 6\, cm

En este caso observa que el radio está elevado al cuadrado, por lo tanto, al resolver esa potencia las unidades también se verán afectadas, por lo que quedarán centímetros cuadrados:

V =\pi \times 4\, cm^{2}\times 6\, cm

El número pi (π) es un número irracional, por lo cual es infinito. Para efectos de estos cálculos, usaremos solamente 2 de sus decimales, es decir, lo aproximamos a 3,14.

V =3,14 \times 4\, cm^{2}\times 6\, cm

Al resolver este producto se obtiene el volumen del cilindro.

V =\mathbf{75,36\, cm^{3}}

¿Sabías qué?
Cuando se usan múltiplos o submúltiplos del metro, el volumen siempre se expresa en unidades cúbicas: m3, cm3, mm3, km3, etc.
Los prismas son poliedros cuyos lados laterales son paralelogramos y con dos caras paralelas e iguales denominadas bases. Reciben su nombre de acuerdo a la forma de su base, por ejemplo, si su base es un triángulo, se denomina prisma triangular, si es un pentágono se denomina prisma pentagonal y así sucesivamente. Un paralelepípedo es un prisma cuya base es un paralelogramo.

Construcción de cuerpos geométricos

Los cuerpos geométricos tienen volumen y, por lo tanto, se pueden representar en tres dimensiones: largo, alto y ancho. Las imágenes a continuación son patrones que puedes usar para construir los cuerpos geométricos más comunes:

Cubo

Prisma rectangular

Pirámide

Cilindro

Cono

La construcción de cuerpos geométricos, además de su gran utilidad al momento de representar a estas figuras, permite trasladar estos conocimientos a otras áreas como la arquitectura y la ingeniería, en las cuales se realizan diseños a escalas. Conocer las diferentes fórmulas de cálculo y volumen de las figuras es fundamental para realizar operaciones más avanzadas.

¡A practicar!

1. Calcula el volumen de los siguientes cuerpos geométricos.

a)

      *La base es un rectángulo.

Solución
V = 133,33 cm3

b)

Solución
V = 64 cm3

c)

Solución
V = 904,32 cm3

d) 

Solución
V = 33,49 cm3

e)

Solución
V = 96 cm3

f)

Solución
V = 62,8 cm3

RECURSOS PARA DOCENTES

Artículo “Poliedros irregulares”

El artículo explica qué es un poliedro y qué caracteriza a los irregulares. También hace una breve explicación de los sólidos platónicos y muestra algunos ejemplos.

VER

Infografía “Cuerpos redondos”

La infografía explica de manera sencilla qué es un cuerpo redondo, sus características y su presencia en la vida cotidiana.

VER

Artículo “Volumen de figuras geométricas”

En este artículo destacado se explica qué es el volumen y cómo calcularlo en los diferentes cuerpos geométricos. También se plantean una serie de problemas resueltos y de ejercicios planteados.

VER

CAPÍTULO 5 / TEMA 3

Polígonos

Podemos observar polígonos en múltiples objetos de nuestro alrededor. Estos son muy diversos y los hay con lados y ángulos iguales o desiguales entre sí. Son elementos fundamentales de la geometría y su conocimiento es esencial en diversos campos del conocimiento, como la ingeniería o la arquitectura.

¿Qué es un polígono?

En geometría, un polígono es una figura geométrica plana delimitada por un número finito de segmentos rectos.

¿Sabías qué?
La palabra “polígono” proviene del griego antiguo que quiere decir “muchos ángulos”.

Los polígonos presentan los siguientes elementos:

  • Lados: son los segmentos rectos que conforman al polígono.
  • Vértices: son los puntos en común entre dos lados consecutivos.
  • Diagonales: son los segmentos que unen a dos lados no consecutivos de un polígono.
  • Ángulos interiores: están formados por dos lados consecutivos en el interior del polígono.
  • Ángulos exteriores: están formados en el exterior del polígono entre un lado y la prolongación de otro lado consecutivo.

Polígonos regulares y sus tipos

Un polígono regular tiene lados con la misma longitud. Se caracterizan también porque sus ángulos internos y externos también son iguales. Otra característica es que poseen la misma cantidad de ejes de simetrías que de lados. Las diagonales en este tipo de polígonos tienen la misma longitud y siempre son interiores.

Polígono Número de lados Número de diagonales Medida de cada ángulo interno Medida de cada ángulo externo
Triángulo equilátero 3 0 60° 120°
Cuadrado 4 2 90° 90°
Pentágono 5 5 108° 72°
Hexágono 6 9 120° 60°
Heptágono 7 14 128,57° 51,43°
Octágono 8 20 135° 45°
Eneágono 9 27 140° 40°
Decágono 10 35 144° 36°
Endecágono 11 44 147,27° 32,73°
Dodecágono 12 54 150° 30°

VER INFOGRAFÍA

El círculo y los polígonos

Todo polígono regular puede estar circunscrito en una circunferencia, lo que quiere decir que cada uno de sus vértices corresponde a un punto de la circunferencia. Mientras más lados tenga el polígono, más se va a aproximar a la forma de la circunferencia. Por esta razón, se asocia a la circunferencia (de forma informal) a un polígono de infinitos lados.

Área de polígonos regulares

Para medir el área de los polígonos es necesario conocer las definiciones de perímetro y apotema.

  • Perímetro: es la suma de los lados que forman una figura geométrica. En el caso de los polígonos regulares, se calcula al multiplicar el número de lados por la longitud de uno de sus lados.

P= n\times L

Donde:

P: perímetro
n: número de lados del polígono regular.
L: longitud de uno de los lados del polígono.

  • Apotema: es la distancia perpendicular desde el centro de un polígono hasta uno de sus lados.

El área de un polígono regular se define como el producto de su perímetro por la apotema (a) dividido entre dos.

A = \frac{P\times a}{2}

Donde:

A: área

P: perímetro

a: apotema

 

– Ejemplo:

Calcular el área de un pentágono cuyos lados miden 6 cm y su apotema es de 4,13 cm.

Lo que debemos hacer es calcular primero el perímetro para luego sustituir en la fórmula junto con la apotema para calcular el área.

P= n\times L
P= 5\times 6\, cm
P= 30\, cm

El perímetro del apotema es 30 cm, al sustituir en la fórmula de área nos queda:

A = \frac{30\, cm\times 4,13\,cm }{2}

A = \frac{123,9\,cm^{2} }{2}

A = \mathbf{61,95\, cm^{2}}

El área del pentágono es de 61,95 cm2.

¿Sabías qué?
El Departamento de Defensa de los Estados Unidos es un edificio en forma de Pentágono que mide 140.000 metros cuadrados aproximadamente.
Debido a sus características geométricas, todo polígono regular puede estar inscrito o circunscrito a una circunferencia. Un polígono inscrito tiene todos sus vértices contenidos en la circunferencia. Por otro lado, un polígono circunscrito posee todos sus lados tangentes a la circunferencia. En ambos casos, el centro del polígono coincide con el centro de la circunferencia.

Polígonos irregulares y sus tipos

En los polígonos irregulares se pueden cumplir algunas de estas condiciones:

– Tener sus lados con igual longitud pero sus ángulos internos diferentes.
– Tener sus ángulos de igual medida pero sus lados con diferente longitud.
– Tener sus lados con diferente longitud y sus ángulos internos con diferente medida.

Ejemplos de polígonos irregulares

  • Rombo

El rombo tiene los cuatro lados con igual longitud pero sus cuatro ángulos internos son diferentes: solo los ángulos opuestos de este polígono son iguales. Por eso se trata de un polígono irregular.

  • Rectángulo (no cuadrado)

Es un cuadrilátero con sus cuatro ángulos iguales (90°), pero sus lados tienen diferente longitud entre sí. Solo los lados paralelos comparten la misma longitud.

  • Triángulo (no equilátero)

Todo triángulo con un ángulo interior diferente de 60 grados es un polígono irregular.

Triángulos regulares e irregulares

Según sus lados, los triángulos se clasifican en equiláteros, isósceles y escalenos. Los equiláteros son los únicos triángulos que cumplen con las características de un polígono regular. Los triángulos escalenos son aquellos en los que las longitudes de sus lados y la medida de sus ángulos internos son diferentes, por lo tanto no son polígonos regulares. Por otra parte, los triángulos isósceles al contar solo con dos lados y dos ángulos iguales tampoco son considerados como polígonos regulares.

Perímetro de polígonos

Calculamos el perímetro de los polígonos regulares a través de la fórmula planteada anteriormente:

P= n\times L

En cambio, en los polígonos irregulares, cuyos lados generalmente son diferentes, esta ecuación no siempre aplica. Para lo cual debemos sumar de forma separada las longitudes de cada uno de los lados.

P= L_{1}+L_{2}+L_{3}+...+L_{n}

Por ejemplo, para calcular el perímetro del siguiente triángulo isósceles simplemente sumamos cada una de las longitudes de sus lados.

P= 60\,\, cm+60\,\, cm+40\,\, cm

P= \mathbf{160\,\, cm}

El perímetro de este triángulo irregular es de 160 cm.

 

¡A practicar!

1. Determina el perímetro y el área de los siguientes polígonos regulares según los datos mostrados.

a) Un eneágono regular cuyos lados miden 7 cm y su apotema 9,62 cm.

Solución
P = 63 cm
A = 303,03 cm2

b) Un pentágono regular cuyos lados miden 6 cm y su apotema 4,13 cm.

Solución
P = 30 cm
A = 61,95 cm2

c) Un heptágono regular cuyos lados miden 8 cm y su apotema 8,31.

Solución
P = 56 cm
A = 232,68 cm2

d) Un triángulo regular (equilátero) cuyos lados miden 5 cm y su apotema 1,44 cm.

Solución
P= 15 cm
A = 10,8 cm2

e) Un decágono regular cuyos lados miden 3 cm y su apotema 4,62 cm.

Solución
P= 30 cm
A = 69,3 cm2

f) Un dodecágono regular cuyos lados miden 4 cm y su apotema 7,46 cm.

Solución
P= 48 cm
A = 179,04 cm2

g) Un hexágono regular cuyos lados miden 7 cm y su apotema 6,06 cm.

Solución
P= 42 cm
A = 127,26 cm2

h) Un octágono regular cuyos lados miden 2 cm y su apotema 2,41 cm.

Solución
P= 16 cm
A = 19,28 cm2

i) Un endecágono regular cuyos lados miden 3 cm y su apotema 5,11 cm.

Solución
P= 33 cm
A = 84,315 cm2

j) Un cuadrado cuyos lados miden 4 cm y su apotema 2 cm.

Solución
P= 16 cm
A = 16 cm2

 

2. ¿A qué polígono con una apotema de 4,33 cm le corresponde un área de 64,95 cm2.

a) Un decágono de 2 cm de lado.
b) Un hexágono de 5 cm de lado.
c) Un pentágono de 7 cm de lado.
d) Un octágono de 4 cm de lado.

Solución
b) Un hexágono de 5 cm de lado.

 

3. ¿Qué polígono irregular tiene sus lados de igual longitud pero sus ángulos internos son diferentes?

a) Círculo
b) Cuadrado
c) Rectángulo
d) Rombo

Solución
d) Rombo

RECURSOS PARA DOCENTES

Artículo “Perímetro de los polígonos”

Este artículo define qué es un polígono, cuáles son sus clasificaciones y cómo se calcula su el perímetro. También plantea una serie de ejercicios para resolver.

VER

Artículo “Cuadriláteros”

Este recurso explica los diferentes tipos de cuadriláteros que existen y sus características principales.

VER

Micrositio “Tarjetas Educativas – Geometría y medidas”

En este micrositio se puede encontrar una serie de tarjetas interactivas que resumen los elementos principales de la geometría, como los polígonos y sus principales características.

VER

CAPÍTULO 5 / TEMA 2

Ángulos

Los ángulos están presentes en la mayoría de las figuras geométricas y en nuestra vida cotidiana. Se los considera indispensables para realizar cálculos trigonométricos y estudios en balística, arquitectura e ingeniería. De acuerdo a su amplitud, los ángulos se clasifican en varios tipos.

El ángulo y sus elementos principales

Un ángulo es una región del plano comprendida por dos semirrectas que tienen un origen en común. Los elementos de un ángulos son los siguientes:

  • Vértice: es el punto en común de las dos semirrectas.
  • Lados: son las dos semirrectas que conforman al ángulo.
  • Amplitud: es la medida de abertura de los lados de un ángulo. Esta medida usualmente se lee en grados sexagesimales.

¿Sabías qué?
Los ángulos suelen nombrarse con letras del alfabeto griego.

El sistema sexagesimal

Se usa principalmente para medir el tiempo y los ángulos. En este último caso, las unidades que emplea son grados, minutos y segundos. Al dividir un ángulo llano en 180 partes iguales, una de esas partes equivale a un grado (°). Si se divide un grado en sesenta partes iguales, una de esas partes equivale a un minuto (′). Y si el minuto se divide en 60 partes iguales, una de esas partes corresponde a un segundo (″). En resumen:

1° = 60′
1′ = 60″

Observa que este sistema emplea como base el número 60 y de ahí viene el origen de su nombre. El instrumento usado para su medición es el transportador.

VER INFOGRAFÍA

Clasificación de los ángulos

Los ángulos pueden clasificarse en:

  • Ángulo nulo: cuando mide 0°.
  • Ángulo agudo: cuando es mayor que 0° pero menor que 90°.
  • Ángulo recto: cuando mide exactamente 90°.
  • Ángulo obtuso: cuando es mayor de 90° pero menor que 180°.
  • Ángulo llano: cuando mide exactamente 180°.
  • Ángulo completo: cuando mide 360°.

Ángulos complementarios

Dos ángulos son complementarios si al ser sumados el resultado es igual a 90°. Al saber el valor de uno de los ángulos puedes calcular el valor del otro al restar 90° al ángulo conocido.

– Ejemplo:

Se tienen los ángulos complementarios α y β. El valor de β es de 35°. Calcula el valor de α.


Simplemente debes resolver la resta:

\boldsymbol{\alpha =90^{\circ}-\beta}

\boldsymbol{\alpha =90^{\circ}-35^{\circ}}

\boldsymbol{\alpha =55^{\circ}}

Por lo tanto el valor de α es 55°.

Ángulos suplementarios

Dos ángulos son suplementarios si al ser sumados el resultado es igual a 180°. Al igual que en el caso anterior puedes determinar el valor de un ángulo de este tipo si conoces el valor de otro y lo restas a 180°.

– Ejemplo:

Se tienen los ángulos suplementarios θ y δ. El valor de θ es de 160°. Calcular el valor de δ.

Resuelve la resta:

\boldsymbol{\delta =180^{\circ}-\theta}

\boldsymbol{\delta =180^{\circ}-160^{\circ}}

\boldsymbol{\delta =20^{\circ}}

El valor de δ es 2.

Medida de un ángulo

La medición de los ángulos se realiza a menudo a través de un transportador, el cual puede ser de dos tipos: circular o semicircular. El circular mide los 360° de la circunferencia y el semicircular mide los 180°. Ambos transportadores cuentan con una marca en el centro que se debe colocar en el vértice del ángulo a medir. El 0° de la escala debe coincidir con uno de los lados del ángulo y la lectura del ángulo sería la que indica el otro lado en la escala.

Los transportadores suelen presentar dos numeraciones que van en diferentes sentidos según se lea el ángulo: en sentido horario (en el sentido de las manecillas del reloj) o en sentido antihorario.

Existe el convencionalismo de que los ángulos que se miden en sentido horario se consideran positivos mientras que los que se leen en sentido antihorario se consideran negativos. En el ámbito matemático, el enfoque se orienta más a la abertura de los ángulos. Otro dato importante es que aunque los transportadores son útiles, existen otros instrumentos más precisos como el goniómetro.

Los ángulos en las figuras planas

Las figuras planas poseen ángulos interiores y ángulos exteriores. Los ángulos interiores, como su nombre lo indica, se ubican en el interior de la figura, mientras que los exteriores se ubican entre un lado de la figura y el otro lado siguiente. Por ejemplo:

Cálculo de ángulos internos en triángulos

Los ángulos interiores de los triángulos siempre suman 180°. De manera que si conoces la medida de dos de sus ángulos internos puedes calcular la medida del tercero. Lo único que debes hacer es restar los valores de los ángulos conocidos a 180°. Por ejemplo:

– Calcula el valor del ángulo θ.

Como ya sabes, la sumas de los ángulos internos de un triángulo es igual a 180°, entonces, si restas los valores de los ángulos conocidos a 180° obtendrás el valor de Θ:

\boldsymbol{\theta = 180^{\circ}-\alpha -\beta}
\boldsymbol{\theta = 180^{\circ}-65^{\circ} -67^{\circ}}
\boldsymbol{\theta = 48^{\circ}}

El valor del ángulo θ es 48°.

¿Sabías qué?
La suma de los ángulos externos de un triángulo es igual a 360°.

Cálculo de ángulos internos en cuadriláteros

En el caso de los cuadriláteros se cumple que la suma de sus cuatro ángulos internos siempre es igual a 360°. De acuerdo al tipo de cuadrilátero el valor del ángulo puede variar. Por ejemplo, en el caso del cuadrado y del rectángulo sus cuatro ángulos internos son iguales y miden 90°. En el caso del rombo y del romboide sus ángulos opuestos son iguales. Si el trapecio es rectángulo posee dos ángulos consecutivos que miden 90°. Si es isósceles tiene los ángulos adyacentes a la base mayor con la misma medida y si el trapecio es escaleno ninguno de sus ángulos mide lo mismo.

Los trapezoides son otro tipo de cuadrilátero con el valor de cada uno de sus ángulos internos diferentes. En resumen:

Figuras Características
El cuadrado y el rectángulo tienen ángulos internos iguales y miden 90°.
El rombo tiene todos sus ángulos iguales (pero son agudos, es decir, menores a 90°).

El romboide presenta cada par de ángulos opuestos con la misma medida.

El trapecio rectángulo tiene dos ángulos rectos (miden 90° cada uno).

 

El trapecio isósceles presenta los ángulos adyacentes a la base mayor con la misma medida.

 

El trapecio escaleno presenta todos sus ángulos con diferente medida.

El trapezoide no posee ningún ángulo con la misma medida.

Para calcular ángulos en un cuadrilátero simplemente tenemos que restar los ángulos conocidos a 360°.

– Ejemplo:

Calcula el valor del ángulo ε de la siguiente figura.

\boldsymbol{\varepsilon =360^{\circ}-\delta -\theta -\rho}

\boldsymbol{\varepsilon =360^{\circ}-88^{\circ} -77^{\circ} -80^{\circ}}

\boldsymbol{\varepsilon =115^{\circ}}

El valor del ángulo ε es 115°.

En los polígonos regulares los ángulos internos miden igual. Para calcular su valor se emplea la ecuación (n − 2) × 180°/n donde n es el número de lados que presenta el polígono. Por ejemplo, para un pentágono se sustituye la n por el número 5 que corresponde al número de sus lados y se obtiene que (5 − 2) × 180°/5 = 108°, lo que quiere decir que cada uno de los ángulos internos de un pentágono mide 108°.

¡A practicar!

1. ¿Qué tipo de ángulo observas?

a)

Solución
Ángulo obtuso.

b)

Solución
Ángulo llano.

c)

Solución
Ángulo recto.

d)

Solución
Ángulo agudo.

2. Calcula el valor del ángulo γ.


Solución
γ = 55°

3. Calcula el valor del ángulo θ.


Solución
θ = 70°

4. Calcula el valor del ángulo φ.

Solución
φ = 58°

5. Calcula el valor del ángulo β.

Solución
β = 105°

RECURSOS PARA DOCENTES

Artículo “Ángulos en triángulos. Resolución mediante ecuaciones”

El artículo explica los diferentes tipos de ángulos y cómo determinarlos a través de ecuaciones. También muestra una serie de ejemplos y ejercicios relacionados al tema.

VER

Artículo “Ángulos”

Este artículo plantea de forma resumida lo relacionado con los ángulos, como la manera de nombrarlos, su clasificación y el uso del transportador.

VER

Video “Tipo de triángulos según sus ángulos”

En el video se muestra la manera de clasificar los triángulos a partir de los ángulos y muestra ejemplos gráficos de cada uno de ellos.

VER

CAPÍTULO 5 / TEMA 1

Elementos geométricos

El punto, la recta y el plano representan los cimientos de la geometría. Seguramente, muchos otros conceptos no podrían ser definidos sin ellos y por tal motivo son tan importantes. Cada uno está relacionado: infinitos puntos forman una recta, infinitos puntos y rectas forman un plano e infinitos puntos, rectas y planos forman el espacio.

El punto

El punto es el objeto más pequeño del espacio, por tanto no tiene longitud, área o volumen. Es adimensional, lo que quiere decir que no tiene dimensiones.

Una de las funciones del punto es describir la posición en un sistema de coordenadas como el cartesiano.

¿Sabías qué?
Los puntos se nombran con letras mayúsculas del abecedario, por ejemplo: A, B, C, D, etc.

Entes fundamentales de la geometría

Se denominan así a los entes que por sí solos no tienen definición y se comprenden a partir de las características de elementos similares. La mayoría de las personas tiene noción de lo que cada uno representa. Los entes fundamentales en la geometría son el punto, la recta y el plano.

La recta y sus tipos

Una recta es un tipo de línea que se extiende en una misma dirección y está formada por infinitos puntos. Por esta razón, la recta tiene longitud pero no anchura. En geometría, las rectas se suelen denominar con letras minúsculas.

De acuerdo a su posición en el plano, las rectas pueden ser paralelas, perpendiculares y secantes.

¿Sabías qué?
Entre dos puntos, solamente existe una recta que los une.

Rectas paralelas

Son rectas que no tienen ningún punto en común, es decir, nunca se interceptan. Para la construcción de este tipo de rectas se emplean la regla, la escuadra y el compás. En el siguiente ejemplo la recta a es paralela a la recta b.

Un ejemplo de rectas paralelas son los lados opuestos de un cuadrilátero como el cuadrado.

VER INFOGRAFÍA

Rectas secantes

Son aquellas que se interceptan en un punto en común y forman cuatro ángulos internos. Las rectas c y d son secantes.

Un ejemplo de rectas secantes son dos calles que se interceptan en un punto en común.

Rectas perpendiculares

Son aquellas rectas secantes que al cortarse forman cuatro ángulos iguales, específicamente rectos (de 90°). Estas rectas dividen al plano en cuatro regiones. Las rectas e y f son perpendiculares entre sí.

Un ejemplo de rectas perpendiculares son los ejes del plano cartesiano.

La recta es un tipo de línea pero no es la única, existen líneas curvas, quebradas y mixtas. Además de su empleo en la geometría, los diferentes tipos de líneas son recursos usados por artistas plásticos y diseñadores gráficos en sus trabajos para proporcionar expresividad gráfica, dinamismo y movimiento. También son útiles para crear planos y texturas.

Otros conceptos relacionados

Semirrecta

Todo punto que pertenece a una línea recta la divide en dos partes denominadas semirrectas. Las semirrectas también son llamadas rayos y contienen infinitos puntos como la recta. La diferencia es que una recta no tiene origen y una semirrecta sí lo tiene.

Segmento

Corresponde a la parte de una recta que se encuentra delimitada entre dos de sus puntos, cada uno de ellos es denominado extremo. Los segmentos se escriben a través de la escritura sin espacio de sus extremos y con una raya horizontal en la parte superior. En el siguiente ejemplo, la figura corresponde al segmento \overline{PQ}.

El plano

Es un ente ideal que posee dos dimensiones (bidimensional). Se suele representar con letras del alfabeto griego. En geometría, un plano queda definido cuando se cumplen algunas de las siguientes condiciones:

  • Tres puntos no alineados.
  • Dos rectas que son paralelas.
  • Dos rectas secantes.

Un plano contiene infinitas rectas y puntos. En el siguiente ejemplo se puede observar un ejemplo de plano.

Otro ejemplo de plano sería la parte superior de una mesa.

Con el propósito de facilitar su gráfica y simplificar su visualización, los planos suelen representarse como una figura delimitada con bordes irregulares. Sin embargo, un plano contiene infinitos puntos, por lo tanto, al igual que sucede con la recta, sería imposible representarlo completamente, así que se muestra una pequeña porción de su superficie.

El plano cartesiano

Es un sistema de coordenadas desarrollado por el célebre matemático René Descartes en el siglo XVII. Permite asignar ubicación a cualquier punto del plano. Este sistema cuenta con dos ejes numerados que permiten localizar las coordenadas de los puntos. Un eje vertical denominado eje Y o de las ordenadas muestra las coordenadas en Y de un punto, y un eje horizontal denominado eje X o de las abscisas indica las coordenada en X de un punto.

¡A practicar!

1. Observa la siguiente imagen y responde qué tipo de rectas son las indicadas.

a) Las rectas e y h.

Solución
Secantes.

b) Las rectas d y g.

Solución
Secantes perpendiculares.

c) Las rectas e y f.

Solución
Paralelas.

d) Las rectas h y f.

Solución
Secantes.

2. De acuerdo al contenido explicado responde las siguientes preguntas.

a) ¿Cuántos puntos no alineados definen a un plano?

Solución
3

b) ¿Qué diferencia tiene una recta de una semirrecta?

Solución
La semirrecta tiene un origen y la recta no.

c) ¿De qué medida son los ángulos formados por dos rectas perpendiculares?

Solución
90°

d) ¿En cuántos puntos se intersectan dos rectas paralelas?

Solución
En ningún punto.

e) ¿Cuáles entes fundamentales de la geometría suelen nombrarse con letras del alfabeto griego?

Solución
Los planos.

f) ¿Cómo se denominan a los puntos que forman un segmento?

Solución
Extremos.

g) ¿Qué tipo de ente fundamental de la geometría tiene longitud pero no anchura?

Solución
La recta.

h) ¿Qué tipo de ente fundamental de la geometría no tiene dimensiones?

Solución
El punto.

i) ¿Con qué otro nombre se denominan las semirrectas?

Solución
Rayos.

j) ¿Quién inventó el sistema cartesiano?

Solución
René Descartes.

RECURSOS PARA DOCENTES

Artículo “Determinación de rectas y puntos notables de los triángulos”

El artículo explica cuáles son las rectas y puntos notables que presentan los triángulos y qué características geométricas poseen.

VER

Micrositio “Tarjetas educativas – Geometría y medidas”

En este micrositio podrá encontrar una variedad de tarjetas que resumen los elementos principales de la geometría como el punto, la recta y las principales figuras geométricas.

VER

Artículo “Las rectas en el plano”

El artículo explica la clasificación de las rectas según su posición en el plano y muestra cómo graficar cada una de ellas mediante el uso de regla, escuadra y compás.

VER