CAPÍTULO 1 / TEMA 5 (REVISIÓN)

SISTEMA DE NUMERACIÓN | ¿QUÉ APRENDIMOS?

ALGUNOS SISTEMAS DE NUMERACIÓN

Desde la Antigüedad, el hombre ha usado diversos sistemas con símbolos que le permiten contar. Algunos son no posicionales, como los números romanos; y otros son posicionales, como el sistema decimal, binario o sexagesimal. Los números romanos cuentan con solo siete símbolos, iguales a algunas letras de nuestro alfabeto. El sistema binario tiene base 2 y solo utiliza 2 cifras: el 1 y el 0. El sistema de numeración sexagesimal tiene como base el número 60. Y el sistema decimal, el que usamos normalmente, tiene como base el 10 y emplea diez dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9.

El sistema binario se considera fundamental en la computación. La base de este sistema son los números 0 y 1 y su combinación en cadena para generar algoritmos.

CONJUNTO DE LOS NÚMEROS ENTEROS

Este conjunto está conformado por los números naturales (\mathbb{N}), los enteros negativo (\mathbb{Z}^{-}) y el cero que es neutro. Este conjunto de números lo utilizamos, por ejemplo, para expresar alturas que se encuentran por encima y por debajo de un sistema de referencia, o bien para indicar temperaturas por encima y debajo del cero.

Las temperaturas por encima de cero se leen como números positivos, mientras que las que están por debajo de cero se leen como números negativos. Ejemplo, 20 ºC y −10 ºC.

CONJUNTO DE LOS NÚMEROS RACIONALES

El conjunto de los números racionales se denota con la letra \mathbb{Q} e incluye todas las fracciones, es decir, las divisiones de dos números enteros. Tienen gran utilidad cuando deseamos expresar partes de una totalidad, por ejemplo, cantidades de ingredientes en una receta (1/2 taza de harina) o porciones de pizza (3/4 de pizza).

Los gráficos circulares son visualmente muy útiles cuando deseamos expresar un número racional.

LOS NÚMEROS DECIMALES

Los números decimales constituyen un amplio grupo de números que incluyen al conjunto de números racionales (\mathbb{Q}) e irracionales (\mathbb{I}). Están conformados por una parte entera y una parte decimal separados por una coma o un punto. Los empleamos para expresar valores que se encuentran entre dos números consecutivos.

Los números decimales se aplican en la vida cotidiana y en el campo laboral. Muchas unidades monetarias son expresadas con números decimales para indicar precios, porcentajes, ventas, ganancias o pérdidas.

CAPÍTULO 1 / TEMA 2

TIPOS DE NÚMEROS

EXISTEN DISTINTOS TIPOS DE NÚMEROS, COMO LOS CARDINALES, LOS ORDINALES Y LOS ROMANOS. NO TODOS SE ESCRIBEN IGUAL Y SUS FUNCIONES SON DIVERSAS. POR EJEMPLO, CON LOS NÚMEROS CARDINALES CONTAMOS LA CANTIDAD DE LÁPICES QUE TENEMOS Y CON LOS ORDINALES INDICAMOS LA POSICIÓN DE LLEGADA EN UNA CARRERA.

NÚMEROS CARDINALES

LOS NÚMEROS CARDINALES NOS PERMITEN CONTAR CANTIDADES: UNO, DOS, TRES, CUATRO, CINCO…

SIEMPRE QUE OBSERVEMOS UN CONJUNTO DE COSAS QUE PODAMOS CONTAR TAMBIÉN PODEMOS ASIGNARLE UN NÚMERO CARDINAL. POR EJEMPLO:

CONTAMOS TODOS ESTOS ELEMENTOS AGRUPADOS: LOS TOMATES, LOS CONOS DE HELADOS Y LAS PERAS. 6, 5 Y 4 SON LOS NÚMEROS CARDINALES QUE INDICAN LA CANTIDAD DE ELEMENTOS DE CADA CONJUNTO.

NUESTRO SISTEMA DE NUMERACIÓN

LOS NÚMEROS QUE USAMOS PARA CONTAR PERTENECEN AL SISTEMA DE NUMERACIÓN DECIMAL. SE LO LLAMA ASÍ PORQUE SOLO TIENE DIEZ DÍGITOS QUE VAN DESDE EL CERO (0) HASTA EL NUEVE (9). CON ESTOS DÍGITOS PODEMOS FORMAR CUALQUIER NÚMERO, COMO EL 568 O EL 123.

NÚMEROS ORDINALES

LOS NÚMEROS ORDINALES NOS INDICAN EL ORDEN O LA POSICIÓN DE LOS ELEMENTOS DE UNA SERIE.

QUIZÁS NO TE HAYAS DADO CUENTA PERO LOS USAMOS MUCHAS VECES EN NUESTRA VIDA COTIDIANA. POR EJEMPLO AL MENCIONAR LOS PISOS DE UN EDIFICIO, AL ANUNCIAR EL ORDEN DE LOS GANADORES DE UNA CARRERA, LA POSICIÓN EN LA FILA DE LA ESCUELA O EL TURNO DE LLEGADA AL MÉDICO.

OBSERVA ESTA IMAGEN, ¿QUIÉN ENTRARÁ PRIMERO AL SALÓN DE CLASES?

MARIO ENTRARÁ PRIMERO AL SALÓN DE CLASES. ¿Y LOS DEMÁS?

 

PARA RESPONDER ESTA PREGUNTA TIENES QUE SABER QUE LOS NÚMEROS ORDINALES PUEDEN SER MASCULINOS O FEMENINOS Y SE ESCRIBEN CON UN PEQUEÑO SÍMBOLO A LA DERECHA DEL NÚMERO.

ESTA TABLA MUESTRA LOS PRIMEROS DIEZ NÚMEROS ORDINALES:

MASCULINO FEMENINO
1.º PRIMERO 1.ª PRIMERA
2.º SEGUNDO 2.ª SEGUNDA
3.º TERCERO 3.ª TERCERA
4.º CUARTO 4.ª CUARTA
5.º QUINTO 5.ª QUINTA
6.º SEXTO 6.ª SEXTA
7.º SÉPTIMO 7.ª SÉPTIMA
8.º OCTAVO 8.ª OCTAVA
9.º NOVENO 9.ª NOVENA
10.º DÉCIMO 10.ª DÉCIMA

 

¡ES TU TURNO!

OBSERVA DE NUEVO LA IMAGEN DE ARRIBA. INDICA EL ORDEN EN EL QUE ENTRARÁN LOS ESTUDIANTES AL SALÓN DE CLASES.

SOLUCIÓN
  • PRIMERO: MARIO
  • SEGUNDA: LUISA
  • TERCERO: JUAN
  • CUARTO: PEDRO
  • QUINTA: CARLA
  • SEXTO: JOSÉ
  • SÉPTIMA: ÁNGELA

 

¿SABÍAS QUÉ?
CUANDO DAMOS UNA FECHA CON EL PRIMER DÍA DEL MES USAMOS NÚMEROS ORDINALES, POR EJEMPLO, EL DÍA DEL TRABAJADOR ES EL PRIMERO DE MAYO.

NÚMEROS ROMANOS

LOS NÚMEROS ROMANOS ERAN MUY UTILIZADOS EN LA ANTIGUA ROMA HASTA QUE SURGIERON LOS NÚMEROS ARÁBIGOS, QUE SON LOS QUE CONOCEMOS EN LA ACTUALIDAD.

LOS NÚMEROS ROMANOS SON SOLO SIETE Y ESTÁN REPRESENTANDO CON LAS LETRAS DE NUESTRO ABECEDARIO:

I V X L C D M
1 5 10 50 100 500 1.000

VER INFOGRAFÍA

¿DÓNDE VEMOS NÚMEROS ROMANOS?

HOY EN DÍA PODEMOS VER NÚMEROS ROMANOS EN:

  • NOMBRES DE PAPAS. POR EJEMPLO: PAPA JUAN PABLO II Y PAPA BENEDICTO XVI.
  • NOMBRE DE REYES. POR EJEMPLO: REINA ISABEL II.
  • TOMOS Y CAPÍTULO DE LIBROS. POR EJEMPLO: TOMO I DEL CAPÍTULO III.
  • HORA EN RELOJES ANTIGUOS.

 

¡A PRACTICAR!

1. CUENTA LAS FORMAS Y ESCRIBE LA CANTIDAD EN EL CUADRO CORRESPONDIENTE.

SOLUCIÓN

2. OBSERVA LA IMAGEN Y COMPLETA CON LOS NOMBRES DE LOS CHICOS.

 

  • ¿QUIÉN LLEGÓ PRIMERO?
SOLUCIÓN
ANA
  • ¿QUIÉN LLEGÓ SEGUNDO?
SOLUCIÓN
JOSÉ
  • ¿QUIÉN LLEGÓ TERCERO?
SOLUCIÓN
FACU
  • ¿QUIÉN LLEGÓ CUARTO?
SOLUCIÓN
LUNA
  • ¿QUIÉN LLEGÓ QUINTO?
SOLUCIÓN
NICO

 

3. UNE CON UNA LÍNEA EL NÚMERO ROMANO CON SU RESPECTIVO NÚMERO ARÁBIGO.

SOLUCIÓN

RECURSOS PARA DOCENTES

Artículo “Situaciones problemáticas primer grado”

Este artículo incluye ejercicios para abordar los temas vistos en este capítulo.

VER

CAPÍTULO 1 / TEMA 4

NÚMEROS ROMANOS

DESDE QUE EXISTE EL SER HUMANO, TAMBIÉN EXISTE LA NECESIDAD DE CONTAR. DISTINTAS CIVILIZACIONES CREARON SUS PROPIOS SISTEMAS DE NUMERACIÓN, ESTE ES EL CASO DE LA CIVILIZACIÓN ROMANA. LOS NÚMEROS ROMANOS SOLO CUENTAN CON SIETE SÍMBOLOS, PERO CON ELLOS PUEDES FORMAR INFINIDAD DE NÚMEROS.

HISTORIA DE LOS NÚMEROS ROMANOS

HACE MUCHOS AÑOS ATRÁS, LOS ROMANOS EMPLEARON UN SISTEMA DE NUMERACIÓN EN EL CUAL SUS SIGNOS ERAN LETRAS: LOS NÚMEROS ROMANOS. CADA LETRA DE ESTE SISTEMA TIENE UN VALOR PROPIO SEA CUAL SEA LA POSICIÓN DEL NÚMERO. EN LA ACTUALIDAD PODEMOS ENCONTRARLOS CAPÍTULOS DE LIBROS O EN ALGÚN RELOJ ANTIGUO.

 

EL SISTEMA DE NUMERACIÓN ROMANO TIENE SUS ORÍGENES EN LOS ETRUSCOS, UN ANTIGUO PUEBLO UBICADO EN LA ACTUAL ITALIA CENTRAL. LOS SÍMBOLOS DE ESTE SISTEMA SURGIERON EN LA ANTIGUA ROMA Y SE MANTUVIERON DURANTE TODO EL IMPERIO ROMANO.

SI BIEN SU USO DISMINUYÓ TRAS LA CAÍDA DEL IMPERIO, AÚN ERAN EMPLEADOS EN MUCHAS OCASIONES. CON EL TIEMPO, EL SISTEMA DE NUMERACIÓN ROMANO FUE SUSTITUIDO POR EL SISTEMA DECIMAL, EL CUAL USAMOS DÍA A DÍA Y CONSTA DE DIEZ CIFRAS: 1, 2, 3, 4, 5, 6, 7, 8, 9 Y 10.

¿QUÉ SON LOS NÚMEROS ROMANOS?

LOS NÚMEROS ROMANOS SON NÚMEROS EXPRESADOS EN LETRAS QUE INDICAN UNA CANTIDAD. ESTE SISTEMA DE NUMERACIÓN SOLO TIENE SIETE SÍMBOLOS:

NÚMERO ROMANO VALOR
I 1
V 5
X 10
L 50
C 100
D 500
M 1.000

¿SABÍAS QUÉ?

EN EL SISTEMA DE NUMERACIÓN ROMANO EL 1 SIEMPRE VALDRÁ UNO 1,  YA SEA QUE LO SUMEMOS O LO RESTEMOS. EN CAMBIO, EN NUESTRO SISTEMA DE NUMERACIÓN DECIMAL, EL UNO 1 PUEDE TENER VALORES DISTINTOS SEGÚN EL LUGAR QUE OCUPE EN EL NÚMERO, POR EJEMPLO, EN 21, EL 1 ES UNIDAD Y VALE 1, PERO EN 15, ESE 1 NO VALE 1, VALE 10.

ESCRITURA Y LECTURA DE LOS NÚMEROS ROMANOS

PARA LEER Y ESCRIBIR NÚMEROS ROMANOS DEBEMOS SEGUIR LAS SIGUIENTES REGLAS:

 

  • LOS SÍMBOLOS SE ESCRIBEN DE IZQUIERDA A DERECHA. SI UN NÚMERO UBICADO A LA DERECHA DE OTRO ES IGUAL O MENOR A ESTE, SE SUMAN.

XVII = 10 + 5 + 1 + 1 = 17

VIII = 5 + 1 + 1 + 1 = 8

 

  • SI UN SÍMBOLO DE MENOR VALOR ESTÁ A LA IZQUIERDA DE UNO DE MAYOR VALOR, ENTONCES SE RESTAN.

IV = 5 − 1 = 4

IX = 10 − 1 = 9

¿SABÍAS QUÉ?

LOS SÍMBOLOS I (1) Y X (10) SÓLO PUEDEN RESTAR A SUS DOS SÍMBOLOS INMEDIATAMENTE SUPERIORES, ES DECIR:

I SÓLO PUEDE RESTAR A V Y X.

X SÓLO PUEDE RESTAR A L Y A C.

  • LOS SÍMBOLOS V (5) Y L (50) SIEMPRE SUMAN Y NUNCA PUEDEN ESTAR A LA IZQUIERDA PARA RESTAR A UN VALOR MAYOR:

XCV = 100 − 10 + 5 = 95

XLV = 50 − 10 + 5 = 45

  • LOS SÍMBOLOS PUEDEN REPETIRSE TRES VECES DE MANERA CONSECUTIVA COMO MÁXIMO. V Y L NO SE REPITEN.

III = 1 + 1 + 1 = 3

XXX = 10 + 10 + 10 = 30

 

  • UN SÍMBOLO QUE RESTA NO PUEDE REPETIRSE DE MANERA CONSECUTIVA.

 

¡A PRACTICAR!

EXPRESA LOS SIGUIENTES NÚMEROS ARÁBIGOS EN NÚMEROS ROMANOS:

  • 58
SOLUCIÓN
LVIII
  • 86
SOLUCIÓN
LXXXVI
  • 73
SOLUCIÓN
LXXIII
  • 61
SOLUCIÓN
LXI
  • 48
SOLUCIÓN
XLVIII
  • 36
SOLUCIÓN
XXXVI

APLICACIÓN DE LA NUMERACIÓN ROMANA

HOY DÍA AÚN USAMOS LOS NÚMEROS ROMANOS EN DIVERSAS CIRCUNSTANCIA. ESTOS SON ALGUNOS EJEMPLOS:

  • PARA DAR LA HORA EN ALGUNOS TIPOS RELOJES.
  • PARA NOMBRAR PAPAS, POR EJEMPLO, EL PAPA BENEDICTO XVI.
  • PARA NOMBRAR REYES, POR EJEMPLO, LA REINA ISABEL II.
  • PARA NOMBRAR SIGLOS, POR EJEMPLO, EL SIGLO XXI.
  • PARA NOMBRAR EVENTOS, POR EJEMPLO, LA V EDICIÓN DEL FESTIVAL DE MÚSICA.

 

A PESAR DE QUE NUESTRO SISTEMA DE NUMERACIÓN DECIMAL ES EL MÁS USADO EN TODO EL MUNDO, EL SISTEMA DE NUMERACIÓN ROMANO TODAVÍA SE APLICA. NOMBRES DE PAPAS, DE REYES, DE SIGLOS Y DE EVENTOS SON SOLO ALGUNOS EJEMPLOS. TAMBIÉN SE LOS PUEDE VER EN TALLADOS O PLACAS CONMEMORATIVAS.

ACTIVIDADES

1. ORDENA LOS SIGUIENTES NÚMEROS ROMANOS DE MENOR A MAYOR:

XIII – LXX – XXIV – IV – VIII – XXXI

SOLUCIÓN
IV (4)- VIII (8)- XIII (13)- XXIV (24)- XXXI (31) – LXX (70)

2. EXPRESAR LOS SIGUIENTES NÚMEROS ROMANOS EN NÚMEROS CARDINALES:

III – IX – XII – XXII – LXXIX – LXV – LIII

SOLUCIÓN
3 – 9 – 12 – 22 – 79 – 65 – 53
RECURSOS PARA DOCENTES

Artículos “Números romanos”

En el siguiente artículo hay más estrategias de enseñanza para ampliar los conocimientos acerca del sistema de numeración romana.

VER

CAPÍTULO 1 / TEMA 8 (REVISIÓN)

SISTEMAS NUMÉRICOS | ¿QUÉ APRENDIMOS?

LECTURA Y CONTEO

NUESTRO SISTEMA DE NUMERACIÓN ES DECIMAL Y POSICIONAL. ES DECIMAL PORQUE ESTÁ FORMADO POR DIEZ CIFRAS Y ES POSICIONAL PORQUE CADA CIFRA TIENE UN VALOR DIFERENTE SEGÚN SU POSICIÓN. ESTOS DOS ASPECTOS DETERMINAN LA LECTURA Y ESCRITURA DE TODOS LOS NÚMEROS. CADA NÚMERO DEL 0 AL 29 SE NOMBRA CON UNA SOLA PALABRA, POR EJEMPLO, ONCE (11) O VEINTICINCO (25). A PARTIR DE 31 SE NOMBRAN CON TRES PALABRAS, COMO CUARENTA Y DOS (42) U OCHENTA Y UNO (81).

PARA LEER Y ESCRIBIR NÚMEROS DEBEMOS TENER EN CUENTA EL VALOR POSICIONAL DE SUS CIFRAS.

VALOR POSICIONAL

EL SISTEMA DE NUMERACIÓN ES POSICIONAL, ESTO QUIERE DECIR QUE, SEGÚN LA POSICIÓN QUE UNA CIFRA TENGA DENTRO DE UN NÚMERO, SU VALOR SERÁ DIFERENTE. LAS POSICIONES DE CADA CIFRA EN UN NÚMERO TIENEN UN NOMBRE. DE DERECHA A IZQUIERDA: LA UNIDAD ES LA PRIMERA CIFRA Y VALOR 1; LA CENTENA ES LA SEGUNDA CIFRA Y VALE 10; LA CENTENA ES LA TERCERA CIFRA Y VALE 100.

EL NÚMERO 324 TIENE 3 CENTENAS, 2 DECENAS Y 4 UNIDADES. NO ES IGUAL AL NÚMERO 423 QUE TIENE 4 CENTENAS, 2 DECENAS Y 3 UNIDADES.

NÚMEROS ORDINALES

LOS NÚMEROS ORDINALES NOS INDICAN EL ORDEN O POSICIÓN DE LOS OBJETOS, LAS PERSONAS O LAS COSAS. ESTOS SON MUY UTILIZADOS EN LA VIDA COTIDIANA Y LOS PODEMOS VER EN MUCHAS SITUACIONES. LA ESCRITURA DE LOS NÚMEROS ORDINALES VA A DEPENDER DEL GÉNERO CON EL QUE ESTÁ RELACIONADO, POR EJEMPLO, MARÍA ES LA PRIMERA DE SU CLASE, Y JOSÉ ES EL SEGUNDO.

EN EL PODIO DE UNA COMPETENCIA, LOS RESULTADOS SE EXPRESAN EN NÚMEROS ORDINALES: PRIMERO, SEGUNDO Y TERCERO.

NÚMEROS ROMANOS

EN LA ANTIGÜEDAD, DIFERENTES CIVILIZACIONES CREABAN SUS PROPIOS SISTEMAS DE NUMERACIÓN. LOS ROMANOS CREARON EL SISTEMA DE NUMERACIÓN ROMANA QUE CUENTA CON SIETE LETRAS DE NUESTRO ALFABETO: I, V, X, L, C, D, M. CADA UNA TIENE UN VALOR QUE NO CAMBIARÁ SIN IMPORTAR EL ORDEN EN QUE SE ESCRIBAN. LAS COMBINACIONES ENTRE ESTAS LETRAS SIGUEN UNAS REGLAS DE SUMA, RESTA Y MULTIPLICACIÓN PARA FORMAR LOS NÚMEROS DEL SISTEMA DECIMAL.

PODEMOS VER NÚMEROS ROMANOS EN RELOJES, NOMBRES DE PAPAS Y LÁPIDAS CONMEMORATIVAS.

SERIES NUMÉRICAS

LAS SERIES NUMÉRICAS NOS AYUDAN A ESTABLECER UN ORDEN Y UNA RELACIÓN ENTRE NÚMEROS. ESTA SUCESIÓN DE NÚMEROS UNO AL LADO DE OTRO TIENEN DISTINTAS CARACTERÍSTICAS QUE LAS RELACIONAN Y PUEDEN SER PROGRESIVAS, CUANDO VAN DE MENOR A MAYOR; O REGRESIVAS, CUANDO VAN DE MAYOR A MENOR. EL PATRÓN, O REGLA EN COMÚN, PUEDE ESTAR DETERMINADO POR UNA SUMA O UNA RESTA.

CONTAR DE UNO EN UNO ES UNA SERIE NUMÉRICA QUE SIGUE UN PATRÓN IGUAL A +1 PORQUE CADA NÚMERO TIENE UNA UNIDAD MÁS QUE EL ANTERIOR.

CONJUNTO

UN CONJUNTO ES UN GRUPO DE OBJETOS QUE ESTÁN AGRUPADOS Y COMPARTEN UNA CARACTERÍSTICA EN COMÚN. LOS OBJETOS QUE ESTÁN DENTRO DE UN CONJUNTO SE LLAMAN ELEMENTOS Y PUEDEN SER DE CUALQUIER TIPO. POR OTRO LADO, ALGUNOS ELEMENTOS DE UN CONJUNTO TAMBIÉN PUEDEN PERTENECER A OTRO CONJUNTO INTERNO POR OTRA CARACTERÍSTICA QUE LO IDENTIFIQUE, A ESTOS SE LOS DENOMINA SUBCONJUNTOS.

LA IMAGEN MUESTRA UN CONJUNTO DE OBJETOS QUE PODEMOS VER EN UN PARQUE. TIENE 5 ELEMENTOS.

RELACIONES

TODOS LOS NÚMEROS QUE USAMOS PARA CONTAR TIENEN UNA RELACIÓN ENTRE SÍ. AL COMPARARLOS PODEMOS USAR SÍMBOLOS DE RELACIÓN: “>” QUE SIGNIFICA QUE UN NÚMERO ES MAYOR QUE OTRO (8 > 2), “=” QUE SIGNIFICA QUE UN NÚMERO ES IGUAL A OTRO (5 = 5); O “<” QUE SIGNIFICA QUE UN NÚMERO ES MENOR QUE OTRO (2 < 8). OTRA MANERA SENCILLA Y MUY ÚTIL DE COMPARAR NÚMEROS ES A TRAVÉS DE UNA RECTA NUMÉRICA.

EL SÍMBOLO DE LA IGUALDAD LO USAMOS PARA DEMOSTRAR QUE UN NÚMERO ES IGUAL A LA SUMA DE OTRO. POR EJEMPLO, 2 = 2, PERO TAMBIÉN 2 = 1 + 1.

CAPÍTULO 1 / TEMA 1

LECTURA Y REPRESENTACIÓN DE NÚMEROS

Los números son símbolos escritos que reflejan cantidades de objetos reales e imaginarios. Por ejemplo, vemos números en las medidas y posiciones en el orden de llegada de una carrera, en la tabla de puntajes de un juego o en actividades cotidianas, como cuando cambiamos de canal con el control remoto del televisor.

Lectura de números hasta el 10.000

Existen ocasiones en las que usamos números que involucran una, dos, tres o más cifras. Cada una de estas cifras tiene un valor según la posición que tengan dentro del número. De acuerdo a esta posición y a los nombres de cada dígito podremos nombrar números de hasta cinco o más cifras.

Desde hace miles de años, el hombre ha sentido la necesidad de expresar cantidades a partir de sistemas de signos comprensibles por toda su comunidad. Los números arábigos, desarrollados en la India y transmitidos por los árabes, son los diez dígitos del sistema de numeración decimal: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9. Con ellos formamos infinidad de números.

Ejemplo:

Si queremos leer el número 542, lo primero que hacemos es ubicar cada cifra en una tabla de valor posicional como esta:

Donde:

U: unidades

D: decenas

C: centenas

Observa que:

  • El 5 está ubicado en la posición de las centenas → 5 x 100 = 500, se lee “quinientos”.
  • El 4 está ubicado en la posición de la decenas → 4 x 10 = 40, se lee “cuarenta”.
  • El 2 está ubicado en la posición de la unidades → 2 x 1 = 2, se lee “dos”.

Por lo tanto, el número 542 se lee: “quinientos cuarenta y dos”.

 

Otro ejemplo:

Para el leer el número 709 realizamos una tabla de valor posicional y ubicamos sus cifras:

Observa que:

  • El 7 está ubicado en la posición de las centenas → 7 x 100 = 700, se lee “setecientos”.
  • El 9 está ubicado en la posición de la unidades → 9 x 1 = 2, se lee “nueve”.

El número 709 se lee: “setecientos nueve”.

¡Atención a los ceros!

¿Qué pasa cuando una posición está ocupada por el cero (0)?

En estos casos no tomamos en cuenta su valor posicional para la lectura del número.

Para leer números mayores a 999 colocamos un punto después de las centenas, es decir, a la izquierda de la tercera cifra. Este punto indica el comienzo de una clase llamada miles.

De este modo, para escribir y leer correctamente el número 2435, primero colocamos un punto al lado izquierdo de la centena. El punto rojo se lee “mil”:

2.435

Luego ubicamos cada cifra en una tabla posicional. Esta vez, añadimos las unidades, decenas y centenas de mil.

Observa que:

  • El 2 está ubicado en la posición de las unidades de mil → 2 x 1.000 = 2.000, se lee “dos mil”.
  • El 4 está ubicado en la posición de la centenas → 4 x 100 = 400, se lee “cuatrocientos”.
  • El 3 está ubicado en la posición de la decenas → 3 x 10 = 30, se lee “treinta”.
  • El 5 está ubicado en la posición de las unidades → 5 x 1 = 5, se lee “cinco”.

El número 2.435 se lee: “dos mil cuatrocientos treinta y cinco”.

 

Ejemplo:

– Lee el número 6.028.

  • El 6 está ubicado en la posición de las unidades de mil → 6 x 1.000 = 6.000, se lee “seis mil”.
  • El 2 está ubicado en la posición de la decenas → 2 x 10 = 20, se lee “veinte”.
  • El 8 está ubicado en la posición de las unidades → 8 x 1 = 8, se lee “ocho”.

El número 6.028 se lee: “seis mil veintiocho”

Representación de cantidades

La cinta métrica o metro es un instrumento de medida que consiste en una cinta flexible graduada. Con ella medimos líneas rectas y superficies curvas. Se utiliza en casa y en la construcción. Tiene marcas divisorias con números que representan los centímetros (cm) y los milímetros (mm). Su largo promedio es de 2 metros.

Para representar cantidades utilizamos 10 dígitos que combinados entre sí forman infinitos números y, como ya sabes, cada dígito cambia su valor según la posición que tenga en el número. Por lo tanto, la misma cifra puede tener distintos valores. Observa:

Esta información es útil si tuviésemos, por ejemplo, que pagar una cuenta y debemos descomponer un número grande. Los billetes y monedas por lo general señalan el valor de una unidad (1), de una decena (10) o de una centena (100). Por ejemplo, si tienes monedas de $ 1 y billetes de $ 10 y $ 100  y debes pagar $ 435, ¿cuántos billetes y monedas tomarías de cada uno?

De la tabla de valor posicional observamos sus valores relativos:

Ahora sabemos que si tomamos 5 monedas de $ 1; 3 billetes de $ 10 y 4 billetes de $ 100, tenemos $ 435. De modo gráfico puedes verlo a continuación:

Podemos concluir que 435 = (4 x 100) + (3 x 10) + (5 x 1)

¡A practicar!

¿Cuántos billetes y monedas de $ 1 , $ 10 y $ 100 necesitarías para formar estas cantidades?

  • 876
Solución

8 billetes de $ 100

7 billetes de $ 10

6 monedas de $ 1

  • 1.000
Solución
10 billetes de $ 100 
  • 611
Solución
6 billetes de $ 100

1 billete de $ 10

1 moneda de $ 1

¿Dónde usamos los números?

  • En los carteles que indican la numeración de las calles. Por ejemplo, calle Maipú del 800 al 900.
  • En los precios de los productos que se compran y venden en la juguetería. Por ejemplo, una muñeca cuesta $ 850, es decir, ochocientos cincuenta pesos.
  • En el número que señala la balanza cuando nos pesamos. Por ejemplo, Juan se pesó en la balanza de la farmacia y su peso fue 65 kilogramos.
  • En el dinero entregado al vendedor cuando se paga el precio de un producto. Por ejemplo, la mamá de Pedro fue a la verdulería y gastó $ 420, entonces le dio al vendedor cuatro billetes de $ 100 y dos billetes de $ 10.
¿Sabías que...?

En el sistema de numeración egipcio se simbolizaban los múltiplos de 10 (1, 10, 100, 1.000, 10.000, 100.000 y 1.000.000) con dibujos denominados ideogramas que representaban conceptos o ideas.

Aproximación por redondeo

Consiste en reducir o aumentar la cantidad del número para acercarlo al número redondo más próximo en la recta númerica. Redondear números te ayudará a manejar mejor los cálculos mentales cuando no necesites una respuesta exacta.

Redondear números permite realizar las cuentas de manera más sencilla y estimar el resultado por medio de números más cercanos y redondos. En la vida cotidiana es muy común redondear cantidades cuando nos faltan monedas o queremos usar pocos billetes para pagar el precio exacto de los productos comprados en los comercios.

Pasos para aproximar un número a la decena más cercana

1. Identifica la cifra que está en la posición de las unidades.

2. Si la cifra que está en la posición de las unidades es menor que cinco (5), no cambies la decena y escribe un cero (0) en el lugar de las unidades.

3. Si la cifra que está ubicada en la posición de las unidades es igual o mayor que cinco (5), aumenta una unidad en la decena y escribe un cero (0) en el lugar de las unidades.

– Redondea el número 343 a su decena más cercana.

Primero identificamos la unidad:

343

Luego, como la unidad es menor que cinco (3 < 5), mantenemos la decena igual y escribimos un cero (0) en el lugar de la unidades:

343 ≈ 340

Por lo tanto, el número 343 es aproximadamente igual a 340.

¿Sabías qué?
El símbolo “≈” se lee “aproximadamente igual a”.

 

– Redondea el número 2.589 a su decena más cercana.

Primero identificamos la unidad.

2.589

Luego, como la unidad es mayor que cinco (9 > 5), aumentamos la decena una unidad y escribimos un cero en el lugar de las unidades.

2.589 ≈ 2.590

Por lo tanto, el número 2.589 es aproximadamente igual a 2.590.

 

Pasos para aproximar un número a la centena más cercana

1. Identifica la cifra que está en la posición de las decenas.

2. Si la cifra que está en la posición de las decenas es menor que cinco (5), no cambies la centena y escribe un cero (0) en el lugar de las decenas y de las unidades.

3. Si la cifra que está ubicada en la posición de las decenas es igual o mayor que cinco (5), aumenta una unidad en la centena y escribe un cero (0) en el lugar de las decenas y de las unidades.

– Redondea el número 9.411 a la centena más cercana

Primero identificamos la decena.

9.411

Luego, como la decena es menor que cinco (1 < 5), no cambiamos la centena y escribimos un cero (0) en el lugar de las decenas y de las unidades:

9.411 ≈ 9.400

Por lo tanto, el número 9.411 es aproximadamente igual a 9.400.

 

– Redondea el número 6.382 a la centena más cercana.

Primero identificamos la decena.

6.382

Luego, como la decena es mayor que cinco (8 > 5), aumentamos la centena una unidad y escribimos un cero en el lugar de las decenas y de las unidades.

6.382 ≈ 6.400

Por lo tanto, el número 6.382 es aproximadamente igual a 6.400.

¡A practicar!

Una familia se va de viaje y cuando llegan al kilómetro 485 hacen una parada para comer en una estación de servicio. Luego siguen su camino. En el kilómetro 495 se detiene el auto por falta de combustible y el padre tiene que salir a buscar gasolina. Él sabe que en el kilómetro 500 también hay una estación de servicio.

¿Hacia dónde le conviene ir si quiere caminar la menor cantidad de kilómetros posible? ¿Hacia la estación de servicio del kilómetro 485 o a la del kilómetro 500?

Solución

Le conviene ir a la estación de servicio del kilómetro 500 porque está a menor distancia que la otra.

Números ordinales

Los números ordinales sirven para representar un orden y se escriben antes de un sustantivo, por ejemplo “tercer grado”, donde la primera palabra es el número ordinal y la segunda es el sustantivo al que se refiere. También se usan en las colecciones de libros, el que tiene el número 1 es el primero, el que tiene el número 2 es el segundo y así sucesivamente.

Los números ordinales nos indican la posición en la que se ubica un elemento en una sucesión o lista. Para representarlos usamos números naturales seguidos por una letra que indica el género (masculino-femenino) del sustantivo al que se refieren. Por ejemplo:

  • El 5.º auto, se lee “el quinto auto”.
  • La 6.ª mesa, se lee “la quinta mesa”.

Estos números sirven para designar los pisos que hay en un edificio e indicar la dirección de vivienda de una persona. Por ejemplo, departamento A del 2º piso:

Estos son los nombres de los números ordinales del 1 al 50:

Número arábigo Número ordinal
1.º/1.ª primero/primera
2.º/2.ª segundo/segunda
3.º/3.ª tercero/tercera
4.º/4.ª cuarto/cuarta
5.º/5.ª quinto/quinta
6.º/6.ª sexto/sexta
7.º/7.ª séptimo/séptima
8.º/8.ª octavo/octava
9.º/9.ª noveno/novena
10.º/10.ª décimo/décima
11.º/11.ª décimo primero/décimo primera
12.º/12.ª décimo segundo/décimo segunda
13.º/13.ª décimo tercero/décimo tercera
14.º/14.ª décimo cuarto/décimo cuarta
15.º/15.ª décimo quinto/décimo quinta
16.º/16.ª décimo sexto/décimo sexta
17.º/17.ª décimo séptimo/décimo séptima
18.º/18.ª décimo octavo/décimo octava
19.º/19.ª décimo noveno/décimo novena
20.º/20.ª vigésimo/vigésima
30.º/30.ª trigésimo/trigésima
40.º/40.ª cuadragésimo/cuadragésima
50.º/50.ª quincuagésimo/quincuagésima

Para escribir números ordinales mayores al 20 primero se escribe el número ordinal del primer valor relativo, luego se escribe el del segundo, por ejemplo:

  • 25.º es igual a “vigésimo quinto”.
  • 42.º es igual a “cuadragésimo segundo”.
¿Sabías qué?

El número ordinal correspondiente al once puede ser nombrado como “décimo primero” o “undécimo”. En el caso del número 12, se lo denomina “décimo segundo” o “duodécimo”.

Números romanos

El reloj de la imagen indica la hora en una circunferencia numerada según el sistema romano. Este sistema de numeración fue inventado en la Antigua Roma y se basaba en la suma y resta de valores representados por letras mayúsculas. A pesar de estar en desuso, se lo puede encontrar en libros, objetos y denominaciones en la actualidad.

Cuando hablamos de números romanos nos referimos a un sistema de numeración que usa letras mayúsculas para representar cantidades. Está compuesto por siete letras y cada una tiene un valor diferente.

¿Para qué se usan los números romanos en la actualidad?

  • Nombrar los siglos históricos: siglo I antes de Cristo o siglo XX.
  • Numerar tomos, capítulos, partes de una obra literaria, actos y escenas de una obra teatral: tomo III, capítulo IV o escena VIII.
  • Nombrar reyes, papas y emperadores: Felipe IV o Juan Pablo II.
  • Denominar congresos, campeonatos y festivales: IV Congreso de la infancia o XIII Muestra de cine independiente.

Reglas para escribir números romanos

– Si a la derecha de una letra se escribe otra igual o de menor valor, sus valores se suman. Ejemplo:

VI = 5 + 1 = 6

XXI = 10 + 10 + 1= 21

LXVII = 50 + 10 + 5 + 1 + 1 = 67

 

– La letra I, colocada a la izquierda de V o X, les resta 1. Ejemplo:

IV = 5 − 1 = 4

IX = 10 − 1 = 9

 

– La letra X, colocada a la izquierda de L o C, les resta 10. Ejemplo:

XC = 100 − 10 = 90

XL = 50 − 10 = 40

 

– La letra C, colocada a la izquierda de D o M, les resta 100. Ejemplo:

CD = 500 − 100 = 400

CM = 1.000 − 100 = 900

 

– No se pueden repetir las letras I, X, C y M más de tres veces seguidas. Ejemplo:

XIII = 10 + 1 + 1 + 1 = 13

XXXIII = 10 + 10 + 10 + 1 + 1 + 1 = 33

MMM = 1.000 + 1.000 + 1.000 = 3.000

 

– Las letras V, L y D no pueden duplicarse, porque otras ya representan su valor. Ejemplo:

X = 10 (2 veces 5)

C = 100 (2 veces 50)

M = 1.000 (2 veces 500)

 

– Una raya encima de una letra o grupo de letras multiplica su valor por mil.

\overline{V} = 5.000

\overline{X} = 10.000

 

VER INFOGRAFÍA

 

Ejercicios

a) Escribe los números en cifras o en palabras, según corresponda.

  • Setecientos cincuenta y dos
Solución
Setecientos cincuenta y dos = 752
  • Mil cien
Solución
Mil cien = 1.100
  • 1.308
Solución
1.308 = mil trescientos ocho
  • 8.444
Solución
8.444 = ocho mil cuatrocientos cuarenta y cuatro
  • 10.000
Solución
10.000 = diez mil

b) Escribe los números ordinales en palabras:

  • 4.ª
Solución
4.ª = cuarta
  • 7.º
Solución
7.º = séptimo
  • 12.º
Solución
12.º = décimo segundo o duodécimo
  • 17.º
Solución
17.º = décimo séptimo
  • 20.ª
Solución
20.ª = vigésima
  • 23.º
Solución
23.º = vigésimo tercero
  • 34.ª
Solución
34.ª = trigésima cuarta
  • 40.º
Solución
40.º = cuadragésimo
  • 46.ª
Solución
46.ª = cuadragésima sexta

c) Descubre los números romanos que están mal representados y escríbelos correctamente.

Número en sistema decimal Número en sistema romano
4 IV
9 VIIII
15 VVV
40 XL
150 CL
1.000 CMC
Solución
  • VIIII no es la representación de 9, porque no se puede repetir la letra I más de tres veces. La escritura correcta es IX.
  • VVV no es la representación de 15, ya que no se puede repetir la letra V más de tres veces. La escritura correcta es XV.
  • CMC no es la representación de 1.000, porque hay un símbolo que tiene exactamente ese valor. La escritura correcta es M.

d) Aproxima por redondeo los siguientes números a la decena.

  • 46
Solución
46 ≈ 50
  • 493
Solución
493 ≈ 490
  • 2.456
Solución
2.456 ≈ 2.460

RECURSOS PARA DOCENTES

Artículo “Sistemas de numeración”

Es una lectura ampliatoria sobre la numeración a lo largo de la historia. Una síntesis que contextualiza y explica el funcionamiento de algunos sistemas de numeración que han sentado las bases de lo que hoy conocemos como aritmética: babilónico, egipcio, chino, griego, romano y decimal.

VER

Artículo “Números grandes”

Artículo que explica cómo leer números grandes sin dificultades, a partir de dos saberes básicos en cuanto a la numeración: leer números de tres cifras y reconocer el valor posicional de cada dígito en un número. Recomendado para enseñar lectura y escritura de números a niños de 3.° grado en adelante.

VER

CAPÍTULO 1 / TEMA 1

EL UNIVERSO DE LOS NÚMEROS

La vida sería más complicada si no existieran los números. Tareas como contar o sumar cosas no serían posibles y eso traería muchos problemas. A lo largo de la historia el ser humano ha inventado diferentes sistemas de numeración, porque si hay algo que no ha cambiado es nuestra necesidad de contar. 

Lectura y representación de números naturales

El sistema de numeración usado en la actualidad presenta dos características principales: es decimal, porque emplea diez dígitos (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) y es posicional, porque el valor de cada cifra obedece al lugar que ocupa dentro de un número. Como ya sabemos, a los números los agrupamos de diez en diez, de menor a mayor.

10 U = 1 D

10 D = 1 C

10 C = 1 UM

Donde:

U: unidad

D: decena

C: centena

UM: unidad de mil

¡Y así sucesivamente hasta el infinito!

En el número 3.145 la cifra 1 ocupa la posición de las centenas, como puede verse en el siguiente esquema:

¿Sabías qué?
La palabra “dígito” proviene del latín dígitus, que significa dedo, y surge al comparar el número de dedos de las manos con el número de dígitos.

En números de 6 cifras el esquema sería el siguiente:

Donde:

DM: decena de mil

CM: centena de mil

Para leer un número de seis cifras se comienza leer la cantidad del orden de los miles y luego se lee el resto de la cantidad.

Por ejemplo el número 254.873 se lee de la siguiente forma: doscientos cincuenta y cuatro mil ochocientos setenta y tres.

¡A practicar!

¿Cómo se leen estos números?

  • 145.254
Solución
Ciento cuarenta y cinco mil doscientos cincuenta y cuatro.
  • 927.630
Solución
Novecientos veintisiete mil seiscientos treinta.
  • 501.588
Solución
Quinientos un mil quinientos ochenta y ocho.
  • 470.625
Solución
Cuatrocientos setenta mil seiscientos veinticinco.
Con solo diez dígitos en el sistema decimal se pueden formar infinitos números al combinarlos. Estos símbolos son: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9. En la actualidad se considera el sistema más usado para expresar cantidades y magnitudes, pero existen otros sistemas menos conocidos como el binario y el octal, que son aplicados en áreas específicas.

Sistema de numeración romana

Hace muchos años, se desarrolló en la Antigua Roma un sistema de numeración basado en letras, dicho sistema fue implementado en todo el Imperio romano. La extensión de este era tal que ocupaba gran parte de los países europeos actuales y de algunos países de África y Asia, esto permitió que su influencia se mantuviera por mucho tiempo después de la caída del imperio.

A pesar de que se encuentran en desuso, todavía existen ciertas aplicaciones de los números romanos. Tanto en capítulos de libros como incluso en relojes están presentes los números romanos.

El Imperio romano fue, sin duda, uno de los imperios más influyentes de toda la historia. Se destacan sus aportes en la arquitectura, la escultura, la pintura y el derecho, además de novedosos inventos como el acueducto y el hormigón. También en el área de los números desarrollaron el sistema de numeración romano que surgió entre el 900 y el 800 a. C.

Características de los números romanos

– Es un sistema predominantemente aditivo, es decir; los valores de cada signo se suman (aunque hay ocasiones en los que se restan).

– Emplea letras del abecedario para representar a los números, por eso, podría catalogarse como un sistema alfanumérico.

– Los romanos, para ese momento, no conocían el número cero (que fue introducido más adelante a Europa con la numeración arábiga) y por ello no lo representaban.

– Las letras en este sistema siempre deben escribirse en mayúscula.

A pesar de su popularidad en el pasado, la numeración romana no era perfecta y presentaba ciertas limitaciones tales como la ausencia del número cero y la imposibilidad de representar fracciones o números decimales. Luego, con la llegada de la numeración arábiga (sistema decimal) los números romanos resultaban poco prácticos y entraron en desuso.

Reglas para escribir números romanos

Lo primero que se debe tener en cuenta es que este sistema emplea 7 letras del abecedario que se suman o restan entre ellas de acuerdo a ciertos criterios.

I = 1

V = 5

X = 10

L = 50

C = 100

D = 500

M = 1.000

Con los símbolos anteriores y a veces con algún símbolo auxiliar se pueden construir el resto de los números de acuerdo a los siguientes criterios:

Valores que se suman

– Las letras que se escriben a la derecha de otra de igual o mayor valor se suman:

VI = 5 + 1 = 6

XX = 10 + 10 = 20

CLI = 100 + 50 + 1 = 151

MMDCLII = 1.000 + 1.000 + 500 + 100 + 50 + 1 + 1 = 2.652

 

– Los símbolos I, X, C y M son los únicos que pueden repetirse dos o tres veces consecutivas:

III = 1 + 1 + 1 = 3

XXX = 10 + 10 + 10 = 30

CC = 100 + 100 = 200

MMM = 1.000 + 1.000 + 1.000 = 3.000

 

Los símbolos V, L y D pueden escribirse solo una vez en cada número y por ende no pueden repetirse nunca a diferencia del resto de los símbolos. A pesar de que hoy en día los usos de este sistema de numeración son muy limitados, pueden observarse en ciertos contextos como: siglos, nombres, capítulos de libros y monumentos o placas conmemorativas.

Valores que se restan

– Solo los símbolos I, X y C pueden restarse al símbolo siguiente. Esto sucede cuando el símbolo siguiente es mayor.

IV = 5 − 1 = 4

IX = 10 − 1 = 9

XL = 50 − 10 = 40

XC = 100 − 10 = 90

CD = 500 − 100 = 400

CM = 1.000 − 100 = 900

VER INFOGRAFÍA

¿Qué hacer con cantidades más grandes?

Números mayores a 3.999 (MMMCMXCIX) necesitan símbolos auxiliares, en estos caso se emplea una raya horizontal arriba de la letra para multiplicar su valor por 1.000.

\overline{IV} = 4 \times 1.000 = 4.000

\overline{XL} = 40 \times 1.000 = 40.000

\overline{CXX} = 120 \times 1.000 = 120.000

¿Sabías qué?
Si se colocan dos rayas horizontales sobre un número romano su valor se multiplica por 1 millón.

Ejercicios

1. Escribe con letra los siguientes números

  1. 45.987
    Solución
    Cuarenta y cinco mil novecientos ochenta y siete.
  2. 120.501
    Solución
    Ciento veinte mil quinientos uno.
  3. 197.234
    Solución
    Ciento noventa y siete mil doscientos treinta y cuatro.
  4. 100.985
    Solución
    Cien mil novecientos ochenta y cinco.

2. Escribe en número:

  1. Doscientos mil.
    Solución
    200.000
  2. Setenta y nueve mil ochocientos treinta y dos.
    Solución
    79.832
  3. Ciento veinticuatro mil quinientos sesenta y nueve.
    Solución
    124.569
  4. Cuarenta mil trescientos uno.
    Solución
    40.301

3. Escribe el valor de cada número:

  1. XXIV
    Solución
    24
  2. CLX
    Solución
    160
  3. MMMCLIX
    Solución
    3.159
  4. MMCMLXIV
    Solución
    2.964
  5. CLVIII
    Solución
    158

4. Escribe los siguientes números en número romanos:

  1. 2.157
    Solución
    MMCLVII
  2. 739
    Solución
    DCCXXXIX
  3. 1.199
    Solución
    MCXCIX
  4. 3.578
    Solución
    MMMDLXXVIII
  5. 5.000
    Solución
     
RECURSOS PARA DOCENTES

Artículo destacado “Sistema de numeración”

El siguiente artículo destacado te permitirá conocer más sobre los sistemas de numeración, desde los más antiguos hasta los más actuales.

VER

Infografía “Números romanos”

Con este recurso podrás saber más sobre la historia de los números romanos, sus características y aplicaciones.

VER