CAPÍTULO 1 / TEMA 5

CONJUNTOS

CASI TODOS LOS OBJETOS QUE USAMOS SE PUEDEN ORGANIZAR EN GRUPOS: NUESTROS JUGUETES, ÚTILES ESCOLARES, VESTIMENTA Y HASTA NUESTROS ALIMENTOS. CUANDO AGRUPAMOS VARIOS OBJETOS DE ACUERDO A UNA CARACTERÍSTICA HABLAMOS DE CONJUNTOS. ESTOS SON MUY FÁCILES DE REPRESENTAR Y NOS SIRVEN PARA CLASIFICAR Y HACER COLECCIONES.

LOS NÚMEROS QUE USAMOS PARA CONTAR FORMAN UN CONJUNTO LLAMADO “NÚMEROS NATURALES”. SON UN CONJUNTO PORQUE CUMPLEN CON CARACTERÍSTICAS EN COMÚN. POR EJEMPLO, EN ESTA IMAGEN VEMOS UN GRUPO DE NÚMEROS QUE PODEMOS REPRESENTAR CON NUESTROS DEDOS Y CON LOS QUE PODEMOS CREAR CUALQUIER CANTIDAD DE NÚMEROS, LAS CIFRAS 0, 1, 2, 3, 4, 5, 6, 7, 8 Y 9.

NOCIÓN DE CONJUNTO

UN CONJUNTO ES UN GRUPO O UNA COLECCIÓN DE ELEMENTOS QUE COMPARTEN ALGUNA CARACTERÍSTICA. POR EJEMPLO:

OBSERVA ESTE GRUPO DE ELEMENTOS, ¿QUÉ TIENEN EN COMÚN?

TODAS SON FRUTAS. ESTE ES EL CONJUNTO DE LAS FRUTAS.

ELEMENTOS DE UN CONJUNTO

UN ELEMENTO ES UN OBJETO QUE FORMA PARTE DE UN CONJUNTO. POR EJEMPLO:

ESTE ES EL CONJUNTO DE LAS VOCALES, ¿CUÁNTOS ELEMENTOS TIENE?

TIENE 5 ELEMENTOS: A, E, I, O Y U.

 

– OTRO EJEMPLO:

ESTE ES EL CONJUNTO DE LOS ÚTILES ESCOLARES, ¿CUÁNTOS ELEMENTOS TIENE?

TIENE 7 ELEMENTOS: EL LÁPIZ, EL CUADERNO, EL CLIP, EL COMPÁS, LA TIJERA, LA REGLA Y LA MOCHILA.

¿SABÍAS QUÉ?
EN MATEMÁTICA, EL NOMBRE DE LOS CONJUNTOS SE REPRESENTA CON UNA LETRA MAYÚSCULA. POR EJEMPLO, EL CONJUNTO DE LOS ANIMALES SE PUEDE LLAMAR CONJUNTO A.
LOS CONJUNTOS ESTÁN PRESENTES EN NUESTRO DÍA A DÍA Y SON DE GRAN UTILIDAD CUANDO VAMOS CON NUESTROS PADRES DE COMPRAS. EN LOS SUPERMERCADOS VEMOS TODOS LOS ALIMENTOS POR CONJUNTOS. EN UN ESTANTE ESTÁ EL CONJUNTO DE LOS CEREALES, EN OTRO EL CONJUNTO DE LOS PRODUCTOS DE LIMPIEZA, EN OTRO EL CONJUNTO DE LAS CARNES Y EN OTRO EL CONJUNTO DE LAS GOLOSINAS.

REPRESENTACIÓN DE CONJUNTOS

UN CONJUNTO PUEDE SER REPRESENTADO POR MEDIO DEL DIAGRAMA DE VENN O ENTRE LLAVES.

CONJUNTO MEDIANTE DIAGRAMA DE VENN

CONSISTE EN UNA LÍNEA CERRADA QUE ENCIERRA EL GRUPO DE ELEMENTOS DEL CONJUNTO. EL CONJUNTO SE EXPRESA POR MEDIO DE UNA LETRA MAYÚSCULA. POR EJEMPLO:

ESTE ES EL CONJUNTO F O CONJUNTO DE LA FIGURAS GEOMÉTRICAS.

CONJUNTO MEDIANTE LLAVES

CONSISTE EN ESCRIBIR TODOS LOS ELEMENTOS DEL CONJUNTO DENTRO DE UNAS LLAVES. POR EJEMPLO:

F = {CUADRADO, TRIÁNGULO, CÍRCULO, RECTÁNGULO}

¡ES TU TURNO!

OBSERVA ESTOS ELEMENTOS. ¿QUÉ TIENEN EN COMÚN?

REPRESENTA EL CONJUNTO POR MEDIO DEL DIAGRAMA DE VENN Y MEDIANTE LLAVES.

SOLUCIÓN

TODOS SON GLOBOS. ESTE ES EL CONJUNTO G:

G = {GLOBO AMARILLO, GLOBO ROSA, GLOBO MORADO, GLOBO AZUL, GLOBO ROJO}

PERTENENCIA Y NO PERTENENCIA

SI UN ELEMENTO COMPARTE LA CARACTERÍSTICA QUE NOS PERMITE AGRUPARLO CON OTROS, SE DICE QUE PERTENECE A ESE CONJUNTO. SI NO LA TIENE SE DICE QUE ESE ELEMENTO NO PERTENECE A ESE CONJUNTO. POR EJEMPLO:

ESTE ES EL CONJUNTO L DE LOS LÁPICES DE COLORES.

 PERTENECE AL CONJUNTO L.                                        NO PERTENECE AL CONJUNTO L.

TODO EL CONJUNTO L TIENE OBJETOS CON UNA CARACTERÍSTICA EN COMÚN: SON LÁPICES DE COLORES. EL LÁPIZ ROJO PERTENECE AL CONJUNTO L, MIENTRAS QUE EL PINCEL, POR NO SER UN LÁPIZ DE COLOR, NO PERTENECE AL CONJUNTO L.

TAMBIÉN PODEMOS USAR SÍMBOLOS ESPECIALES COMO (PERTENECE) O (NO PERTENECE.)

– OTRO EJEMPLO:

OBSERVA ESTOS DOS CONJUNTOS.

 

AL CONJUNTO P.                    AL CONJUNTO A.

AL CONJUNTO A.                        ∉ AL CONJUNTO P.

CUANTIFICADORES

A VECES PODEMOS EXPRESAR LAS CANTIDADES Y RELACIONES DE LOS ELEMENTOS DE UN CONJUNTO SIN UTILIZAR NÚMEROS. LO HACEMOS POR MEDIO DE PALABRAS COMO “TODOS”, “ALGUNOS” O “NINGUNO”. POR EJEMPLO, EN LA IMAGEN SE MUESTRA UNA ENSALADA DE FRUTAS. ESTA ENSALADA REPRESENTA UN CONJUNTO EN EL QUE:

  • TODOS SUS ELEMENTOS SON FRUTAS.
  • ALGUNOS ELEMENTOS SON DE COLOR ROJOS.
  • NINGÚN ELEMENTO ES DE COLOR BLANCO .

¡A PRACTICAR!

1. OBSERVA ESTE CONJUNTO Y RESPONDE:

  • ¿QUÉ TIENEN EN COMÚN?
SOLUCIÓN
TODAS SON CAMISETAS.
  • ¿CUÁNTOS ELEMENTOS TIENE EL CONJUNTO R?
SOLUCIÓN
TIENE 4 ELEMENTOS.
  • ¿CÓMO REPRESENTARÍAS ESTE CONJUNTO MEDIANTE LLAVES?
SOLUCIÓN
R = {CAMISETA BLANCA, CAMISETA VERDE, CAMISETA ROJA, CAMISETA AZUL}

 

2. OBSERVA EL CONJUNTO H Y RESPONDE.

 

  • ¿CUÁNTOS ELEMENTOS TIENE EL CONJUNTO H?
SOLUCIÓN
TIENE 7 ELEMENTOS.
  • ¿QUÉ CARACTERÍSTICA TIENEN EN COMÚN?
SOLUCIÓN
TODOS SON ALIMENTOS DE COLOR AMARILLO.
  • COMPLETA CON  (PERTENECE) O (NO PERTENECE) SEGÚN CORRESPONDA.

 ______ AL CONJUNTO H.

SOLUCIÓN

  AL CONJUNTO H.

 ______ AL CONJUNTO H.

SOLUCIÓN

  AL CONJUNTO H.

 ______ AL CONJUNTO H.

SOLUCIÓN

  AL CONJUNTO H.

______ AL CONJUNTO H.

SOLUCIÓN

 AL CONJUNTO H.

 ______ AL CONJUNTO H.

SOLUCIÓN

  AL CONJUNTO H.

RECURSOS PARA DOCENTES

Artículo “Relaciones entre conjuntos”

Con este recurso se podrá profundizar en algunas nociones sobre el concepto de conjuntos y de qué manera se relacionan entre ellos.

VER

CAPÍTULO 5 / TEMA 3

Polígonos

Podemos observar polígonos en múltiples objetos de nuestro alrededor. Estos son muy diversos y los hay con lados y ángulos iguales o desiguales entre sí. Son elementos fundamentales de la geometría y su conocimiento es esencial en diversos campos del conocimiento, como la ingeniería o la arquitectura.

¿Qué es un polígono?

En geometría, un polígono es una figura geométrica plana delimitada por un número finito de segmentos rectos.

¿Sabías qué?
La palabra “polígono” proviene del griego antiguo que quiere decir “muchos ángulos”.

Los polígonos presentan los siguientes elementos:

  • Lados: son los segmentos rectos que conforman al polígono.
  • Vértices: son los puntos en común entre dos lados consecutivos.
  • Diagonales: son los segmentos que unen a dos lados no consecutivos de un polígono.
  • Ángulos interiores: están formados por dos lados consecutivos en el interior del polígono.
  • Ángulos exteriores: están formados en el exterior del polígono entre un lado y la prolongación de otro lado consecutivo.

Polígonos regulares y sus tipos

Un polígono regular tiene lados con la misma longitud. Se caracterizan también porque sus ángulos internos y externos también son iguales. Otra característica es que poseen la misma cantidad de ejes de simetrías que de lados. Las diagonales en este tipo de polígonos tienen la misma longitud y siempre son interiores.

Polígono Número de lados Número de diagonales Medida de cada ángulo interno Medida de cada ángulo externo
Triángulo equilátero 3 0 60° 120°
Cuadrado 4 2 90° 90°
Pentágono 5 5 108° 72°
Hexágono 6 9 120° 60°
Heptágono 7 14 128,57° 51,43°
Octágono 8 20 135° 45°
Eneágono 9 27 140° 40°
Decágono 10 35 144° 36°
Endecágono 11 44 147,27° 32,73°
Dodecágono 12 54 150° 30°

VER INFOGRAFÍA

El círculo y los polígonos

Todo polígono regular puede estar circunscrito en una circunferencia, lo que quiere decir que cada uno de sus vértices corresponde a un punto de la circunferencia. Mientras más lados tenga el polígono, más se va a aproximar a la forma de la circunferencia. Por esta razón, se asocia a la circunferencia (de forma informal) a un polígono de infinitos lados.

Área de polígonos regulares

Para medir el área de los polígonos es necesario conocer las definiciones de perímetro y apotema.

  • Perímetro: es la suma de los lados que forman una figura geométrica. En el caso de los polígonos regulares, se calcula al multiplicar el número de lados por la longitud de uno de sus lados.

P= n\times L

Donde:

P: perímetro
n: número de lados del polígono regular.
L: longitud de uno de los lados del polígono.

  • Apotema: es la distancia perpendicular desde el centro de un polígono hasta uno de sus lados.

El área de un polígono regular se define como el producto de su perímetro por la apotema (a) dividido entre dos.

A = \frac{P\times a}{2}

Donde:

A: área

P: perímetro

a: apotema

 

– Ejemplo:

Calcular el área de un pentágono cuyos lados miden 6 cm y su apotema es de 4,13 cm.

Lo que debemos hacer es calcular primero el perímetro para luego sustituir en la fórmula junto con la apotema para calcular el área.

P= n\times L
P= 5\times 6\, cm
P= 30\, cm

El perímetro del apotema es 30 cm, al sustituir en la fórmula de área nos queda:

A = \frac{30\, cm\times 4,13\,cm }{2}

A = \frac{123,9\,cm^{2} }{2}

A = \mathbf{61,95\, cm^{2}}

El área del pentágono es de 61,95 cm2.

¿Sabías qué?
El Departamento de Defensa de los Estados Unidos es un edificio en forma de Pentágono que mide 140.000 metros cuadrados aproximadamente.
Debido a sus características geométricas, todo polígono regular puede estar inscrito o circunscrito a una circunferencia. Un polígono inscrito tiene todos sus vértices contenidos en la circunferencia. Por otro lado, un polígono circunscrito posee todos sus lados tangentes a la circunferencia. En ambos casos, el centro del polígono coincide con el centro de la circunferencia.

Polígonos irregulares y sus tipos

En los polígonos irregulares se pueden cumplir algunas de estas condiciones:

– Tener sus lados con igual longitud pero sus ángulos internos diferentes.
– Tener sus ángulos de igual medida pero sus lados con diferente longitud.
– Tener sus lados con diferente longitud y sus ángulos internos con diferente medida.

Ejemplos de polígonos irregulares

  • Rombo

El rombo tiene los cuatro lados con igual longitud pero sus cuatro ángulos internos son diferentes: solo los ángulos opuestos de este polígono son iguales. Por eso se trata de un polígono irregular.

  • Rectángulo (no cuadrado)

Es un cuadrilátero con sus cuatro ángulos iguales (90°), pero sus lados tienen diferente longitud entre sí. Solo los lados paralelos comparten la misma longitud.

  • Triángulo (no equilátero)

Todo triángulo con un ángulo interior diferente de 60 grados es un polígono irregular.

Triángulos regulares e irregulares

Según sus lados, los triángulos se clasifican en equiláteros, isósceles y escalenos. Los equiláteros son los únicos triángulos que cumplen con las características de un polígono regular. Los triángulos escalenos son aquellos en los que las longitudes de sus lados y la medida de sus ángulos internos son diferentes, por lo tanto no son polígonos regulares. Por otra parte, los triángulos isósceles al contar solo con dos lados y dos ángulos iguales tampoco son considerados como polígonos regulares.

Perímetro de polígonos

Calculamos el perímetro de los polígonos regulares a través de la fórmula planteada anteriormente:

P= n\times L

En cambio, en los polígonos irregulares, cuyos lados generalmente son diferentes, esta ecuación no siempre aplica. Para lo cual debemos sumar de forma separada las longitudes de cada uno de los lados.

P= L_{1}+L_{2}+L_{3}+...+L_{n}

Por ejemplo, para calcular el perímetro del siguiente triángulo isósceles simplemente sumamos cada una de las longitudes de sus lados.

P= 60\,\, cm+60\,\, cm+40\,\, cm

P= \mathbf{160\,\, cm}

El perímetro de este triángulo irregular es de 160 cm.

 

¡A practicar!

1. Determina el perímetro y el área de los siguientes polígonos regulares según los datos mostrados.

a) Un eneágono regular cuyos lados miden 7 cm y su apotema 9,62 cm.

Solución
P = 63 cm
A = 303,03 cm2

b) Un pentágono regular cuyos lados miden 6 cm y su apotema 4,13 cm.

Solución
P = 30 cm
A = 61,95 cm2

c) Un heptágono regular cuyos lados miden 8 cm y su apotema 8,31.

Solución
P = 56 cm
A = 232,68 cm2

d) Un triángulo regular (equilátero) cuyos lados miden 5 cm y su apotema 1,44 cm.

Solución
P= 15 cm
A = 10,8 cm2

e) Un decágono regular cuyos lados miden 3 cm y su apotema 4,62 cm.

Solución
P= 30 cm
A = 69,3 cm2

f) Un dodecágono regular cuyos lados miden 4 cm y su apotema 7,46 cm.

Solución
P= 48 cm
A = 179,04 cm2

g) Un hexágono regular cuyos lados miden 7 cm y su apotema 6,06 cm.

Solución
P= 42 cm
A = 127,26 cm2

h) Un octágono regular cuyos lados miden 2 cm y su apotema 2,41 cm.

Solución
P= 16 cm
A = 19,28 cm2

i) Un endecágono regular cuyos lados miden 3 cm y su apotema 5,11 cm.

Solución
P= 33 cm
A = 84,315 cm2

j) Un cuadrado cuyos lados miden 4 cm y su apotema 2 cm.

Solución
P= 16 cm
A = 16 cm2

 

2. ¿A qué polígono con una apotema de 4,33 cm le corresponde un área de 64,95 cm2.

a) Un decágono de 2 cm de lado.
b) Un hexágono de 5 cm de lado.
c) Un pentágono de 7 cm de lado.
d) Un octágono de 4 cm de lado.

Solución
b) Un hexágono de 5 cm de lado.

 

3. ¿Qué polígono irregular tiene sus lados de igual longitud pero sus ángulos internos son diferentes?

a) Círculo
b) Cuadrado
c) Rectángulo
d) Rombo

Solución
d) Rombo

RECURSOS PARA DOCENTES

Artículo “Perímetro de los polígonos”

Este artículo define qué es un polígono, cuáles son sus clasificaciones y cómo se calcula su el perímetro. También plantea una serie de ejercicios para resolver.

VER

Artículo “Cuadriláteros”

Este recurso explica los diferentes tipos de cuadriláteros que existen y sus características principales.

VER

Micrositio “Tarjetas Educativas – Geometría y medidas”

En este micrositio se puede encontrar una serie de tarjetas interactivas que resumen los elementos principales de la geometría, como los polígonos y sus principales características.

VER

CAPÍTULO 4 / TEMA 2

Instrumentos de medición

Si hay algo que los seres humanos hemos necesitado desde siempre es tomar mediciones: las personas medimos desde las raciones de comida, hasta los grandes territorios. Los instrumentos de medición permiten conocer las cantidades de diferentes magnitudes como la longitud, el volumen, el tiempo, etc. Las unidades de medida son una referencia y pueden ser convencionales o no.

Características de los principales instrumentos de medición

Un instrumento de medición presenta las siguientes características:

  • Cota inferior: corresponde al valor mínimo de la magnitud que puede medir el instrumento.
  • Cota superior: corresponde al valor máximo que puede medir el instrumento.
  • Sensibilidad: corresponde a la mínima variación de la magnitud que puede detectar el instrumento.
  • Exactitud: corresponde a la capacidad del instrumento de acercarse al valor real de la magnitud leída.
  • Fiabilidad: corresponde a qué tan consistente sea la medición del instrumento, es decir, que el instrumento pueda medir la misma cantidad en las mismas condiciones y en diferentes ocasiones.
El termómetro de mercurio es un instrumento que en la actualidad comienza a estar en desuso en el área de la salud por los riesgos de toxicidad, sin embargo, en el pasado era usado para medir la temperatura corporal. Su cota inferior suele ser de 35 °C y su cota superior suele estar en los 42 °C. Quiere decir que puede medir valores entre esas dos temperaturas.

Calidad de medición

Hay instrumentos con mayor precisión y sensibilidad que otros, por lo tanto presentan mayor exactitud. Por ejemplo, las balanzas se usan para medir la masa de los cuerpos. En un mercado se usan balanzas convencionales con una cota inferior de 1 gramo y en lugares como laboratorios y fábricas pueden usar balanzas tan sensibles que permiten obtener lecturas muy pequeñas como 0,00001 g.

Para que tengas una idea, la masa de un grano de arroz es de 0,03 gramos y las balanzas de un laboratorio pueden medir cantidades 1.000 veces menores que eso, ¡increíble!

VER INFOGRAFÍA

Instrumentos de medición comunes en la escuela

En la escuela solemos usar instrumentos para medir longitudes de las cosas, como la regla o una escuadra. La longitud es una magnitud que permite medir distancias entre dos puntos, con ella podemos medir el tamaño de una recta o el de los lados de una figura geométrica.

Las reglas y escuadras que usamos en la escuela tienen una escala graduada en centímetros y milímetros. Cada centímetro está dividido en milímetros. Pueden estar construidas de materiales como metal, plástico o madera y pueden ser flexibles o rígidas. Las escuadras además de medir longitudes sirven para construir rectas paralelas y perpendiculares.

 

Otro instrumento de medición usado en la escuela es el transportador, que sirve para medir ángulos, presenta su escala en grados y es muy usado en disciplinas como la arquitectura y el dibujo técnico.

¿Sabías qué?
Hay dos tipos de transportador, el circular que se encuentra graduado de 0° a 360° y el semicircular que está graduado de 0° a 180°.

Cuando usamos el reloj, medimos el tiempo que ha transcurrido. Las unidades de tiempo se expresan en segundos minutos y horas. Hay otros instrumentos de medición de tiempo como el cronómetro, por ejemplo, que suele ser usado por los entrenadores para evaluar el desempeño de los deportistas.

Unidades de medidas no convencionales

Todas las unidades de medida son una referencia para medir la cosas. Hay unidades convencionales que se usan en gran parte del mundo, como el metro para medir la longitud o el segundo para medir el tiempo, pero también hay otras que podemos usar para medir de una manera menos convencional y que nos permiten establecer comparaciones, como nuestras manos, dedos o pies.

Podemos usar nuestra mano como unidad de medida para medir la longitud de un cuaderno, simplemente tenemos que ver cuántas veces ese patrón de medida se encuentra en el objeto. Incluso podemos usar otros objetos como un lápiz como referencia de medida. En este caso se habla de unidades no convencionales porque no pertenecen al Sistema Internacional de Unidades.

Por ejemplo:

– El cuaderno mide dos manos y media.
– El lápiz mide seis dedos.

La pulgada y los reyes

A lo largo de la historia se ha usado la pulgada como unidad de longitud. La pulgada era empleada por los monarcas, quienes empleaban la medida desde el nudillo del pulgar hasta el extremo del dedo. Este sistema de medida tuvo muchos inconvenientes porque no todos los reyes tenían el mismo tamaño de falanges, y existían pulgadas de diferentes medidas, lo que generaba confusión.

Por razones como esas, los sistemas de medición se unificaron en sistemas más homogéneos como el Sistema Internacional de Medidas. En la actualidad hay países como Estados Unidos que aún emplean la pulgada como medida de longitud que equivale a 2,54 cm.

¡A practicar!

1. ¿Cómo se denomina al máximo valor que puede medir un instrumento de medición?

a) Cota inferior.

b) Sensibilidad.

c) Cota superior.

d) Confiabilidad.

Solución
c) Cota superior.

2. ¿Cuál es una medida no convencional?

a) El metro.

b) El segundo.

c) El centímetro.

d) El dedo.

Solución
d) El dedo.

3. ¿Qué podemos medir con las unidades de longitud?

a) La distancia entre dos puntos.

b) La capacidad de un recipiente.

c) El tiempo.

d) La temperatura de una persona.

Solución
a) La distancia entre dos puntos.

4. Observa los siguientes instrumentos de medición y determina qué podemos medir con cada uno.

a) 

Solución
La longitud.

b) 

Solución
El tiempo.

c)

Solución
La medida de ángulos.

d) 

Solución
La masa.

RECURSOS PARA DOCENTES

Artículo “Sistema Internacional de unidades”

Este artículo explica qué es el Sistema Internacional de unidades y describe sus principales unidades básicas y derivadas, así como su importancia en la actualidad.

VER

Tarjetas educativas “Instrumentos de laboratorio”

Este micrositio muestra los principales instrumentos de laboratorio, dentro de los cuales se encuentran varios instrumentos de medición.

VER

Infografía “Balanza”

Esta infografía muestra uno de los instrumentos de medición más usados: la balanza. También describe sus tipos y sus características principales.

VER

CAPÍTULO 1 / TEMA 4

NÚMEROS DECIMALES

Los números decimales son todos aquellos que tienen una parte entera y una parte decimal, es decir, una cantidad menor que la unidad y mayor que cero. Estos números los podemos encontrar en todas partes, como en los precios de los productos del supermercado.

CARACTERÍSTICAS DE LOS NÚMEROS DECIMALES

Los números decimales están formados por dos partes separadas con una coma de la siguiente manera:

Los números decimales también son llamados números fraccionarios. Estos se utilizan para realizar mediciones con mayor precisión. Por ejemplo, al medir la estatura de una persona. Si decimos que alguien mide 1 m no sabríamos con exactitud la medida, en cambio, si usamos números decimales podemos decir que una persona mide 1,65 m o 165 cm.

Clasificación de números decimales

Números decimales exactos

Tienen un número limitado de cifras decimales. Por ejemplo:

1,25

Números decimales periódicos

Tienen una o más cifras decimales que se repiten de forma ilimitada o infinita. Podemos distinguir dos tipos de números decimales periódicos:

  • Números decimales periódicos puros: son aquellos números en los cuales la parte decimal periódica comienza inmediatamente después de la coma. La parte que se repite indefinidamente en estos números es señalada con una línea horizontal o arco en la parte superior. Por ejemplo:

0,66666 = 0, \widehat{6}

  • Números decimales periódicos mixtos: son los que están formados por dos partes decimales: una cifra que no se repite que está justo después de la coma, denominada ante-período; y la parte periódica. Por ejemplo:

3,233333 = 3,2\widehat{3}Números decimales no periódicos

No tienen cifras decimales con un patrón repetido indefinidamente. Un ejemplo de estos son los números irracionales, como el número pi.

\pi = 3,14159265...

¡A practicar!

Ya que conoces cómo están formados los números decimales, ¡consíguelos en este cuadro!

Solución

Número de Euler

Existen números decimales famosos y uno de ellos es el número de Euler, también denominado constante de Napier. Este número decimal fue utilizado por John Napier para introducir el concepto de logaritmo. No obstante, Leonhard Euler fue quien utilizó la letra e para representar dicha constante en el año 1727. El número es utilizado en cálculo, álgebra y números complejos.

e = 2,7182818284590452353602874713527 ...

LECTURA DE NÚMEROS DECIMALES

Podemos realizar la lectura de un número decimal de dos formas. Para ello, tomaremos como ejemplo el número 698,754980213, el cual podemos representarlo así de acuerdo a su valor posicional:

  • Primera forma de leer el número:
  1. Lee la parte entera de izquierda a derecha seguida de la palabra “enteros”.
  2. Lee toda la parte decimal como se lee la parte entera.
  3. Menciona la posición en la que se encuentra la última cifra decimal.

Entonces, el número 698,754980213 se lee “seiscientos noventa y ocho enteros setecientos cincuenta y cuatro millones novecientos ochenta mil doscientos trece milmillonésimas“.

  •  Segunda forma de leer el número:
  1. Lee la parte entera de izquierda a derecha seguida de la palabra “coma”.
  2. Lee toda la parte decimal como se lee la parte entera.

De este manera, el número 698,754980213 se lee “seiscientos noventa y ocho coma setecientos cincuenta y cuatro millones novecientos ochenta mil doscientos trece”.

¡Es tu turno!

Utiliza el primer método para leer estos números decimales:

  1. 456,268435 
    Solución
     456,268435 = cuatrocientos cincuenta y seis enteros doscientos sesenta y ocho mil cuatrocientos treinta y cinco millonésimas.
  2. 35.413,9346103 
    Solución
    35.413,9346103 = treinta y cinco mil cuatrocientos trece enteros nueve millones trescientos cuarenta y seis mil ciento tres diezmillonésimas.
  3. 58,79516428
    Solución
    58,79516428 = cincuenta y ocho enteros setenta y nueve millones quinientos dieciséis mil cuatrocientos veintiocho cienmillonésimas.

REDONDEO DE NÚMEROS DECIMALES

Todo número decimal puede ser redondeado. El redondeo se refiere a reducir la cantidad de cifras de un número para tener un valor similar. Las reglas son las siguientes:

  • Redondeo por defecto: si la última cifra del número que deseamos redondear es 1, 2, 3 o 4, la sustituimos por 0, y no variamos la penúltima cifra. Por ejemplo, el número 18,3.

  • Redondeo por exceso: si la última cifra es 5, 6, 7, 8 o 9, también sustituimos por 0, pero en este caso aumentamos la penúltima cifra en 1. Por ejemplo, el número 45,8.

El símbolo (≈) significa aproximado.

Todo número decimal puede ser redondeado. El redondeo se refiere a reducir la cantidad de cifras de un número para tener un valor similar. Saber esta práctica puede ser muy útil en nuestro día a día, pues cuando vamos a pagar una cuenta hacemos un redondeo de la cifra de forma mental para saber con qué billete vamos a pagar.

Redondeo por aproximación

Podemos aproximar los números decimales a la unidad más cercana, es decir, acercarlo a un número de la recta numérica que tenga menos decimales que este por medio de las mismas reglas. También los podemos aproximar a las décimas, centésimas, milésimas, etc., más cercanas. Por ejemplo, observa los siguientes números y redondéalos: 18,82653 y 45,73286.

El primer número lo aproximamos mediante la regla de redondeo por defecto, ya que la última cifra está entre 0 y 4. Aquí la cifra se aproximó a la diezmilésima más cercana.

 

Y para el segundo número seguimos la regla de exceso, ya que la última cifra está entre 5 y 9. Aquí la cifra se aproximó a la a la diezmilésima más cercana.

¡A practicar!

Convierte los siguientes números decimales a enteros por redondeo:

  • 465,568 
    Solución
    466
  • 84,91 
    Solución
    85
  • 14,3 
    Solución
    14
  • 9.214,12 
    Solución
    9.214

Aproxima estos números a las décimas, centésimas o milésimas más cercanas:

  • 326,3462 
    Solución
    326,346
  • 486,945  
    Solución
    486,95
  • 45,87
    Solución
    45,9 
RECURSOS PARA DOCENTES

Artículo “Números decimales”

Este artículo ayuda a complementar la información sobre los números decimales.

VER

Artículo “Operaciones con decimales”

Con este recurso podrá obtener conocimiento sobre las operaciones con los números decimales y profundizar al respecto.

VER

CAPÍTULO 2 / TEMA 1

Adición y sustracción

En matemática existen cuatro operaciones básicas: adición, sustracción, multiplicación y división. De las dos primeras se desprenden las otras, lo que quiere decir que aprender a sumar y a restar es fundamental para resolver la mayoría de los ejercicios matemáticos y para realizar cuentas cotidianas como, por ejemplo, en compras del supermercado.

Elementos de la adición

La adición es una de las operaciones básicas de la aritmética que permite combinar dos o más números para obtener un total. Esta operación se representa con el símbolo “+” y es aplicada en los diferentes tipos de números: naturales, enteros, racionales, reales y complejos.

Una adición presenta dos partes básicas: los sumandos y la suma. Los sumandos son todos los números que se van a sumar y la suma se refiere al resultado.

La adición anterior tiene dos sumandos: 352 y 431, y el resultado o suma es 783. Es importante tener presente que en estos casos la palabra “suma” se emplea para hablar de la operación de adición y también para referirse al resultado.

¿Sabías qué?
La aritmética es una rama de la matemática que estudia los números y las operaciones elementales que se realizan con ellos.

Propiedades de la adición

La suma de números enteros cumple tres propiedades básicas:

Propiedad conmutativa

Sin importar cómo se ordenen los sumandos de una suma, el resultado siempre será el mismo. Por ejemplo:

Por lo tanto:

15 + 3 = 18

3 + 15 = 18

Propiedad asociativa

No importa como se agrupen los elementos de una suma, el resultado siempre será el mismo. Por ejemplo:

En el problema: 8 + 2 + 6, se pueden sumar primero el 8 y 2 para luego sumar el 6, o se pueden sumar el 2 y el 6 y después sumar el 8. Entonces:

8 + 2 = 10, 10 + 6 = 16

2 + 6 = 8; 8 + 8 = 16

Propiedad del elemento neutro

El cero es el único número que no altera el resultado en una suma, es decir, la suma de cualquier número con el cero es igual al mismo número:

5 + 0 = 5
45 + 0 = 45
219 + 0 = 219

Conocer las propiedades de la suma permite realizar cálculos de manera más rápida. Por ejemplo, si necesitamos sumar 6 + 85, es más fácil agregar mentalmente 6 a 85 que 85 a 6. También se usa la propiedad asociativa en la suma de números con diferentes cifras, estos se pueden ordenar de mayor a menor y luego realizar una suma por reagrupación más sencilla.

VER INFOGRAFÍA

Adición por reagrupación

Es un método en el que se agrupan las unidades, decenas, centenas, etc., de un número. Para resolver problemas de este tipo se suman primero las unidades, luego las decenas, después las centenas y así sucesivamente.

Pasos para resolver adiciones por reagrupación

  1. Colocar los sumandos uno debajo del otro de manera que los valores posicionales iguales estén ubicados en una misma columna: unidades con unidades, decenas con decenas, centenas con centenas…
  2. Sumar cada columna por separado a partir de las unidades. El resultado de la suma de cada columna se escribe en la parte inferior de esta.
  3. En caso de obtener un número de dos cifras al momento de sumar una columna, se anotará el número de la unidad de dicho número y la decena se sumará a la columna siguiente.

Con estos ejemplos podrás ver mejor cómo resolver una suma por reagrupación:

– Sumar 242 + 351

Lo primero es colocar los números uno debajo del otro según sus mismos valores posicionales.

Luego suma la columna de las unidades y anota el resultado debajo de dicha columna.

Repite el procedimiento anterior en las demás columnas de derecha a izquierda hasta completarlas todas. En este caso el resultado es: 242 + 351 = 593.

– Sumar 198 + 23

Ordena los números de la siguiente manera:

Cuando sumas la columna de las unidades tienes que 8 + 3 = 11, entonces solo debes colocar el 1 de la unidad y el 1 de la decena lo sumas en la siguiente columna. Anota el número en la parte superior de la columna para no olvidar sumarlo al final.

Suma la segunda columna. Allí tienes que 9 + 2 = 11, pero hay que sumarle 1 de la columna anterior, entonces el resultado de la segunda columna es 12. Anota el 2 de la unidad y el 1 de la decena lo sumas a la siguiente columna.

En la tercera columna solamente está el número 1, así que el 1 de la columna anterior se suma a este. Anota el resultado.

El resultado de la suma anterior es: 198 + 23 = 221. En caso de sumar la última columna y obtener un número de dos cifras, este se anotará exactamente igual en el resultado.

Elementos de la sustracción

La sustracción es otra operación básica de la aritmética que consiste en quitar una cantidad a otra, por eso se considera como la operación opuesta a la suma. Se representa con el símbolo “−”.

Este tipo de operación cuenta con un minuendo, número al cual se le quita cierta cantidad; un sustraendo, número que resta al minuendo; y la diferencia, resultado de la operación.

¿Sabías qué?
La diferencia de una resta es la cantidad que falta para que ambos números sean iguales.

Propiedades de la sustracción

La sustracción cumple con dos propiedades básicas:

Elemento neutro

El resultado de cualquier número y cero da como resultado el mismo número. Por ejemplo:

3 − 0 = 3

157 − 0 = 157

Elemento simétrico

El resultado de restar un número con su opuesto (número del mismo valor con signo opuesto) da como resultado el número cero.

5 − 5 = 0

74 − 74 = 0

¿Sabías qué?
En la sustracción no existen ni la propiedad conmutativa ni la asociativa.

Sustracción por reagrupación

Este tipo de problemas se realizan mediante la agrupación de los números uno debajo del otro de forma tal que valores posicionales entre las cifras de los números que se restan sean los mismos. Para las restas con naturales, el número mayor debe estar ubicado en la parte de arriba (minuendo) y el número menor debajo (sustraendo).

¿Sabías qué?
La resta por reagrupacion también es conocida como resta con llevada y sirve para restar una cifra mayor a una menor.
Pasos para resolver restas por reagrupación

  1. Colocar el minuendo y el sustraendo uno debajo del otro de manera que los valores posicionales iguales estén ubicados en la misma columna. El número mayor siempre debe estar ubicado en la parte de arriba.
  2. Comenzar a restar desde la columna de las unidades, de derecha a izquierda.
  3. Si en una columna se tiene que la cifra de arriba es menor que la de abajo, esta cifra toma prestado un valor posicional a la columna del minuendo de la izquierda.
  4. En caso de que la cifra del minuendo le haya “prestado” un valor posicional a la cifra de al lado, esta se reduce en una unidad y se debe considerar el nuevo valor de la cifra al momento de restar en su columna.

Con estos ejemplos podrás apreciar mejor cómo resolver una resta por reagrupación:

– Restar 425 − 263

Lo primero es colocar los números uno debajo del otro con sus valores posicionales iguales, todos ubicados en la misma columna.

Luego resta las cifras en la columna de las unidades.

Repite la resta en la columna de las decenas, pero como en este caso el 2 es menor que el 6, el 4 presta una centena al 2. De este modo, 4 centenas y 2 decenas, se convierten en 3 centenas y 12 decenas. Ahora sí es posible restar 12 menos 6 en la columna de las decenas.

 

Resta las cifras en la columna de las centenas. Como el 4 le prestó 1 al 2, entonces quedó en 3 centenas que al restarse con el 2 el resultado de la columna es 1.

Ejercicios

1. Resuelve las siguientes sumas:

a) 452 + 395 =

Solución
847
b) 256 + 122 =
Solución
378
c) 603 + 113 =
Solución
716
d) 126 + 460 =
Solución
586
e) 1.830 + 2.178 =
Solución
4.008

2. Resuelve las siguientes restas:

a) 853 − 741 =

Solución
112
b) 544 − 35 =
Solución
509
c) 1.789 − 1.354 =
Solución
435
d) 957 − 362 =
Solución
595
e) 4.780 − 3541 =
Solución
1.239
RECURSOS PARA DOCENTES

Artículo “Operaciones básicas de los números naturales y sus propiedades”

El presente artículo permite profundizar el tema de las operaciones básicas y de sus diferentes propiedades.

VER

Enciclopedia “Nana y Enriqueta en el país de las matemáticas”

Es una enciclopedia diseñada para explicar de manera didáctica los conceptos matemáticos básicos desde la realidad de los niños.

VER

Video “Suma y resta de números decimales”

En este video se muestra como realizar sumas en el conjunto de los números decimales.

VER

CAPÍTULO 1 / TEMA 1

EL UNIVERSO DE LOS NÚMEROS

La vida sería más complicada si no existieran los números. Tareas como contar o sumar cosas no serían posibles y eso traería muchos problemas. A lo largo de la historia el ser humano ha inventado diferentes sistemas de numeración, porque si hay algo que no ha cambiado es nuestra necesidad de contar. 

Lectura y representación de números naturales

El sistema de numeración usado en la actualidad presenta dos características principales: es decimal, porque emplea diez dígitos (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) y es posicional, porque el valor de cada cifra obedece al lugar que ocupa dentro de un número. Como ya sabemos, a los números los agrupamos de diez en diez, de menor a mayor.

10 U = 1 D

10 D = 1 C

10 C = 1 UM

Donde:

U: unidad

D: decena

C: centena

UM: unidad de mil

¡Y así sucesivamente hasta el infinito!

En el número 3.145 la cifra 1 ocupa la posición de las centenas, como puede verse en el siguiente esquema:

¿Sabías qué?
La palabra “dígito” proviene del latín dígitus, que significa dedo, y surge al comparar el número de dedos de las manos con el número de dígitos.

En números de 6 cifras el esquema sería el siguiente:

Donde:

DM: decena de mil

CM: centena de mil

Para leer un número de seis cifras se comienza leer la cantidad del orden de los miles y luego se lee el resto de la cantidad.

Por ejemplo el número 254.873 se lee de la siguiente forma: doscientos cincuenta y cuatro mil ochocientos setenta y tres.

¡A practicar!

¿Cómo se leen estos números?

  • 145.254
Solución
Ciento cuarenta y cinco mil doscientos cincuenta y cuatro.
  • 927.630
Solución
Novecientos veintisiete mil seiscientos treinta.
  • 501.588
Solución
Quinientos un mil quinientos ochenta y ocho.
  • 470.625
Solución
Cuatrocientos setenta mil seiscientos veinticinco.
Con solo diez dígitos en el sistema decimal se pueden formar infinitos números al combinarlos. Estos símbolos son: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9. En la actualidad se considera el sistema más usado para expresar cantidades y magnitudes, pero existen otros sistemas menos conocidos como el binario y el octal, que son aplicados en áreas específicas.

Sistema de numeración romana

Hace muchos años, se desarrolló en la Antigua Roma un sistema de numeración basado en letras, dicho sistema fue implementado en todo el Imperio romano. La extensión de este era tal que ocupaba gran parte de los países europeos actuales y de algunos países de África y Asia, esto permitió que su influencia se mantuviera por mucho tiempo después de la caída del imperio.

A pesar de que se encuentran en desuso, todavía existen ciertas aplicaciones de los números romanos. Tanto en capítulos de libros como incluso en relojes están presentes los números romanos.

El Imperio romano fue, sin duda, uno de los imperios más influyentes de toda la historia. Se destacan sus aportes en la arquitectura, la escultura, la pintura y el derecho, además de novedosos inventos como el acueducto y el hormigón. También en el área de los números desarrollaron el sistema de numeración romano que surgió entre el 900 y el 800 a. C.

Características de los números romanos

– Es un sistema predominantemente aditivo, es decir; los valores de cada signo se suman (aunque hay ocasiones en los que se restan).

– Emplea letras del abecedario para representar a los números, por eso, podría catalogarse como un sistema alfanumérico.

– Los romanos, para ese momento, no conocían el número cero (que fue introducido más adelante a Europa con la numeración arábiga) y por ello no lo representaban.

– Las letras en este sistema siempre deben escribirse en mayúscula.

A pesar de su popularidad en el pasado, la numeración romana no era perfecta y presentaba ciertas limitaciones tales como la ausencia del número cero y la imposibilidad de representar fracciones o números decimales. Luego, con la llegada de la numeración arábiga (sistema decimal) los números romanos resultaban poco prácticos y entraron en desuso.

Reglas para escribir números romanos

Lo primero que se debe tener en cuenta es que este sistema emplea 7 letras del abecedario que se suman o restan entre ellas de acuerdo a ciertos criterios.

I = 1

V = 5

X = 10

L = 50

C = 100

D = 500

M = 1.000

Con los símbolos anteriores y a veces con algún símbolo auxiliar se pueden construir el resto de los números de acuerdo a los siguientes criterios:

Valores que se suman

– Las letras que se escriben a la derecha de otra de igual o mayor valor se suman:

VI = 5 + 1 = 6

XX = 10 + 10 = 20

CLI = 100 + 50 + 1 = 151

MMDCLII = 1.000 + 1.000 + 500 + 100 + 50 + 1 + 1 = 2.652

 

– Los símbolos I, X, C y M son los únicos que pueden repetirse dos o tres veces consecutivas:

III = 1 + 1 + 1 = 3

XXX = 10 + 10 + 10 = 30

CC = 100 + 100 = 200

MMM = 1.000 + 1.000 + 1.000 = 3.000

 

Los símbolos V, L y D pueden escribirse solo una vez en cada número y por ende no pueden repetirse nunca a diferencia del resto de los símbolos. A pesar de que hoy en día los usos de este sistema de numeración son muy limitados, pueden observarse en ciertos contextos como: siglos, nombres, capítulos de libros y monumentos o placas conmemorativas.

Valores que se restan

– Solo los símbolos I, X y C pueden restarse al símbolo siguiente. Esto sucede cuando el símbolo siguiente es mayor.

IV = 5 − 1 = 4

IX = 10 − 1 = 9

XL = 50 − 10 = 40

XC = 100 − 10 = 90

CD = 500 − 100 = 400

CM = 1.000 − 100 = 900

VER INFOGRAFÍA

¿Qué hacer con cantidades más grandes?

Números mayores a 3.999 (MMMCMXCIX) necesitan símbolos auxiliares, en estos caso se emplea una raya horizontal arriba de la letra para multiplicar su valor por 1.000.

\overline{IV} = 4 \times 1.000 = 4.000

\overline{XL} = 40 \times 1.000 = 40.000

\overline{CXX} = 120 \times 1.000 = 120.000

¿Sabías qué?
Si se colocan dos rayas horizontales sobre un número romano su valor se multiplica por 1 millón.

Ejercicios

1. Escribe con letra los siguientes números

  1. 45.987
    Solución
    Cuarenta y cinco mil novecientos ochenta y siete.
  2. 120.501
    Solución
    Ciento veinte mil quinientos uno.
  3. 197.234
    Solución
    Ciento noventa y siete mil doscientos treinta y cuatro.
  4. 100.985
    Solución
    Cien mil novecientos ochenta y cinco.

2. Escribe en número:

  1. Doscientos mil.
    Solución
    200.000
  2. Setenta y nueve mil ochocientos treinta y dos.
    Solución
    79.832
  3. Ciento veinticuatro mil quinientos sesenta y nueve.
    Solución
    124.569
  4. Cuarenta mil trescientos uno.
    Solución
    40.301

3. Escribe el valor de cada número:

  1. XXIV
    Solución
    24
  2. CLX
    Solución
    160
  3. MMMCLIX
    Solución
    3.159
  4. MMCMLXIV
    Solución
    2.964
  5. CLVIII
    Solución
    158

4. Escribe los siguientes números en número romanos:

  1. 2.157
    Solución
    MMCLVII
  2. 739
    Solución
    DCCXXXIX
  3. 1.199
    Solución
    MCXCIX
  4. 3.578
    Solución
    MMMDLXXVIII
  5. 5.000
    Solución
     
RECURSOS PARA DOCENTES

Artículo destacado “Sistema de numeración”

El siguiente artículo destacado te permitirá conocer más sobre los sistemas de numeración, desde los más antiguos hasta los más actuales.

VER

Infografía “Números romanos”

Con este recurso podrás saber más sobre la historia de los números romanos, sus características y aplicaciones.

VER