CAPÍTULO 2 / TEMA 5 (REVISIÓN)

OPERACIONES CON NATURALES | ¿QUÉ APRENDIMOS?

CÁLCULOS MATEMÁTICOS

LOS CÁLCULOS MATEMÁTICOS SON OPERACIONES QUE REALIZAMOS PARA CONOCER EL RESULTADO DE ALGO EXPRESADO EN NÚMEROS. LAS OPERACIONES QUE UTILIZAMOS CON MAYOR FRECUENCIA SON LA SUMA Y LA RESTA. PARA REGISTRARLAS EN FORMA ESCRITA UTILIZAMOS EL SÍMBOLO + (QUE SE LEE “MÁS”) Y EL SÍMBOLO − (QUE SE LEE “MENOS”). REALIZAMOS CÁLCULOS MATEMÁTICOS EN NUESTRA VIDA DIARIA: CUANDO PAGAMOS ALGO, AL MEDIR EL TIEMPO, PARA CONOCER UNA DISTANCIA Y HASTA PARA HACER MÚSICA.

LA MATEMÁTICA NO SOLO NOS SIRVE PARA LA ESCUELA, SINO QUE LA UTILIZAMOS A DIARIO EN NUESTRA VIDA COTIDIANA.

ADICIÓN O SUMA

LA ADICIÓN O SUMA ES LA OPERACIÓN DE AGREGAR O AGRUPAR CANTIDADES PARA OBTENER UN RESULTADO. ESAS CANTIDADES LLEVAN EL NOMBRE DE SUMANDOS, EL RESULTADO SE DENOMINA SUMA. AL SUMAR NÚMEROS DE DOS DÍGITOS A VECES ES CONVENIENTE ESCRIBIR LA OPERACIÓN EN FORMA VERTICAL. EN ESE CASO ES IMPORTANTE UBICAR EN LA COLUMNA DE LA DERECHA LAS UNIDADES Y EN LA DE LA IZQUIERDA LAS DECENAS.

CUANDO LOS NÚMEROS SON PEQUEÑOS PODEMOS USAR PALITOS O LOS DEDOS PARA HACER LA SUMA.

SUSTRACCIÓN O RESTA

LA SUSTRACCIÓN O RESTA ES LA OPERACIÓN CONTRARIA A LA SUMA. CONSISTE EN EXTRAER O QUITAR A UNA CANTIDAD MAYOR A UNA MENOR. AL NÚMERO MAYOR LO LLAMAMOS MINUENDO Y AL MENOR LO LLAMAMOS SUSTRAENDO, EL RESULTADO DE LA RESTA SE CONOCE COMO DIFERENCIA O RESTA.

EN LA RESTA USAMOS EL SIGNO − QUE SE LEE “MENOS”. POR EJEMPLO, 4 − 3 = 1 SE LEE “CUATRO MENOS TRES ES IGUAL A UNO”.

SITUACIONES PROBLEMÁTICAS

LAS SUMAS Y RESTAS SON LAS OPERACIONES MATEMÁTICAS MÁS USADAS POR TODOS DÍA A DÍA, ASÍ QUE ES POSIBLE QUE MUCHAS SITUACIONES LAS TENGAS QUE RESOLVER CON CÁLCULOS. CUANDO ESTO SUCEDE, ES IMPORTANTE QUE SIGAMOS UNA SERIE DE PASOS QUE NOS AYUDEN A RAZONAR Y ORGANIZAR LA INFORMACIÓN PARA RESOLVER EL PROBLEMA. ALGUNOS DE ESTOS PASOS SON IDENTIFICAR LOS DATOS, PENSAR EN EL PROCEDIMIENTO PARA LA RESOLUCIÓN, HACER LA OPERACIÓN Y DAR LA RESPUESTA. 

AUNQUE NO LO CREAS, LAS OPERACIONES MATEMÁTICAS LAS USAS SIEMPRE, ASÍ QUE DE TANTO PRACTICAR PODRÁS HACER TODOS ESTOS CÁLCULOS MENTALMENTE, ES DECIR, SIN NECESIDAD DE LÁPIZ Y PAPEL.

 

CAPÍTULO 2 / TEMA 4

Operaciones con números decimales

Los números decimales son aquellos que tienen una parte entera y una parte decimal, separadas por una coma; son comunes en los precios de los productos del supermercado o en nuestro peso y altura. Los problemas con este tipo de números se resuelven casi de la misma forma que los que tienen números naturales. A continuación, aprenderás las reglas para resolver dichos cálculos.

suma de números decimales

Cuando sumamos número decimales el procedimiento es similar al de los números naturales. Colocamos las unidades, decenas y centenas una sobre otra; de este modo, las comas, décimas, centésimas y milésimas también estarán en las mismas columnas.

– Ejemplo:

432,61 + 54,3

Donde:

C = centena

D = decena

U = unidad

d = décima

c = centésima

m = milésima

 

Si la suma de las cifras de una columna es mayor a 9, colocamos el dígito de la unidad debajo de dicha columna y el dígito de la decena en la columna de la izquierda.

– Ejemplo:

523,4 + 74,86

¡Es tu turno!

Resuelve estas sumas de números decimales.

  • 0,816 + 26,5
  • 10,5 + 10,5
  • 129,836 + 345,26
  • 64,68 + 22,129
Solución

 

¿Sabías qué?
Además de la coma, también se puede usar un punto para separar la parte entera de la parte decimal. Todo depende de la convención del país en el que estés.

 

¿Notaste que la adición de los números decimales es muy similar a la adición de los números naturales? Lo más importante en esta operación es que las cifras estén en las mismas columnas según su valor posicional: unidades con unidades, decenas con decenas, centenas con centenas. De este modo, la coma siempre estará en el lugar adecuado.

resta de números decimales

Para restar números decimales colocamos cada números en las mismas columnas según el orden de cada cifra: unidades con unidades, décimas con décimas, etc. De ser necesario añadimos ceros para que ambos números tengan la misma cantidad de dígitos. Luego restamos como si fueran números naturales y colocamos la coma en el resultado.

– Ejemplo:

360,84 − 246,013

1. Colocamos los números uno sobre otro y agregamos un cero al minuendo.

2. Como no podemos restarle 3 a 0, tomamos “prestada” una décima de la columna de la izquierda. Ahora el 0 se transforma en 10 y el 4 de las centésimas se convierte en 3. Luego hacemos la resta: 10 − 3 = 7.

3. Restamos las centésimas: 3 − 1 = 2.

4. Restamos las décimas: 8 − 0 = 8.

5. Restamos las unidades. Como no podemos restarle 6 a 0, tomamos una decena de la columna de la izquierda. Así que el 0 se convierte en 10 y el 6 se transforma en 5. Luego restamos: 10 − 6 = 4.

6. Restamos las decenas: 5 − 4 = 1.

7. Restamos las centenas y colocamos la coma en la misma columna en la que están las comas.

¡Es tu turno!

Resuelve las siguientes restas de números decimales.

  • 95,371 − 24,98
  • 137 − 45,290
  • 348,6 − 26,696
  • 67,4 − 0,16
Solución

 

Décimas en una regla

La regla graduada es un instrumento de medición con el que también podemos trazar líneas rectas. Por lo general viene con marcas con números que indican los centímetros y marcas más pequeñas entre estas que muestran los milímetros. Recuerda que 1 milímetro es igual a 0,1 centímetros.

Multiplicación con números decimales

Cuando multiplicamos un número decimal por un número natural colocamos los factores uno sobre otro alineados a la derecha, luego multiplicamos tal como si ambos fueran números naturales. Al final colocamos la coma decimal de acuerdo a la cantidad de decimales que tenga el factor decimal.

– Ejemplo:

1,27 × 36

1. Colocamos los factores uno sobre otro.

2. Multiplicamos como hacemos con los números naturales.

3. Colocamos la coma decimal en el resultado. Como el 1,27 tiene dos números decimales, movemos dos espacios en el resultado y colocamos la coma.

Por lo tanto,

1,27 × 36 = 45,72

¡Es tu turno!

Resuelve la siguientes multiplicaciones.

  • 3,1 × 21
  • 132 × 5,3
  • 2,65 × 68
Solución

Los números decimales también se pueden representar como una fracción. Para esto colocamos un denominador con la unidad seguida de tantos ceros como sean necesarios para que el numerador sea un entero. Recuerda que se multiplican ambas partes de la fracción. Luego simplificamos. Por ejemplo, si amplificamos por 10 la expresión 0,5/1 nos queda 5/10 = 1/2.

 

¡A practicar!

Resuelve las siguientes operaciones.

421,78 + 100,1

Solución
421,78 + 100,1 = 521,88

500,999 − 500,159

Solución
500,999 − 500,159 = 0,84

131 × 12,4

Solución
131 × 12,4 = 1.624,4

0,92 × 53

Solución
0,92 × 53 = 48,76

0,578 + 0,9

Solución
0,578 + 0,9 = 1,478

36,9 − 0,806

Solución
36,9 − 0,806 = 36,094
RECURSOS PARA DOCENTES

Artículo “Números decimales”

Con este artículo podrás ampliar la información relacionada con los números decimales, su clasificación y las operaciones que los involucran.

VER

Artículo “Operaciones con números decimales”

Este recurso describe paso a paso cómo realizar sumas, restas, multiplicaciones y divisiones con números decimales.

VER

 

CAPÍTULO 3 / TEMA 6 (REVISIÓN)

FRACCIONES Y PORCENTAJES | REVISIÓN

LAS FRACCIONES Y SUS USOS

En toda fracción podemos distinguir dos partes principales: el numerador y el denominador, ambos se encuentran separados por una línea horizontal. El denominador indica en cuántas partes se divide la unidad y el numerador señala cuántas de esas partes se han de tomar. Las fracciones se pueden clasificar en propias, impropias y aparentes. Las fracciones propias son aquellas en las que el numerador es menor que el denominador y representan un número menor a uno. Las fracciones impropias son la que tienen el numerador mayor que el denominador y representan a un número mayor a uno. Las fracciones aparentes son aquellas cuyo numerador es múltiplo de su denominador.

Además de la raya horizontal también podemos representar a las fracciones con una raya diagonal “/” o con el símbolo de las divisiones “÷”.

FRACCIONES EQUIVALENTES

Decimos que dos o más fracciones son equivalentes cuando todas ellas representan a la misma cantidad. Las fracciones equivalentes se pueden obtener por medio de dos métodos: amplificación y simplificación. Para obtener fracciones equivalentes por amplificación debemos multiplicar al numerador y al denominador de la fracción por un mismo número, distinto de cero. Para obtenerlas por simplificación, debemos dividir al numerador y al denominador de la fracción por un mismo número, distinto de cero y que sea un divisor común entre ambos. Es importante recordar que las fracciones equivalentes se pueden utilizar para sumar y restar fracciones heterogéneas (que tienen distinto denominador).

Media sandía se puede expresar como 1/2, 2/4, 4/8, 8/16, 16/32… Todas ellas son fracciones equivalentes que indican la mitad de un entero.

OPERACIONES CON FRACCIONES

La suma y resta de fracciones depende del tipo de estas. En las fracciones homogéneas (mismo denominador) se suman o restan los numeradores y se conserva el mismo denominador. En las fracciones heterogéneas (diferente denominador) se debe multiplicar el numerador de la primera fracción por el denominador de la segunda y el resultado se suma o se resta al producto del numerador de la segunda fracción por el denominador de la primera, el número obtenido es el numerador de la fracción resultante; luego se multiplican ambos denominadores y el número obtenido corresponderá al denominador de la fracción resultante. Para la multiplicación se multiplican los numeradores y denominadores de forma lineal. Para la división, se debe multiplicar en forma de cruz: el numerador de la primera fracción por el denominador de la segunda es igual al numerador de la fracción resultante y el numerador de la segunda fracción por el denominador de la primera es igual al denominador de la fracción resultante.

Algunas fracciones se pueden simplificar, es decir, pueden expresarse en fracciones equivalentes más sencillas

FRACCIONES MIXTAS

Una fracción mixta o número mixto es una forma de representar a una cantidad  compuesta por una parte entera y una parte fraccionaria. Para graficarla, dividimos al entero en tantas partes como indique el denominador de la parte fraccionaria. Luego, pintamos tantos enteros (completos) como indique el número entero de la fracción mixta. Por último, dibujamos otro entero y pintamos tantas partes de este como indique el numerador de la fracción mixta. Para transformar una fracción mixta a una fracción convencional, lo que se realiza es sumar la parte entera con la parte fraccionaria. Siempre se debe obtener una fracción impropia.

En este caso la parte entera de la fracción mixta es 2, y la parte fraccionaria es 1/3. Se lee “dos enteros y un tercio”.

PORCENTAJES

Un porcentaje, al igual que una fracción, es una forma de indicar una parte de un todo. Un porcentaje siempre representa a una fracción decimal cuyo denominador es 100. El símbolo que utilizamos para indicar un porcentaje es %. Para calcular el porcentaje de una cantidad conocida se multiplican ambos valores y se divide entre 100. Para convertir cualquier fracción a porcentaje, debemos dividir el numerador con el denominador, y luego multiplicar dicho resultado por cien. Por otro lado, para convertir un porcentaje a fracción, simplemente colocamos el porcentaje en el numerador y 100 como denominador, posteriormente se realiza una simplificación.

Los porcentajes se utilizan para indicar descuentos y recargos. También se utilizan en la estadística y en la economía.

CAPÍTULO 5 / TEMA 7 (REVISIÓN)

Geometría | ¿Qué aprendimos?

Elementos geométricos

El punto, la recta y el plano se denominan entes fundamentales de la geometría porque no tienen definición y su comprensión depende de comparaciones con elementos similares. El punto es adimensional y se nombra con letras mayúsculas del alfabeto. La recta está formada por infinitos puntos que se extienden en una misma dirección. Las rectas pueden ser paralelas, secantes o perpendiculares. El plano es un ente bidimensional, es decir, posee dos dimensiones y se suele nombrar con letras del alfabeto griego.

Un segmento es una parte de la recta que se encuentra ubicada entre dos puntos.

Ángulos

La región del plano comprendida entre dos semirrectas se denomina ángulo. De acuerdo a su medida pueden ser nulos (cuando miden 0°), agudos (cuando no son nulos y miden menos de 90°), rectos (cuando miden 90°), obtusos (cuando son menores a 180° y mayores a 90°) y llanos (cuando miden 180°). Se habla de dos ángulos complementarios cuando la suma de estos es igual a 90°, por otra parte, dos ángulos son suplementarios si la suma de ambos es igual a 180°. La sumatoria de los ángulos internos de un triángulo da 180°, mientras que en un cuadrilátero da 360°.

El transportador es uno de los instrumentos más usados en la lectura y construcción de ángulos.

Polígonos

Los polígonos son figuras caracterizadas por estar delimitadas por segmentos finitos rectos denominados lados. Si todos sus lados tienen la misma longitud se denominan polígonos regulares, de lo contrario, se denominan polígonos irregulares. En el caso de los polígonos regulares se cumple que sus ángulos internos son iguales, lo mismo sucede con sus ángulos externos. Los polígonos regulares también se caracterizan por tener igual cantidad de ejes de simetrías que de lados y sus diagonales son todas internas y de la misma longitud.

El rectángulo y el rombo son algunos ejemplos de polígonos irregulares.

Cuerpos geométricos

Los cuerpos geométricos pueden clasificarse en poliedros cuando todas sus caras son iguales y planas, y en cuerpos redondos cuando poseen al menos una cara curva. Sus elementos principales son las caras, las aristas y los vértices. Cada uno de los cuerpos geométricos posee su fórmula para determinar su volumen. De igual forma, cada uno de los cuerpos geométricos pueden representarse en construcciones de tres dimensiones.

La esfera es un cuerpo geométrico que no posee caras, aristas ni vértices.

Circunferencia y círculo

La circunferencia es una línea cerrada que sobresale por ser el perímetro del círculo. Por otra parte, el círculo es una figura geométrica que se encuentra delimitada por una circunferencia. Los elementos principales de una circunferencia son: centro, radio, cuerda, diámetro, semicircunferencia y arco. Entre una circunferencia y una recta pueden darse tres tipos diferentes de relación: recta exterior (cuando no toca ningún punto de la circunferencia), recta tangente (cuando toca un solo punto de la circunferencia) y recta secante (cuando atraviesa la circunferencia en dos puntos). El área de un círculo es igual al producto de el número pi por el radio de la circunferencia al cuadrado.

El matemático griego Eratóstenes fue la primera persona en calcular el diámetro de la Tierra en el 230 a. C.

Aplicación de la geometría

Incontables son las disciplinas y las situaciones en las que se emplea la geometría. Desde que apareció esta rama de la matemática ha permitido resolver infinidad de problemas. El cálculo de áreas de superficies planas puede extenderse a situaciones cotidianas como el cálculo de la extensión de un terreno, esto se debe a que cada figura posee su fórmula particular. Lo mismo sucede con el cálculo de volumen y los cuerpos geométricos.

La geometría ha permitido a la arquitectura realizar obras de singular belleza.

CAPITULO 5 / TEMA 5

Circunferencia y círculo

El círculo es la superficie contenida dentro de una circunferencia. En algunas ocasiones suelen confundirse estos términos por error, pero lo cierto es que gozan de características únicas que desde tiempos antiguos han cautivado a los matemáticos. Su conocimiento es importante para entender conceptos como el número pi.

Diferencia entre la circunferencia y el círculo

Aunque son conceptos que están estrechamente relacionados, circunferencia y círculo son dos cosas geométricamente diferentes. La circunferencia es la línea o perímetro que bordea y delimita la superficie de un círculo. Todos los puntos de la circunferencia se encuentran a una misma distancia del centro. El círculo, por otra parte, es una figura geométrica que está delimitada por una circunferencia.

¿Sabías qué?
El matemático griego Eratóstenes de Cirene fue la primera persona en calcular la circunferencia de la Tierra en el 230 a. C.

En este sentido, cuando hablamos de circunferencia nos referimos a una curva cerrada y cuando hablamos de círculo nos referimos a una superficie o área que está contenida dentro de una circunferencia.

Instrumento muy útil

Desde su invención en el año 200 a. C. por parte de los chinos, el compás ha sido uno de los inventos más usados en la geometría y en otras áreas. Su utilidad ha ido más allá del trazado de arcos y circunferencias, también permite transportar medidas y puede emplearse en la construcción de polígonos y en el cálculo de distancias empleado por la navegación.

Elementos de la circunferencia

Los elementos principales de una circunferencia se detallan a continuación:

  • Centro: es el punto que se ubica a la misma distancia de todos los puntos que conforman la circunferencia.
  • Radio: es el segmento de recta que une al centro con cualquiera de los puntos de la circunferencia.
  • Cuerda: es la recta que une dos puntos de la circunferencia.
  • Diámetro: es el segmento de recta que une dos puntos de la circunferencia y pasa por el centro. Su longitud es igual al doble del radio.
  • Semicircunferencia: es la mitad de la circunferencia. El diámetro divide a la circunferencia en dos semicircunferencias.
  • Arco: es una porción de la circunferencia que se encuentra delimitada por una cuerda. Generalmente, a cada cuerda se le asocia el menor arco que delimita.

Relaciones entre rectas y circunferencias

Entre una circunferencia y una recta pueden darse tres tipos diferentes de relación:

  • Recta exterior: es aquella recta que nunca corta a la circunferencia.
  • Recta tangente: es aquella recta que corta a la circunferencia en uno de sus puntos.
  • Recta secante: es aquella recta que corta a la circunferencia en dos de sus puntos.

VER INFOGRAFÍA

Desde la Antigüedad, los geómetras se enfocaron en calcular la longitud de la circunferencia. Esta línea curva cerrada sin importar su tamaño siempre mide algo más que el triple de su diámetro. En este contexto, se emplea el número pi (π), un número con infinitos decimales que se obtiene al dividir la longitud de la circunferencia por su diámetro.

Trazado de circunferencias

Para trazar circunferencias empleamos el compás y debemos seguir los siguientes pasos:

  1. Conocer la distancia que hay desde el centro de la circunferencia hasta alguno de sus puntos (el radio). Para esto puedes usar una regla y abrir el compás a dicha distancia. Otra forma de hacerlo es trazar el segmento de recta igual a la longitud del radio deseado, colocar la aguja de acero sobre uno de los extremos y abrir el compás hasta que la mina de grafito toque el otro extremo.
  2. Apretar con suavidad la aguja de acero contra el papel para que no se mueva y girar el otro brazo de forma firme para trazar la circunferencia.
  3. Marcar el centro de la circunferencia que será el mismo punto donde se apoyó la aguja de acero durante el trazado de la circunferencia.

Área del círculo

Para calcular el área de un círculo simplemente necesitamos conocer la longitud de su radio. La fórmula es la siguiente:

A=\pi \times r^{2}

Donde:

A = área del círculo
π = número pi
r = longitud del radio

Como el número pi (π) es un número irracional, sus decimales son infinitos (3,141592653589793238…), por lo tanto, para efectos de cálculo de área se suele aproximar a 3,14.

¿Sabías qué?
Existe otra fórmula para calcular el área del círculo en función de su diámetro: A = \frac{\pi }{4}\times d^{2}.

– Calcula el área del siguiente círculo.

De acuerdo a la figura, la longitud del radio es 5 cm, por lo tanto, podemos aplicar la fórmula de área.

A=\pi \times r^{2}

A=3,14 \times (5 \, cm)^{2}

A=3,14 \times 25 \, cm^{2}

A=\mathbf{78,5 \, cm^{2}}

El sistema sexagesimal es uno de los sistemas usados para medir ángulos y tiempo. En el caso de los ángulos, el sistema emplea una circunferencia para establecer sus unidades de medición. Un grado (°) equivale a la 360 parte de una circunferencia, un minuto (′) equivale a la 60 parte de un grado y un segundo (″) equivale a la 60 parte de un minuto.

¡A practicar!

1. Calcula el área de los siguientes círculos.

a) 

Solución
A = 50,24 cm2

b)

Solución
A = 254,34 cm2

c)

Solución
A = 12,56 m2

d)

Solución
A = 314 mm2

e)

Solución
A =153,86 cm2

2. ¿Cuánto debe medir el radio de una circunferencia para que su área sea igual a 113,04 cm2?
a) 5 cm
b) 3 cm
c) 6 cm
d) 11 cm

Solución
c) 6 cm

RECURSOS PARA DOCENTES

Artículo “Circunferencia”

El artículo explica los elementos principales de la circunferencia y la relación que tiene esta con el número pi. En el artículo también se explica como calcular la longitud de una circunferencia y determinar el área de un círculo.

VER

Artículo “Círculo”

El artículo plantea de forma resumida cada uno de los elementos de un círculo como el semicírculo y el segmento circular. También presenta ilustraciones de cada uno para explicar el concepto de manera más clara.

VER

Infografía “Número pi (π)”

En esta infografía se explica más a detalle qué es el número pi, su desarrollo a través del tiempo y las diferentes aplicaciones del mismo.

VER

CAPÍTULO 5 / TEMA 4

Cuerpos geométricos

Uno de los objetos de estudio de la geometría son los cuerpos geométricos. Una pelota de fútbol, un cono de helado o un dado son algunos objetos cotidianos que podemos asociar con estos cuerpos, los cuales se caracterizan por ocupar volumen en el espacio y estar formados con figuras geométricas.

Principales cuerpos geométricos

Los cuerpos geométricos son infinitos y cada uno posee características propias. Los más comunes son el cubo, el prisma, la pirámide, el cilindro, el cono y la esfera. Ellos se clasifican en poliedros y cuerpos redondos.

  • Los poliedros son cuerpos geométricos. Todas sus caras son planas. Estos, a su vez, pueden ser regulares si sus caras son todas iguales o irregulares cuando son diferentes. Un ejemplo de poliedro es el cubo.
  • Los cuerpos redondos son cuerpos geométricos con al menos una cara curva, como sucede con el cilindro.

VER INFOGRAFÍA

¿Sabías qué?
Al cubo también se lo denomina hexaedro regular.

Elementos de los cuerpos geométricos

En la mayoría de los cuerpos geométricos se pueden identificar los siguientes elementos.

  • Cara: corresponde a cada una de las superficies planas que delimitan al cuerpo geométrico. Pueden ser caras basales, las que sirven de apoyo (base) al cuerpo en el plano, o caras laterales, que corresponden a las de los costados.
  • Vértice: es el punto en el que se juntan tres o más caras.
  • Arista: es el segmento de línea que se forma cuando dos caras se juntan.
La esfera y sus curiosidades

La esfera es un cuerpo geométrico que no posee ni caras, ni aristas ni vértice. Y se caracteriza porque todos los puntos de su superficie están a la misma distancia del centro.

Volumen de cuerpos geométricos

De acuerdo a su tipo, cada cuerpo geométrico tiene características propias que permiten calcular su volumen a través de fórmulas.

Nombre Figura Fórmula de volumen
Cubo \boldsymbol{V=l^{3}}

 

Donde:

V = volumen

l = lado

Prisma \boldsymbol{V = A_{b}\times h}

 

Donde:

V = volumen
Ab = área basal

h = altura

Pirámide \boldsymbol{V = \frac{A_{b}\times h}{3}}

 

Donde:

V = volumen

Ab = área basal

h = altura

Cilindro \boldsymbol{V =\pi \times r^{2}\times h}

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

h = altura

Cono \boldsymbol{V =\frac{\pi \times r^{2}\times h}{3}}

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

h = altura

Esfera \boldsymbol{V =\frac{4}{3}\times \pi \times r^{3}}

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

h = altura

VER INFOGRAFÍA

– Calcula el volumen de este cubo.

Un cubo se caracteriza porque todos sus lados miden lo mismo, de manera que al conocer solo la medida de un lado se puede aplicar la fórmula:

V=l^{3}

V=(3\, cm)^{3}

V=\mathbf{27\, cm^{3}}

Calcula el volumen del siguiente cilindro.

Según la fórmula, los únicos datos que se necesitan son el radio del cilindro y su altura. De la imagen se obtienen los datos:

V =\pi \times r^{2}\times h

V =\pi \times (2\, cm)^{2}\times 6\, cm

En este caso observa que el radio está elevado al cuadrado, por lo tanto, al resolver esa potencia las unidades también se verán afectadas, por lo que quedarán centímetros cuadrados:

V =\pi \times 4\, cm^{2}\times 6\, cm

El número pi (π) es un número irracional, por lo cual es infinito. Para efectos de estos cálculos, usaremos solamente 2 de sus decimales, es decir, lo aproximamos a 3,14.

V =3,14 \times 4\, cm^{2}\times 6\, cm

Al resolver este producto se obtiene el volumen del cilindro.

V =\mathbf{75,36\, cm^{3}}

¿Sabías qué?
Cuando se usan múltiplos o submúltiplos del metro, el volumen siempre se expresa en unidades cúbicas: m3, cm3, mm3, km3, etc.
Los prismas son poliedros cuyos lados laterales son paralelogramos y con dos caras paralelas e iguales denominadas bases. Reciben su nombre de acuerdo a la forma de su base, por ejemplo, si su base es un triángulo, se denomina prisma triangular, si es un pentágono se denomina prisma pentagonal y así sucesivamente. Un paralelepípedo es un prisma cuya base es un paralelogramo.

Construcción de cuerpos geométricos

Los cuerpos geométricos tienen volumen y, por lo tanto, se pueden representar en tres dimensiones: largo, alto y ancho. Las imágenes a continuación son patrones que puedes usar para construir los cuerpos geométricos más comunes:

Cubo

Prisma rectangular

Pirámide

Cilindro

Cono

La construcción de cuerpos geométricos, además de su gran utilidad al momento de representar a estas figuras, permite trasladar estos conocimientos a otras áreas como la arquitectura y la ingeniería, en las cuales se realizan diseños a escalas. Conocer las diferentes fórmulas de cálculo y volumen de las figuras es fundamental para realizar operaciones más avanzadas.

¡A practicar!

1. Calcula el volumen de los siguientes cuerpos geométricos.

a)

      *La base es un rectángulo.

Solución
V = 133,33 cm3

b)

Solución
V = 64 cm3

c)

Solución
V = 904,32 cm3

d) 

Solución
V = 33,49 cm3

e)

Solución
V = 96 cm3

f)

Solución
V = 62,8 cm3

RECURSOS PARA DOCENTES

Artículo “Poliedros irregulares”

El artículo explica qué es un poliedro y qué caracteriza a los irregulares. También hace una breve explicación de los sólidos platónicos y muestra algunos ejemplos.

VER

Infografía “Cuerpos redondos”

La infografía explica de manera sencilla qué es un cuerpo redondo, sus características y su presencia en la vida cotidiana.

VER

Artículo “Volumen de figuras geométricas”

En este artículo destacado se explica qué es el volumen y cómo calcularlo en los diferentes cuerpos geométricos. También se plantean una serie de problemas resueltos y de ejercicios planteados.

VER

CAPÍTULO 2 / TEMA 4

MULTIPLICACIÓN

La multiplicación es una de las operaciones fundamentales que realizamos con los números. Se encuentra estrechamente relacionada con la adición, por lo tanto, cuando sumamos repetidas veces una misma cantidad, realmente hacemos una multiplicación. A partir de esto se crearon las tablas de multiplicar para facilitar los cálculos.

RELACIÓN ENTRE LA ADICIÓN Y LA MULTIPLICACIÓN

Se denomina adición iterada a la adición que posee todos sus sumandos iguales y se puede representar como una multiplicación.

– Ejemplo 1:

Observa que cada mariposa tiene 2 alas. Por lo tanto, en 4 mariposas hay 8 alas.

4 veces 2 es igual a 8.

4 × 2 = 8

– Ejemplo 2:

¿Cuántas patas (extremidades) hay en total?

5 veces 2 es igual a 10.

5 × 2 = 10

– Ejemplo 3:

Sofía tiene tres portalápices y en cada uno de ellos caben 5 lápices, ¿cuántos lápices tiene Sofía en total?

3 veces 5 es igual a 15.

3 × 5 es igual a 15.

La multiplicación es considerada como una adición con sumandos iguales (adición iterada). Nos ayuda a obtener resultados más rápidos de manera sencilla. Los elementos de la multiplicación son los factores y el producto. Los números multiplicados son los factores y el resultado es el producto. Para resolver multiplicaciones se usan las tablas de multiplicar.

¡Es tu turno!

  • ¿Cuántos huevos hay en total?

Solución

3 + 3 + 3 = 9

3 veces 3 es igual a 9.

3 × 3 = 9

  • ¿Cuántas flores hay en total?

Solución

4 + 4 + 4 + 4 = 16

4 veces 4 es igual a 16.

4 × 4 = 16

  • Expresa las adiciones como multiplicación, resuelve y completa:
Adición Multiplicación
1 + 1 + 1 + 1 = 4 1 × 4 = 4
5 + 5 + 5 =
6 + 6 + 6 + 6 + 6 =
7 + 7 + 7 + 7 =
2 + 2 + 2 =
3 + 3 + 3 + 3 + 3 + 3 =

Solución
Adición Multiplicación
1 + 1 + 1 + 1 = 4 1 × 4 = 4
5 + 5 + 5 = 15 5 × 3 = 15
6 + 6 + 6 + 6 + 6 = 30 6 × 5 = 30
7 + 7 + 7 + 7 = 28 7 × 4 = 28
2 + 2 + 2 = 6 2 × 3 = 6
3 + 3 + 3 + 3 + 3 + 3 = 18 3 × 6 = 18

elementos de la multiplicación

Los términos de una multiplicación se denominan factores y producto. Los factores son los números que se multiplican, y el producto es el resultado de la operación de multiplicación.

Tablas de multiplicar

Para hacer cálculos de multiplicaciones se crearon las tablas de multiplicar, que no son más que un atajo para realizar sumas largas de forma rápida. La forma más común de representar las tablas de multiplicación es, como su nombre lo indica, a través de tablas. Normalmente se muestran las tablas del 1 al 10 y cada una de ellas a su vez indica las multiplicaciones del número que representan del 1 al 10 o del 0 al 10.

Multiplicación en forma vertical

La multiplicación es una adición de sumandos iguales, el signo de la multiplicación es “×” y se lee “por”.

La multiplicación es la operación matemática que consiste en determinar el resultado de un número que se haya sumado tantas veces como indique otro. La palabra multiplicación proviene del latín de la palabra multus que significa “mucho” y plico que quiere decir “doblar”. En este sentido, multiplicar es doblar o repetir un número muchas veces.

¿Sabías qué?
Además del símbolo de la cruz, en la multiplicación también puede usarse el punto a media altura (·).

Para multiplicar un número de una cifra por otro de dos cifras, multiplicamos cada cifra de los factores. Para esto seguimos los siguientes pasos:

1. Colocamos los factores uno sobre el sobre.

2. Multiplicamos la unidad del segundo factor por la unidad del primer factor: 3 × 3 = 9

3. Multiplicamos la unidad del segundo factor por las decenas de la primer factor: 3 × 2 = 6.

4. También podemos escribir el resultado de forma horizontal:

23 × 3 = 69

 

– Otros ejemplos:

Multiplicación con llevadas

Cuando multiplicamos las cifras de los factores y el resultado es mayor a 9, debemos hacer llevadas. Los pasos son los siguientes:

1. Colocamos los factores uno sobre otro según su valor posicional.

2. Multiplicamos la unidad del segundo factor por la unidad del primer factor: 4 × 3 = 12. Como el resultado es mayor a 9, colocamos la unidad (2) en la columna de las unidades y la cifra de la decena (1) la colocamos en la columna de la izquierda.

3. Multiplicamos la unidad del segundo factor por las decenas del segundo factor y consideramos el 1 que se lleva: 4 × 2 = 8 + 1 = 9.

– Otros ejemplos:

 

También es posible que llevemos cifras a las centenas. En estos casos los pasos son estos:

1. Colocamos los factores uno sobre otro según sus valores posicionales.

2. Multiplicamos la unidad del segundo factor por la unidad del primer factor: 7 × 4 = 28. Como el resultado es mayor a 9, escribimos el 8 en la columna de las unidades y llevamos la decena (2) a la columna de la izquierda.

3. Multiplicamos la unidad del segundo factor por las decenas del primer factor, como llevamos 2: 7 × 2 = 14 + 2 = 16. Escribimos el 6 en las decenas y el 1 en la columna de las centenas.

 

– Otros ejemplos:

¿Sabías qué?
Es común que en las multiplicaciones se escriba arriba el número mayor (multiplicando) y debajo el número menor (multiplicador).

MULTIPLICACIÓN POR 10, POR 100 Y POR 1.000

Para multiplicar un número natural por 10 agregamos un cero a la derecha del número. Si lo multiplicamos por 100 agregamos 2 ceros y si lo multiplicamos por 1.000 agregamos 3 ceros. Ejemplo:

  • ¿Cuál es el producto de 35 × 10?

Como se multiplica por 10, se agrega un cero a la derecha del 35, es decir:

35 × 10 = 350

  • ¿Cuál es el producto de 35 × 100?

Como se multiplica por 100, se agregan dos ceros a la derecha del 35, es decir:

35 × 100 = 3.500

  • ¿Cuál es el producto de 35 × 1.000?

Como se multiplica por 1.000, se agregan tres ceros a la derecha del 35, es decir:

35 × 1.000 = 35.000

– Otros ejemplos:

Factores 2 5 17 29 40 73 91
× 10 20 50 170 290 400 730 910
× 100 200 500 1.700 2.900 4.000 7.300 9.100
× 1.000 2.000 5.000 17.000 29.000 40.000 73.000 91.000
Las propiedades de la multiplicación permiten realizar operaciones de manera más sencilla. Por ejemplo, la propiedad conmutativa nos permite cambiar el orden de los factores sin alterar el producto, por esta razón, el número mayor se suele colocar arriba y el menor debajo al momento de resolver los cálculos. Lo mismo aplica para el resto de las propiedades.

PROBLEMAS DE MULTIPLICACIÓN

1. Tres camiones viajan del campo a la ciudad, cada uno con 800 sandías. ¿Cuántas sandías llevan en total?

  • Datos

Cantidad de camiones: 3

Cantidad de sandías por camión: 800

  • Pregunta

¿Cuántas sandías llevan en total?

  • Reflexiona

Para resolver el problema debemos multiplicar las 800 sandías por 3, para lo cual se ubica el 800 en el multiplicando por ser mayor y el 3 en el multiplicador.

  • Resuelve

 

  • Respuesta

Entre los camiones hay 2.400 sandías.


2. A la hermana de Susana le gusta coleccionar zapatos. Tiene tantos que los organiza en un estante por tramos. Si el estante tiene seis tramos y en cada uno hay catorce pares, ¿cuántos pares de zapatos tiene la hermana de Susana?

  • Datos

Tramos del estante: 6

Pares de zapatos por tramos: 14

  • Pregunta

¿Cuántos pares de zapatos tiene la hermana de Susana?

  • Reflexiona

Para resolver el problema debemos multiplicar los 14 pares de zapatos por los 6 tramos que tiene el estante. Para esto ubicamos el 14 arriba y el 6 debajo.

  • Resuelve

  • Respuesta

La hermana de Susana tiene 84 pares de zapatos.


3. Si un paquete de caramelos cuesta $ 843, ¿cuánto cuestan 9 paquetes?

  • Datos

Valor del paquete de caramelos: $ 843

  • Pregunta

¿Cuánto cuestan 9 paquetes de caramelos?

  • Reflexiona

Para resolver el problema debemos multiplicar el costo del paquete de caramelos que son $ 843 por el número de paquetes que pide el problema, es decir 9.

  • Resuelve

  • Respuesta

Nueve paquetes de caramelos tienen un valor de $ 7.587

¡A practicar!

1. Valentina compró cinco paquetes de palomitas de maíz por un valor de $ 1.569 cada uno. ¿Cuánto dinero gastó Valentina?

Solución
  • Datos

Valor del paquete de palomitas: $ 1.569

Cantidad de paquetes de palomitas comprado: 5

  • Pregunta

¿Cuánto gastó Valentina?

  • Reflexiona

Para resolver el problema debemos multiplicar el costo del paquete de palomitas que son $ 1.569 por el número de paquetes que compró Valentina, es decir 5.

  • Resuelve

  • Respuesta

Valentina gastó $17.845.

2. En un salón de clases hay 42 estudiantes, si cada uno de ellos trae 2 paletas de caramelo, ¿cuántas paletas de caramelo tendrían en total?

Solución
  • Datos

Cantidad de estudiantes: 42

Cantidad de paletas por estudiante: 2

  • Pregunta

¿Cuántas paletas de caramelo tendrían en total?

  • Reflexiona

Para resolver el problema debemos multiplicar el número total de estudiantes, que son 42 por la cantidad de paletas de caramelo que trajo cada estudiante, es decir 2.

  • Resuelve

  • Respuesta

Los alumnos tendrían en total 84 paletas de caramelo.

3. En la granja de don Tomás hay 8 vacas lecheras, cada una produce diariamente 52 litros. ¿Cuántos litros de leche se producen durante 7 días?

Solución
  • Datos

Cantidad de vacas: 8

Litros de leche producidos por una vaca en 1 día: 52

  • Pregunta

¿Cuántos litros de leche se producen durante 7 días en la granja de don Tomás?

  • Reflexiona

Para resolver el problema debemos hacerlo en dos partes, primero se debe sacar la cantidad de litros que producen diariamente por medio de una multiplicación entre 52 y 8. Luego, multiplicar ese resultado por 7.

  • Resuelve

 

  • Respuesta

Durante siete días se producen 2.912 litros de leche en la granja de don Tomás.

4. En una granja hay 3 corrales para cerdos y en cada corral caben seis cerdos, ¿qué adición iterada representaría la situación?

a) 4 + 4 + 4 + 4 + 4

b) 6 + 4

c) 6 + 6 + 6

d) 24 + 24 + 24 + 24

Solución
c) 6 + 6 + 6

5. Víctor lee cuatro páginas de su libro favorito por día, ¿cuántas páginas leerá en seis días?

Solución

1 día → 4 páginas

2 días → 4 + 4 = 8 páginas

3 días → 4 + 4 + 4 = 12 páginas

4 días → 4 + 4 + 4 + 4 = 16 páginas

5 días → 4 + 4 + 4 + 4 + 4 = 20 páginas

6 días → 4 + 4 + 4 + 4 + 4 + 4 = 24 páginas

 

Podemos ver que 6 veces 4 es 24, por lo tanto:

6 × 4 = 24

Victor leerá 24 página en 6 días.

RECURSOS PARA DOCENTES

Artículo “Trucos para aprender las tablas de multiplicar”

El siguiente material ofrece algunos trucos para aprender las tablas de multiplicar sin necesidad de memorizarlas.

VER

Artículo “Multiplicación por una cifra”

El artículo muestra los procedimientos principales para resolver multiplicaciones por una cifra. También ofrece una serie de ejercicios propuestos.

VER

CAPÍTULO 2 / TEMA 1

ADICIÓN

La adición o suma es una de las operaciones básicas de las matemáticas. La usamos casi todos los días y gracias a ella sabemos cuántos alumnos hay en una escuela, cuántas pelotas hay en la cancha o cuántos libros tenemos. Como verás, sumar números de 4 cifras implica un orden y podemos hacerlo de acuerdo a sus propiedades.

La adición es una operación matemática que nos permite agregar o reunir dos o más cantidades en un mismo número. Los términos de la adición son los sumandos y suma. Las cantidades que se suman son los sumandos y el resultado es la suma. Cuando los números son pequeños podemos hacer sumas con los dedos y escribirlo de forma horizontal.

la adición y sus elementos

La adición es una operación que consiste en añadir una cantidad a otra. Los términos de la adición son los sumandos y  la suma.

¿CÓMO resolver una adición?

Si un número tiene más de tres cifras conviene usar el algoritmo de la suma. Esto consiste en ordenar los sumandos de tal manera que las unidades, las decenas, las centenas y las unidades de mil están en las mismas columnas. Luego sumamos cada posición desde la derecha. Los pasos son los siguientes:

1. Sumamos las unidades: 8 + 1 = 9.

2. Sumamos las decenas: 7 + 2 = 9.

 

3. Sumamos las centenas: 4 + 3 = 7.

 

4. Sumamos las unidades de mil: 3 + 3 = 6.

– Otros ejemplos:

 

¡Es tu turno!

Realiza esta sumas:

  • 8.605 + 1.382
  • 5.074 + 4.523
  • 1.841 + 7.106
Solución

 

Equivalencia de interés

  • 1 unidad de mil = 1.000 unidades
  • 1 centena = 100 unidades
  • 1 decena = 10 unidades
  • 1 unidad = 1 unidad

¿Sabías qué?
La operación opuesta a la adición es la sustracción o resta.
Cuando colocamos los sumandos uno sobre otro y hacemos coincidir las posiciones, empleamos el algoritmo de la suma. En este proceso sumamos primero las unidades, luego las decenas, las centenas y finalmente las unidades de mil. Cuando un resultado es mayor a 9, se coloca la decena en la columna de la izquierda y se reagrupan las cifras.

¿cómo resolver una adición con llevadas?

Las adiciones o sumas con llevadas las podemos resolver de la misma manera que las adiciones anteriores, la única diferencia es que debemos reagrupar las decenas, centenas o unidades de mil cuando una de las sumas de las posiciones sea superior a 9. Para sumas de números de cuatro cifras los pasos son estos:

1. Sumamos las unidades: 2 + 5 = 7.

 

2. Sumamos las decenas: 3 + 6 = 9.

 

3. Sumamos las centenas: 6 + 6 = 12. Como el resultado es mayor a 9 colocamos la unidad (2) en la casilla debajo de la suma de centenas y el 1 lo colocamos en la columna de las unidades de mil.

4. Sumamos las unidades de mil y consideramos el 1 agregado antes: 1 + 2 + 3 = 6.

 

– Otros ejemplos:

 

¿Sabías qué?
En una adición o suma podemos hacer llevadas en una o más cifras.
La adición está presente en muchas situaciones de la vida diaria. Si observas a tu alrededor, hay muchas cosas en las que podemos utilizar esta operación. Uno de los casos más frecuentes es cuando compramos productos en el supermercado. Allí debemos sumar todos los precios de cada artículo para pagar un total. Las máquinas registradoras hacen este cálculo rápidamente.

 

propiedades de la adición

La adición tiene algunas propiedades que la caracterizan. Estas son: la propiedad conmutativa, la propiedad asociativa y el elemento neutro.

Propiedad conmutativa

Al invertir o cambiar de lugar los sumandos el resultado es el mismo, es decir, el orden de los sumandos no altera la suma obtenida.

Propiedad asociativa

Sin importar la agrupación de los términos el resultado será el mismo.

Elemento neutro

La suma de todo número más cero es igual al mismo número, de manera que 0 es el elemento neutro de la suma.

1.568 + 0 = 1.568

 

El ábaco es un instrumento que sirve para efectuar operaciones matemáticas sencillas. Este es un cuadro de madera con barras paralelas por las que corren bolas movibles. El ábaco no solo nos ayuda a sumar y restar con mayor fluidez, sino que además podemos resolver operaciones más complejas como la multiplicación y la división.

 

¡A practicar!

1. Resuelve las siguientes adiciones:

  • 5.328 + 2.419
Solución

  • 3.686 + 5.607
Solución

  • 4.368 + 5.177
Solución

  • 8.645 + 480
Solución

  • 5.502 + 3.199
Solución

  • 6.098 + 2.174
Solución

 

2. Resuelve estas adiciones y aplica la propiedad conmutativa:

  • 560 + 199
Solución

560 + 199 = 759

199 + 560 = 759

  • 1.795 + 528
Solución

1.795 + 528 = 2.323

528 + 1.795 = 2.323

  • 237 + 797
Solución

237 + 797 = 1.034

797 + 237 = 1.034

  • 1.300 + 788
Solución

1.300 + 788 = 2.088

788 + 1.300 = 2.088

 

3. Realiza la siguientes sumas y aplica la propiedad distributiva.

  • 150 + 430 + 670
Solución

(150 + 430) + 670 = 580 + 670 = 1.250

150 + (430 + 670) = 150 + 1.100 = 1.250

  • 720 + 340 + 480
Solución

(720 + 340) + 480 = 1.060 + 480 = 1.540

720 + (340 + 480) = 720 + 820 = 1.540

  • 500 + 200 + 400
Solución

(500 + 200) + 400 = 700 + 400 = 1.100

500 + (200 + 400) = 500 + 600 = 1.100

  • 6.000 + 500 + 1.000
Solución

(6.000 + 500) + 1.000 = 6.500 + 1.000 = 7.500

6.000 + (500 + 1.000) = 6.000 + 1.500 = 7.500

 

RECURSOS PARA DOCENTES

Artículo “Cómo enseñar a sumar y a restar”

El siguiente material le brindará orientaciones generales para enseñar a sus alumnos a sumar y a restar.

VER

Artículo “Propiedades de la suma”

Con este recurso se podrá ampliar la información referida a las propiedades de la adición.

VER

Artículo “Suma con tres sumandos”

Este artículo explica paso a paso cómo realizar cálculos con tres sumandos.

VER

CAPÍTULO 5 / TEMA 3

Polígonos

Podemos observar polígonos en múltiples objetos de nuestro alrededor. Estos son muy diversos y los hay con lados y ángulos iguales o desiguales entre sí. Son elementos fundamentales de la geometría y su conocimiento es esencial en diversos campos del conocimiento, como la ingeniería o la arquitectura.

¿Qué es un polígono?

En geometría, un polígono es una figura geométrica plana delimitada por un número finito de segmentos rectos.

¿Sabías qué?
La palabra “polígono” proviene del griego antiguo que quiere decir “muchos ángulos”.

Los polígonos presentan los siguientes elementos:

  • Lados: son los segmentos rectos que conforman al polígono.
  • Vértices: son los puntos en común entre dos lados consecutivos.
  • Diagonales: son los segmentos que unen a dos lados no consecutivos de un polígono.
  • Ángulos interiores: están formados por dos lados consecutivos en el interior del polígono.
  • Ángulos exteriores: están formados en el exterior del polígono entre un lado y la prolongación de otro lado consecutivo.

Polígonos regulares y sus tipos

Un polígono regular tiene lados con la misma longitud. Se caracterizan también porque sus ángulos internos y externos también son iguales. Otra característica es que poseen la misma cantidad de ejes de simetrías que de lados. Las diagonales en este tipo de polígonos tienen la misma longitud y siempre son interiores.

Polígono Número de lados Número de diagonales Medida de cada ángulo interno Medida de cada ángulo externo
Triángulo equilátero 3 0 60° 120°
Cuadrado 4 2 90° 90°
Pentágono 5 5 108° 72°
Hexágono 6 9 120° 60°
Heptágono 7 14 128,57° 51,43°
Octágono 8 20 135° 45°
Eneágono 9 27 140° 40°
Decágono 10 35 144° 36°
Endecágono 11 44 147,27° 32,73°
Dodecágono 12 54 150° 30°

VER INFOGRAFÍA

El círculo y los polígonos

Todo polígono regular puede estar circunscrito en una circunferencia, lo que quiere decir que cada uno de sus vértices corresponde a un punto de la circunferencia. Mientras más lados tenga el polígono, más se va a aproximar a la forma de la circunferencia. Por esta razón, se asocia a la circunferencia (de forma informal) a un polígono de infinitos lados.

Área de polígonos regulares

Para medir el área de los polígonos es necesario conocer las definiciones de perímetro y apotema.

  • Perímetro: es la suma de los lados que forman una figura geométrica. En el caso de los polígonos regulares, se calcula al multiplicar el número de lados por la longitud de uno de sus lados.

P= n\times L

Donde:

P: perímetro
n: número de lados del polígono regular.
L: longitud de uno de los lados del polígono.

  • Apotema: es la distancia perpendicular desde el centro de un polígono hasta uno de sus lados.

El área de un polígono regular se define como el producto de su perímetro por la apotema (a) dividido entre dos.

A = \frac{P\times a}{2}

Donde:

A: área

P: perímetro

a: apotema

 

– Ejemplo:

Calcular el área de un pentágono cuyos lados miden 6 cm y su apotema es de 4,13 cm.

Lo que debemos hacer es calcular primero el perímetro para luego sustituir en la fórmula junto con la apotema para calcular el área.

P= n\times L
P= 5\times 6\, cm
P= 30\, cm

El perímetro del apotema es 30 cm, al sustituir en la fórmula de área nos queda:

A = \frac{30\, cm\times 4,13\,cm }{2}

A = \frac{123,9\,cm^{2} }{2}

A = \mathbf{61,95\, cm^{2}}

El área del pentágono es de 61,95 cm2.

¿Sabías qué?
El Departamento de Defensa de los Estados Unidos es un edificio en forma de Pentágono que mide 140.000 metros cuadrados aproximadamente.
Debido a sus características geométricas, todo polígono regular puede estar inscrito o circunscrito a una circunferencia. Un polígono inscrito tiene todos sus vértices contenidos en la circunferencia. Por otro lado, un polígono circunscrito posee todos sus lados tangentes a la circunferencia. En ambos casos, el centro del polígono coincide con el centro de la circunferencia.

Polígonos irregulares y sus tipos

En los polígonos irregulares se pueden cumplir algunas de estas condiciones:

– Tener sus lados con igual longitud pero sus ángulos internos diferentes.
– Tener sus ángulos de igual medida pero sus lados con diferente longitud.
– Tener sus lados con diferente longitud y sus ángulos internos con diferente medida.

Ejemplos de polígonos irregulares

  • Rombo

El rombo tiene los cuatro lados con igual longitud pero sus cuatro ángulos internos son diferentes: solo los ángulos opuestos de este polígono son iguales. Por eso se trata de un polígono irregular.

  • Rectángulo (no cuadrado)

Es un cuadrilátero con sus cuatro ángulos iguales (90°), pero sus lados tienen diferente longitud entre sí. Solo los lados paralelos comparten la misma longitud.

  • Triángulo (no equilátero)

Todo triángulo con un ángulo interior diferente de 60 grados es un polígono irregular.

Triángulos regulares e irregulares

Según sus lados, los triángulos se clasifican en equiláteros, isósceles y escalenos. Los equiláteros son los únicos triángulos que cumplen con las características de un polígono regular. Los triángulos escalenos son aquellos en los que las longitudes de sus lados y la medida de sus ángulos internos son diferentes, por lo tanto no son polígonos regulares. Por otra parte, los triángulos isósceles al contar solo con dos lados y dos ángulos iguales tampoco son considerados como polígonos regulares.

Perímetro de polígonos

Calculamos el perímetro de los polígonos regulares a través de la fórmula planteada anteriormente:

P= n\times L

En cambio, en los polígonos irregulares, cuyos lados generalmente son diferentes, esta ecuación no siempre aplica. Para lo cual debemos sumar de forma separada las longitudes de cada uno de los lados.

P= L_{1}+L_{2}+L_{3}+...+L_{n}

Por ejemplo, para calcular el perímetro del siguiente triángulo isósceles simplemente sumamos cada una de las longitudes de sus lados.

P= 60\,\, cm+60\,\, cm+40\,\, cm

P= \mathbf{160\,\, cm}

El perímetro de este triángulo irregular es de 160 cm.

 

¡A practicar!

1. Determina el perímetro y el área de los siguientes polígonos regulares según los datos mostrados.

a) Un eneágono regular cuyos lados miden 7 cm y su apotema 9,62 cm.

Solución
P = 63 cm
A = 303,03 cm2

b) Un pentágono regular cuyos lados miden 6 cm y su apotema 4,13 cm.

Solución
P = 30 cm
A = 61,95 cm2

c) Un heptágono regular cuyos lados miden 8 cm y su apotema 8,31.

Solución
P = 56 cm
A = 232,68 cm2

d) Un triángulo regular (equilátero) cuyos lados miden 5 cm y su apotema 1,44 cm.

Solución
P= 15 cm
A = 10,8 cm2

e) Un decágono regular cuyos lados miden 3 cm y su apotema 4,62 cm.

Solución
P= 30 cm
A = 69,3 cm2

f) Un dodecágono regular cuyos lados miden 4 cm y su apotema 7,46 cm.

Solución
P= 48 cm
A = 179,04 cm2

g) Un hexágono regular cuyos lados miden 7 cm y su apotema 6,06 cm.

Solución
P= 42 cm
A = 127,26 cm2

h) Un octágono regular cuyos lados miden 2 cm y su apotema 2,41 cm.

Solución
P= 16 cm
A = 19,28 cm2

i) Un endecágono regular cuyos lados miden 3 cm y su apotema 5,11 cm.

Solución
P= 33 cm
A = 84,315 cm2

j) Un cuadrado cuyos lados miden 4 cm y su apotema 2 cm.

Solución
P= 16 cm
A = 16 cm2

 

2. ¿A qué polígono con una apotema de 4,33 cm le corresponde un área de 64,95 cm2.

a) Un decágono de 2 cm de lado.
b) Un hexágono de 5 cm de lado.
c) Un pentágono de 7 cm de lado.
d) Un octágono de 4 cm de lado.

Solución
b) Un hexágono de 5 cm de lado.

 

3. ¿Qué polígono irregular tiene sus lados de igual longitud pero sus ángulos internos son diferentes?

a) Círculo
b) Cuadrado
c) Rectángulo
d) Rombo

Solución
d) Rombo

RECURSOS PARA DOCENTES

Artículo “Perímetro de los polígonos”

Este artículo define qué es un polígono, cuáles son sus clasificaciones y cómo se calcula su el perímetro. También plantea una serie de ejercicios para resolver.

VER

Artículo “Cuadriláteros”

Este recurso explica los diferentes tipos de cuadriláteros que existen y sus características principales.

VER

Micrositio “Tarjetas Educativas – Geometría y medidas”

En este micrositio se puede encontrar una serie de tarjetas interactivas que resumen los elementos principales de la geometría, como los polígonos y sus principales características.

VER

CAPÍTULO 6 / TEMA 4 (REVISIÓN)

Estadística y probabilidad | ¿Qué aprendimos?

Recursos para representar datos

Existen diversas formas de representar los datos con la finalidad de que su análisis y comprensión sea más fácil. Los gráficos y tablas son usados en diversas áreas y como recurso visual son de gran importancia. Los pictogramas permiten una comprensión más rápida de los datos porque emplean imágenes y símbolos. Las tablas son otro recurso que agrupa y ordena los datos en filas y columnas, y generalmente los ordena en función de los datos cualitativos y cuantitativos que se estudien. Finalmente, los gráficos de barra asocian el valor de los datos a columnas que se encuentran, a su vez, relacionadas a una escala.

Los gráficos como recurso visual permiten interpretar de forma rápida un conjunto de datos.

Interpretación de datos

Los datos por sí solos no tienen ningún valor si no se interpretan, pero antes de hacerlo hay que recopilarlos. La encuesta es una manera de obtener datos a través de un cuestionario prediseñado que es aplicado a un grupo de personas. El promedio aritmético o media aritmética corresponde al valor promedio de un conjunto de datos, y se obtiene al dividir la suma de todos los datos entre el número de datos. La moda, por su parte, es el dato que más se repite. Las tablas de doble entrada son una herramienta útil para entender las combinaciones posibles de un problema.

Los datos obtenidos en una encuesta se suelen representar en gráficos y tablas para su análisis.

Probabilidad

A los eventos que se pueden predecir y cuyo resultado se conoce con anterioridad se los conoce como sucesos deterministas o seguros. También hay eventos en los que el resultado no se conoce con certeza porque ocurre al azar. Es en este tipo de experimentos aleatorios donde más se concentra la probabilidad, la cual estudia la posibilidad de que un evento ocurra o no. Estos eventos pueden ser de varios tipos: mutuamente excluyentes cuando es imposible que ocurran de manera simultánea con otros; independientes cuando no se ven influenciados por la ocurrencia de otros eventos; y dependientes si se ven afectados por la ocurrencia de otros.

Los eventos aleatorios se caracterizan porque su resultado no se puede predecir.