CAPÍTULO 7 / TEMA 2

LA RECTA NUMÉRICA

Se trata de una herramienta muy útil para representar de forma ordenada los números reales en una dimensión, de manera que podamos visualizar con facilidad aspectos como la secuencia y la relación entre varios números, así como también soluciones de inecuaciones. Fue propuesta por John Wallis y es la base para la construcción del plano cartesiano.

Al igual que en la recta numérica, los números de las escalas en los instrumentos de medición, tales como una regla o cinta métrica, se encuentran ubicados de forma ordenada y con números consecutivos equidistantes. Las divisiones pueden a su vez contener subdivisiones para expresar fracciones o decimales de una medida.

ELEMENTOS DE UNA RECTA NUMÉRICA

Los elementos que podemos incluir en una recta numérica son muy variables, ya que dependerán del uso que hagamos de ella; pero, en esencia, la recta numérica está conformada por una recta horizontal en la que se indican generalmente los números enteros (\mathbb{Z}) con un origen (0) ubicado en el centro. Sin embargo, esta recta no es exclusiva de los números enteros, ya que en ella podemos representar cualquier número real (\mathbb{R}).

A la izquierda del cero se encuentran los números negativos y hacia la derecha los positivos. Además, suponemos que la prolongación de los extremos de la recta representa el infinito tanto positivo (a la derecha) como negativo (a la izquierda).

Los valores en la recta numérica se pueden representar de uno en uno, pero también se puede seleccionar a conveniencia una escala diferente, por ejemplo, de 0,5 en 0,5; o bien, de 3 en 3. También, podemos subdividir cada espacio en la recta real para representar números decimales o fracciones.

La escala de la regla es equivalente a la sección positiva de una recta numérica con una cantidad finita de números. En este caso, los centímetros son la escala principal y las subdivisiones representan los milímetros que proporcionan la parte decimal de una medida. A la menor medida que se pueda obtener con un instrumento se le denomina apreciación.

EL ORDEN DE LOS NÚMEROS

En la recta numérica los números están ordenados en forma ascendente de izquierda a derecha, es decir, si se comparan dos números, será mayor el que se localice más a la derecha.

Como ya hemos visto, cada división puede subdividirse para representar fracciones, las cuales pertenecen al conjunto de los números racionales (\mathbb{Q}). Si para una determinada fracción realizamos la división del numerador entre el denominador, encontraremos su expresión decimal equivalente, es decir, toda fracción se puede expresar como un decimal; sin embargo, no todos los decimales tienen una fracción generatriz.

 

Los números decimales que no podemos expresar en fracciones pertenecen al conjunto de los números irracionales (\mathbb{I}), por ejemplo, el valor \sqrt{2} o la constante \pi. A su vez, los números irracionales son un subconjunto de los números reales.

¿Sabías qué?
Los números negativos fueron aceptados universalmente e incluidos en la recta numérica a finales del siglo XVIII.
La constante π (pi) es un valor que contiene infinitos dígitos no periódicos en su parte decimal, por lo que pertenece al conjunto de los números irracionales. Su ubicación exacta en la recta real supone un inconveniente, por lo que se suele realizar un redondeo, por ejemplo, hasta la centésima (3,14) al momento de representar su valor en la recta numérica.

VER INFOGRAFÍA

Adición y sustracción con la recta numérica

Podemos utilizar la longitud de segmentos de línea a escala sobre la recta numérica para efectuar operaciones de suma y resta. Por ejemplo:

Si queremos sumar 3 + 5, a partir del 0 representamos de izquierda a derecha un segmento de recta de longitud igual a 3 unidades y seguidamente dibujamos de izquierda a derecha otro segmento de longitud igual a 5 unidades. El resultado, será el valor indicado desde cero hasta donde llegue el último segmento trazado:

Ahora bien, si queremos restar 6 − 4, a partir de 0 debemos dibujar de izquierda a derecha una recta de longitud 6 unidades y luego, donde termina dicha recta, trazamos ahora de derecha a izquierda otra recta de longitud 4 unidades (quedará sobre el primer segmento dibujado). El resultado, será el valor indicado desde cero hasta el punto donde coinciden los dos segmentos de recta:

¿CÓMO UBICAR UN RADICAL EN LA RECTA NUMÉRICA?

Algunos números, en especial los radicales, resultan complicados de ubicar con precisión en la recta real, sin embargo, en algunos casos podemos hacer uso del teorema de Pitágoras y un compás, para determinar la ubicación precisa de estos valores.

Cabe destacar que este método es útil cuando podemos expresar el radical como la suma de dos términos que tienen raíces exactas, digamos: 1, 4, 9, 16, 25, 36, 49… entre otros.

Uno de los legados más conocidos del filósofo griego Pitágoras fue el teorema que lleva su nombre, el cual establece que en cualquier triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma del cuadrado de los catetos. Hasta la fecha, este se considera uno de los teoremas más utilizados en la matemática y la física clásica.

Por ejemplo, si deseamos ubicar \sqrt{13} en la recta numérica el procedimiento es el siguiente:

  • Descomponemos el número dentro del radical como la suma de dos términos con raíces enteras:

\sqrt{13}=\sqrt{9+4}

  • Expresamos cada término como la suma de dos cuadrados, es decir, cada término será la raíz de ese valor elevado al cuadrado:

\sqrt{9+4}=\sqrt{3^{2}+2^{2}}

  • Si hacemos la analogía con el teorema de Pitágoras:

  • La base de cada cateto a y b son los valores de los términos que están elevados al cuadrado dentro de la raíz, es decir, 3 y 2.
  • Para representar el radical en la recta numérica, a partir del cero (0) se construye un rectángulo de base a y altura b (o viceversa); y la diagonal que parte de cero a la otra esquina será la hipotenusa del triángulo rectángulo que quedará con la medida del radical que deseas ubicar.
  • Con un compás, hacemos centro en el origen 0 y con abertura equivalente a la diagonal (hipotenusa), trazamos un arco de circunferencia hasta que corte la recta numérica y ese será el valor del radical que deseamos ubicar: \sqrt{13}.

 

VER INFOGRAFÍA

¡A practicar!

Ubica los siguientes valores en la recta numérica:

a) \frac{3}{4}

Solución

b) \frac{1}{3}

Solución

c) −0,5

Solución

d) Ubica en la recta numérica el valor de \sqrt{20}

Solución
RECURSOS PARA DOCENTES

Artículo “La recta numérica”

En este artículo encontrarás contenido relacionado con la ubicación de los diferentes conjuntos de números en la recta real, y en particular, la explicación de cómo ubicar un número irracional en dicha recta.

VER

Artículo “Recta numérica”

En este artículo se describen los pasos para ubicar un número entero, fracciones o decimales en la recta numérica.

VER

CAPÍTULO 1 / TEMA 5 (REVISIÓN)

SISTEMA DE NUMERACIÓN | ¿QUÉ APRENDIMOS?

ALGUNOS SISTEMAS DE NUMERACIÓN

Desde la Antigüedad, el hombre ha usado diversos sistemas con símbolos que le permiten contar. Algunos son no posicionales, como los números romanos; y otros son posicionales, como el sistema decimal, binario o sexagesimal. Los números romanos cuentan con solo siete símbolos, iguales a algunas letras de nuestro alfabeto. El sistema binario tiene base 2 y solo utiliza 2 cifras: el 1 y el 0. El sistema de numeración sexagesimal tiene como base el número 60. Y el sistema decimal, el que usamos normalmente, tiene como base el 10 y emplea diez dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9.

El sistema binario se considera fundamental en la computación. La base de este sistema son los números 0 y 1 y su combinación en cadena para generar algoritmos.

CONJUNTO DE LOS NÚMEROS ENTEROS

Este conjunto está conformado por los números naturales (\mathbb{N}), los enteros negativo (\mathbb{Z}^{-}) y el cero que es neutro. Este conjunto de números lo utilizamos, por ejemplo, para expresar alturas que se encuentran por encima y por debajo de un sistema de referencia, o bien para indicar temperaturas por encima y debajo del cero.

Las temperaturas por encima de cero se leen como números positivos, mientras que las que están por debajo de cero se leen como números negativos. Ejemplo, 20 ºC y −10 ºC.

CONJUNTO DE LOS NÚMEROS RACIONALES

El conjunto de los números racionales se denota con la letra \mathbb{Q} e incluye todas las fracciones, es decir, las divisiones de dos números enteros. Tienen gran utilidad cuando deseamos expresar partes de una totalidad, por ejemplo, cantidades de ingredientes en una receta (1/2 taza de harina) o porciones de pizza (3/4 de pizza).

Los gráficos circulares son visualmente muy útiles cuando deseamos expresar un número racional.

LOS NÚMEROS DECIMALES

Los números decimales constituyen un amplio grupo de números que incluyen al conjunto de números racionales (\mathbb{Q}) e irracionales (\mathbb{I}). Están conformados por una parte entera y una parte decimal separados por una coma o un punto. Los empleamos para expresar valores que se encuentran entre dos números consecutivos.

Los números decimales se aplican en la vida cotidiana y en el campo laboral. Muchas unidades monetarias son expresadas con números decimales para indicar precios, porcentajes, ventas, ganancias o pérdidas.

CAPÍTULO 1 / TEMA 3

CONJUNTO DE LOS NÚMEROS RACIONALES

El conjunto de los números racionales está conformado por todos aquellos números que pueden ser expresados como una división. Entran en este grupo algunos números decimales y las fracciones. Tienen gran aplicación cotidiana para representar partes de un entero o porciones de una totalidad.

No podemos usar los números enteros para resolver todas las operaciones entre ellos. Por ejemplo, si cortamos una tabla de 1 metro en 2 partes iguales, ¿cuánto mide cada pedazo? La división 1 ÷ 2 no tiene solución dentro de los números enteros, por tal motivo, usamos el conjunto de los números racionales, en el que esta división se representa como 1/2.

¿Sabías qué?
La primera civilización en utilizar los números racionales fueron los egipcios.

¿QUÉ SON LOS NÚMEROS RACIONALES?

Son todos aquellos números que pueden representarse a través de una fracción. De ahí su nombre “racionales”, pues a las fracciones también se las conocen como “razones”.

El conjunto de los números racionales se denota con la letra \mathbb{Q}, que alude al término quotient que significa “cociente”, ya que todo número racional puede ser representado como una fracción con cociente igual a un número decimal.

VER INFOGRAFÍA

Los números racionales como subconjunto de los números reales

Los números racionales (\mathbb{Q}), en conjunto con los números enteros (\mathbb{Z}) y los irracionales (\mathbb{I}), conforman el conjunto de los números reales (\mathbb{R}), donde se encuentran todos los números naturales y decimales.

ELEMENTOS DE LOS NÚMEROS RACIONALES

Los números racionales se forman al dividir dos números enteros que dan como resultado un número decimal. Los números racionales son todos los números del tipo \frac{a}{b} donde a es el numerador y b es el denominador. Ambos elementos, a y b, son número enteros y b es distinto de cero.

Número irracionales

Toda fracción es un número racional. Sin embargo, no todo número decimal pertenece al conjunto de los números racionales, porque no todos tienen una fracción equivalente. Tal es el caso de los decimales no periódicos, los cuales pertenecen al conjunto de los números irracionales, denotados con la letra \mathbb{I}. En esta categoría se encuentran, por ejemplo, \sqrt{7}, \pi o cualquier número con decimales infinitos.

orden de los números racionales

Comparar racionales permite establecer una relación de orden en \mathbb{Q}. Cuando los racionales tienen igual denominador, será mayor aquel con mayor numerador. Por ejemplo, entre \frac{8}{3} y \frac{2}{3}\frac{8}{3} es mayor porque 8 > 2.

Cuando los racionales tienen denominadores diferentes tenemos que convertirlos en fracciones equivalentes de igual denominador y luego comparar. También podemos usar la siguiente regla:

Si \frac{a}{b} y \frac{c}{d} ∈ \mathbb{Q}, con b y d positivos

Se cumple que:

Si  a\times d> b\times c,  entonces   \frac{a}{b}> \frac{c}{d}

Si  a\times d< b\times c,  entonces   \frac{a}{b}< \frac{c}{d}

– Ejemplo:

\frac{8}{5}> \frac{6}{7}   porque  8\times 7> 5\times 6

\frac{4}{7}< \frac{3}{5}  porque  4\times 5< 7\times 3

Fracciones negativas

Si el numerador o el denominador de una fracción es un número negativo podemos escribir el signo “−” antes de la fracción.

\frac{-a}{b}=-\frac{a}{b}

\frac{a}{-b}=-\frac{a}{b}

Las fracciones negativas, al estar más a la izquierda en la recta numérica, son menores que las fracciones positivas.

REPRESENTACIÓN GRÁFICA

Los números racionales se suelen utilizar para expresar partes de una totalidad. Por ejemplo, “un 1/4 de la población mundial utiliza Internet” o “un 1/3 de la población vive en situación de pobreza”, o bien “un 1/2 de los habitantes del planeta son mujeres”. En general, resulta más representativo hablar de fracciones de un total que solo indicar la cantidad de personas.

Para graficar números racionales tenemos que identificar primero qué tipo de fracción es. Si la fracción es propia, es decir, si tiene el numerador menor al denominador, basta con dividir una figura geométrica en tantas partes como indique el denominador y colorear las partes que indique el denominador. Por ejemplo:

\boldsymbol{1=}

\boldsymbol{\frac{2}{2}=}

\boldsymbol{\frac{2}{3}=}

\boldsymbol{\frac{2}{4}=}

\boldsymbol{\frac{2}{5}=}

 

\boldsymbol{\frac{2}{6}=}

\boldsymbol{\frac{2}{7}=}

\boldsymbol{\frac{2}{8}=}

\boldsymbol{\frac{2}{9}=}

\boldsymbol{\frac{2}{10}=}

 

Si la fracción es impropia tenemos que dividir la figura en tantas partes como muestre el denominador y repetirla hasta que se coloreen todas las partes que señale el numerador. Estas fracciones siempre tendrán más de un entero, así que también podemos convertir la fracción impropia en número mixto y seguir los pasos anteriores. Por ejemplo:

\frac{20}{9}=2\frac{2}{9}=

\frac{10}{8}=1\frac{2}{8}=

Fracciones y porcentajes

Los gráficos circulares o de sectores son ampliamente utilizados en estadística y otras áreas en las que son una herramienta de gran utilidad para expresar partes de un todo, por lo que las fracciones son necesarias para determinar las porciones de colores. No obstante, es mucho más práctico hacer estos gráficos con datos mostrados en porcentajes: una forma de representar a una fracción decimal, cuyo denominador es 100.

Convertir fracciones en porcentajes es muy sencillo, solo tenemos que dividir el numerador entre el denominador y después multiplicar por 100 %. Por ejemplo, 1/4 es igual a 25 % porque 1 ÷ 4 = 0,25 y 0,25 × 100 % = 25 %.

¡A practicar!

1. Señala cuáles números son racionales y cuáles son irracionales.

  • \frac{4}{5}
Solución
Es un número racional.
  • \sqrt{2}
Solución
Es un número irracional.
  • \frac{\pi }{3}
Solución
Es un número irracional.
  • \frac{1}{4}
Solución
Es un número racional.

2. Ordena de menor a mayor los siguientes número racionales.

  • \frac{8}{5}\frac{6}{7}\frac{2}{9}\frac{1}{2}
Solución
\frac{2}{9} < \frac{1}{2} < \frac{6}{7} < \frac{8}{5}
  • \frac{10}{3}\frac{6}{8}\frac{2}{3}\frac{5}{2}
Solución
\frac{2}{3} < \frac{6}{8} < \frac{5}{2} < \frac{10}{3}

  • -\frac{8}{4}\frac{3}{7}1\frac{2}{5}
Solución
-\frac{8}{4} < \frac{2}{5} < \frac{3}{7} < 1

3. ¿Qué fracción representan estos gráficos?

Solución
\frac{7}{3}
Solución
\frac{2}{9}
Solución
\frac{8}{5}
Solución
\frac{4}{10}
RECURSOS PARA DOCENTES

Artículo “¿Cómo transformar un número decimal a fracción?”

En este artículo hallará el método y la explicación para obtener la fracción generatriz de un número decimal.

VER

Artículo “La recta numérica”

En este recurso encontrará un método para representar números racionales en la recta real.

VER

Artículo “La clasificación de los números”

En este artículo encontrará la clasificación de los diferentes conjuntos numéricos, a fin de identificar en qué categoría o a qué subconjunto pertenecen los números racionales.

VER

CAPÍTULO 4 / TEMA 6 (REVISIÓN)

ORDEN Y RELACIONES | ¿QUÉ APRENDIMOS?

RECTA NUMÉRICA

La recta numérica es un gráfico en el que podemos representar cualquier número que pertenezca al conjunto de los números reales (\mathbb{R}). Tiene intervalos que señalan las unidades y siempre tienen la misma distancia entre un número y su consecutivo. Por otra parte, los distintos tipos de relaciones que existen entre los números se pueden mostrar por medio de los símbolos “<” y “>” que significan “menor que” y “mayor que” respectivamente.

Una regla graduada es muy parecida a una recta numérica.

ORDEN DE NÚMEROS NATURALES Y DECIMALES

Para ubicar los números naturales en la recta numérica ubicamos el 0 en una posición arbitraria y luego colocamos el resto de los números naturales en intervalos regulares. Si deseamos comparar números naturales usamos los símbolos < y > o la recta numérica, pues todo número que esté más a la derecha en la recta siempre será el mayor. Para ubicar números decimales en la recta numérica, debemos agregar subdivisiones entre los números enteros. Cuando queremos compararlos, primero tomamos en cuenta la parte entera y luego comparamos las cifras decimales de izquierda a derecha.

Sí bien algunos expertos afirman que el número cero (0) no pertenece al conjunto de los números naturales, otros aseguran que sí forma parte.

ORDEN DE FRACCIONES

Las fracciones también tiene un lugar en la recta numérica, para esto tenemos que considerar si la fracción es propia o impropia. De ser propia dividimos a la unidad en tantos segmentos como indique el denominador y contamos tantos segmentos como indique el numerador, luego marcamos la fracción. Si la fracción es impropia, tenemos que convertirla primero en un número mixto, en este caso, seguimos el procedimiento anterior pero a partir de la parte entera que tenga el número mixto.

Si comparamos fracciones con igual numerador y diferente denominador, será mayor aquella que tenga menor denominador.

PROPORCIONALIDAD

La proporcionalidad es una relación que existe entre dos magnitudes que podemos medir, y puede ser directa o inversa. Dos cantidades son directamente proporcionales si cuando una aumenta la otra aumenta o si cuando una disminuye la otra también lo hace. Por otro lado, al convertir medidas lo hacemos por medio de una regla de tres, un método muy útil para saber un valor desconocido entre 2 relaciones.

Siempre que vamos a un kiosco, sabemos que mientras más compremos, más tendremos que pagar; eso es porque la “cantidad que compramos” y la “cantidad que debemos pagar” tienen una relación directamente proporcional.

RELACIONES DE TIEMPO

El tiempo es quizás la magnitud más usada y medida diariamente. Sus unidades son variadas y van desde las menores a un día, como los segundos, los minutos y las horas; hasta las que sobrepasan al día como los meses, años y décadas. Si usamos una regla de tres podemos convertir una unidad a otra sin dificultad. También podemos hacer cálculos de suma y resta con el tiempo, esto nos ayuda a saber cuando empezó un partido de fútbol o qué hora salió un tren, por ejemplo.

Los calendarios o agendas son útiles para planificar las actividades a realizar a lo largo del día.

CAPÍTULO 2 / TEMA 5 (REVISIÓN)

OPERACIONES CON NATURALES | ¿QUÉ APRENDIMOS?

CÁLCULOS MATEMÁTICOS

LOS CÁLCULOS MATEMÁTICOS SON OPERACIONES QUE REALIZAMOS PARA CONOCER EL RESULTADO DE ALGO EXPRESADO EN NÚMEROS. LAS OPERACIONES QUE UTILIZAMOS CON MAYOR FRECUENCIA SON LA SUMA Y LA RESTA. PARA REGISTRARLAS EN FORMA ESCRITA UTILIZAMOS EL SÍMBOLO + (QUE SE LEE “MÁS”) Y EL SÍMBOLO − (QUE SE LEE “MENOS”). REALIZAMOS CÁLCULOS MATEMÁTICOS EN NUESTRA VIDA DIARIA: CUANDO PAGAMOS ALGO, AL MEDIR EL TIEMPO, PARA CONOCER UNA DISTANCIA Y HASTA PARA HACER MÚSICA.

LA MATEMÁTICA NO SOLO NOS SIRVE PARA LA ESCUELA, SINO QUE LA UTILIZAMOS A DIARIO EN NUESTRA VIDA COTIDIANA.

ADICIÓN O SUMA

LA ADICIÓN O SUMA ES LA OPERACIÓN DE AGREGAR O AGRUPAR CANTIDADES PARA OBTENER UN RESULTADO. ESAS CANTIDADES LLEVAN EL NOMBRE DE SUMANDOS, EL RESULTADO SE DENOMINA SUMA. AL SUMAR NÚMEROS DE DOS DÍGITOS A VECES ES CONVENIENTE ESCRIBIR LA OPERACIÓN EN FORMA VERTICAL. EN ESE CASO ES IMPORTANTE UBICAR EN LA COLUMNA DE LA DERECHA LAS UNIDADES Y EN LA DE LA IZQUIERDA LAS DECENAS.

CUANDO LOS NÚMEROS SON PEQUEÑOS PODEMOS USAR PALITOS O LOS DEDOS PARA HACER LA SUMA.

SUSTRACCIÓN O RESTA

LA SUSTRACCIÓN O RESTA ES LA OPERACIÓN CONTRARIA A LA SUMA. CONSISTE EN EXTRAER O QUITAR A UNA CANTIDAD MAYOR A UNA MENOR. AL NÚMERO MAYOR LO LLAMAMOS MINUENDO Y AL MENOR LO LLAMAMOS SUSTRAENDO, EL RESULTADO DE LA RESTA SE CONOCE COMO DIFERENCIA O RESTA.

EN LA RESTA USAMOS EL SIGNO − QUE SE LEE “MENOS”. POR EJEMPLO, 4 − 3 = 1 SE LEE “CUATRO MENOS TRES ES IGUAL A UNO”.

SITUACIONES PROBLEMÁTICAS

LAS SUMAS Y RESTAS SON LAS OPERACIONES MATEMÁTICAS MÁS USADAS POR TODOS DÍA A DÍA, ASÍ QUE ES POSIBLE QUE MUCHAS SITUACIONES LAS TENGAS QUE RESOLVER CON CÁLCULOS. CUANDO ESTO SUCEDE, ES IMPORTANTE QUE SIGAMOS UNA SERIE DE PASOS QUE NOS AYUDEN A RAZONAR Y ORGANIZAR LA INFORMACIÓN PARA RESOLVER EL PROBLEMA. ALGUNOS DE ESTOS PASOS SON IDENTIFICAR LOS DATOS, PENSAR EN EL PROCEDIMIENTO PARA LA RESOLUCIÓN, HACER LA OPERACIÓN Y DAR LA RESPUESTA. 

AUNQUE NO LO CREAS, LAS OPERACIONES MATEMÁTICAS LAS USAS SIEMPRE, ASÍ QUE DE TANTO PRACTICAR PODRÁS HACER TODOS ESTOS CÁLCULOS MENTALMENTE, ES DECIR, SIN NECESIDAD DE LÁPIZ Y PAPEL.

 

CAPÍTULO 2 / TEMA 3

SUSTRACCIÓN O RESTA

IMAGINA QUE TIENES 6 CARAMELOS Y QUE LUEGO REGALAS 3, ¿CUÁNTOS CARAMELOS TE QUEDAN? ESTA OPERACIÓN SE RESUELVE POR MEDIO DE UNA RESTA O SUSTRACCIÓN. LA RESTA ES UN CÁLCULO QUE CONSISTE EN QUITAR UNA CANTIDAD A OTRA. ES MÁS COMÚN DE LOS QUE CREES Y HOY APRENDERÁS CUÁLES SON SUS ELEMENTOS.

EL SÍMBOLO “MENOS” ES UNA RAYA HORIZONTAL “−”Y LA UTILIZAMOS CADA VEZ QUE REALIZAMOS UNA RESTA O SUSTRACCIÓN, ES DECIR, CUANDO QUEREMOS EXPRESAR QUE SE QUITAN ELEMENTOS DE UNA COLECCIÓN. PUEDES INTENTARLO CON TUS DEDOS: REPRESENTA 7 UNIDADES Y LUEGO “QUITA” UNA UNIDAD, ¿CUÁNTOS DEDOS VES? ¡HAY 6 DEDOS! ESTO ES IGUAL A 7 − 1 = 6.

LA RESTA Y SUS ELEMENTOS

LA RESTA ES LA OPERACIÓN OPUESTA A LA SUMA. SE TRATA DE EXTRAER O QUITAR DE UNA CANTIDAD A OTRA MAYOR. LOS NÚMEROS QUE INTERVIENEN EN UNA RESTA TIENEN DIFERENTES DENOMINACIONES:

  • EL 5 ES EL MINUENDO.
  • EL 3 ES EL SUSTRAENDO.
  • EL 2 ES LA RESTA O DIFERENCIA.

¡VAMOS A RESTAR!

ESCRIBE EL MINUENDO, EL SUSTRAENDO Y LA RESTA EN CADA CASO.

SOLUCIÓN

SOLUCIÓN

¿SABÍAS QUÉ?
EL MINUENDO ES EL NÚMERO MAYOR Y EL SUSTRAENDO ES EL NÚMERO MENOR DE UNA RESTA. LA DIFERENCIA ES EL RESULTADO.

PROPIEDADES DE LAS RESTA 

LA RESTA NO CUMPLE CON LAS MISMAS PROPIEDADES DE LA SUMA.

  • EL ORDEN DE LOS ELEMENTOS SÍ IMPORTA EN LA RESTA, ASÍ QUE NO CUMPLE CON LA PROPIEDAD CONMUTATIVA.
  • EN LAS RESTAS QUE INVOLUCRAN MÁS DE DOS NÚMEROS NATURALES NO SE CUMPLE LA PROPIEDAD ASOCIATIVA, YA  QUE EL RESULTADO VARÍA EN FUNCIÓN DE CÓMO SE AGRUPAN LOS TÉRMINOS.
UNA MANERA MUY SENCILLA DE HACER RESTAS ES CON PALITOS, AUNQUE TAMBIÉN LO PUEDES HACER CON OTROS OBJETOS. COMO LA RESTA ES UNA OPERACIÓN EN LA QUE QUITAMOS UNA CANTIDAD A OTRA, SI QUIERES REPRESENTAR LA RESTA 5 − 2 = 3, BASTA CON QUE A UN GRUPO DE 5 PALITOS LE QUITES 2 PALITOS. VERÁS QUE EL RESULTADO ES 3. INTENTA HACER ESTAS RESTAS CON OBJETOS DE TU CASA.

APLICACIÓN DE LA RESTA

NO SIEMPRE PODEMOS RESTAR CANTIDADES CON LOS DEDOS O POR MEDIO DE DIBUJOS. OTRO MODO DE RESTAR ES CON TABLAS DE POSICIÓN. ¡APRENDE CÓMO HACERLO!

PRIMERO COLOCAMOS EL MINUENDO SOBRE EL SUSTRAENDO. ESCRIBIMOS LAS UNIDADES EN LA COLUMNA DE LAS UNIDADES Y LAS DECENAS EN LA COLUMNA DE LAS DECENAS.

PRIMERO RESTAMOS LAS UNIDADES: 5 − 2 = 3.

LUEGO RESTAMOS LAS DECENAS: 3 − 2 = 1.

PODEMOS ESCRIBIRLO DE MANERA HORIZONTAL:

35 − 22 = 13

¿CÓMO COMPROBAR UNA RESTA?

SI SUMAS EL SUSTRAENDO CON LA DIFERENCIA DE LA RESTA Y EL RESULTADO ES IGUAL AL MINUENDO, ENTONCES LA RESTA ESTÁ CORRECTA.

RESTAR PUEDE PARECER UNA OPERACIÓN DIFÍCIL DE REALIZAR LAS PRIMERAS VECES. DEBES CONOCER BIEN SUS PROPIEDADES, ESTUDIAR SU PROCEDIMIENTO Y CON MUCHA PRÁCTICA TE RESULTARÁ CADA VEZ MÁS SENCILLO. RECUERDA QUE SIEMPRE AL NÚMERO MAYOR SE LE RESTARÁ EL MENOR, ES DECIR, EL MINUENDO VA SOBRE EL SUSTRAENDO. NUNCA AL REVÉS, PORQUE ENTONCES EL RESULTADO SERÍA OTRO.

¡A PRACTICAR!

RESUELVE ESTAS RESTAS:

  • 18 − 6
  • 29 − 10
  • 46 − 22
  • 69 − 53
  • 84 − 53
  • 48 − 15
SOLUCIÓN

RECURSOS PARA DOCENTES

Artículo “Resta de números naturales”

Este recurso te ayudará con algunos ejemplos y aplicaciones de las restas o sustracción.

VER

CAPÍTULO 2 / TEMA 4

Operaciones con números decimales

Los números decimales son aquellos que tienen una parte entera y una parte decimal, separadas por una coma; son comunes en los precios de los productos del supermercado o en nuestro peso y altura. Los problemas con este tipo de números se resuelven casi de la misma forma que los que tienen números naturales. A continuación, aprenderás las reglas para resolver dichos cálculos.

suma de números decimales

Cuando sumamos número decimales el procedimiento es similar al de los números naturales. Colocamos las unidades, decenas y centenas una sobre otra; de este modo, las comas, décimas, centésimas y milésimas también estarán en las mismas columnas.

– Ejemplo:

432,61 + 54,3

Donde:

C = centena

D = decena

U = unidad

d = décima

c = centésima

m = milésima

 

Si la suma de las cifras de una columna es mayor a 9, colocamos el dígito de la unidad debajo de dicha columna y el dígito de la decena en la columna de la izquierda.

– Ejemplo:

523,4 + 74,86

¡Es tu turno!

Resuelve estas sumas de números decimales.

  • 0,816 + 26,5
  • 10,5 + 10,5
  • 129,836 + 345,26
  • 64,68 + 22,129
Solución

 

¿Sabías qué?
Además de la coma, también se puede usar un punto para separar la parte entera de la parte decimal. Todo depende de la convención del país en el que estés.

 

¿Notaste que la adición de los números decimales es muy similar a la adición de los números naturales? Lo más importante en esta operación es que las cifras estén en las mismas columnas según su valor posicional: unidades con unidades, decenas con decenas, centenas con centenas. De este modo, la coma siempre estará en el lugar adecuado.

resta de números decimales

Para restar números decimales colocamos cada números en las mismas columnas según el orden de cada cifra: unidades con unidades, décimas con décimas, etc. De ser necesario añadimos ceros para que ambos números tengan la misma cantidad de dígitos. Luego restamos como si fueran números naturales y colocamos la coma en el resultado.

– Ejemplo:

360,84 − 246,013

1. Colocamos los números uno sobre otro y agregamos un cero al minuendo.

2. Como no podemos restarle 3 a 0, tomamos “prestada” una décima de la columna de la izquierda. Ahora el 0 se transforma en 10 y el 4 de las centésimas se convierte en 3. Luego hacemos la resta: 10 − 3 = 7.

3. Restamos las centésimas: 3 − 1 = 2.

4. Restamos las décimas: 8 − 0 = 8.

5. Restamos las unidades. Como no podemos restarle 6 a 0, tomamos una decena de la columna de la izquierda. Así que el 0 se convierte en 10 y el 6 se transforma en 5. Luego restamos: 10 − 6 = 4.

6. Restamos las decenas: 5 − 4 = 1.

7. Restamos las centenas y colocamos la coma en la misma columna en la que están las comas.

¡Es tu turno!

Resuelve las siguientes restas de números decimales.

  • 95,371 − 24,98
  • 137 − 45,290
  • 348,6 − 26,696
  • 67,4 − 0,16
Solución

 

Décimas en una regla

La regla graduada es un instrumento de medición con el que también podemos trazar líneas rectas. Por lo general viene con marcas con números que indican los centímetros y marcas más pequeñas entre estas que muestran los milímetros. Recuerda que 1 milímetro es igual a 0,1 centímetros.

Multiplicación con números decimales

Cuando multiplicamos un número decimal por un número natural colocamos los factores uno sobre otro alineados a la derecha, luego multiplicamos tal como si ambos fueran números naturales. Al final colocamos la coma decimal de acuerdo a la cantidad de decimales que tenga el factor decimal.

– Ejemplo:

1,27 × 36

1. Colocamos los factores uno sobre otro.

2. Multiplicamos como hacemos con los números naturales.

3. Colocamos la coma decimal en el resultado. Como el 1,27 tiene dos números decimales, movemos dos espacios en el resultado y colocamos la coma.

Por lo tanto,

1,27 × 36 = 45,72

¡Es tu turno!

Resuelve la siguientes multiplicaciones.

  • 3,1 × 21
  • 132 × 5,3
  • 2,65 × 68
Solución

Los números decimales también se pueden representar como una fracción. Para esto colocamos un denominador con la unidad seguida de tantos ceros como sean necesarios para que el numerador sea un entero. Recuerda que se multiplican ambas partes de la fracción. Luego simplificamos. Por ejemplo, si amplificamos por 10 la expresión 0,5/1 nos queda 5/10 = 1/2.

 

¡A practicar!

Resuelve las siguientes operaciones.

421,78 + 100,1

Solución
421,78 + 100,1 = 521,88

500,999 − 500,159

Solución
500,999 − 500,159 = 0,84

131 × 12,4

Solución
131 × 12,4 = 1.624,4

0,92 × 53

Solución
0,92 × 53 = 48,76

0,578 + 0,9

Solución
0,578 + 0,9 = 1,478

36,9 − 0,806

Solución
36,9 − 0,806 = 36,094
RECURSOS PARA DOCENTES

Artículo “Números decimales”

Con este artículo podrás ampliar la información relacionada con los números decimales, su clasificación y las operaciones que los involucran.

VER

Artículo “Operaciones con números decimales”

Este recurso describe paso a paso cómo realizar sumas, restas, multiplicaciones y divisiones con números decimales.

VER

 

CAPÍTULO 2 / TEMA 8 (REVISIÓN)

OPERACIONES | ¿qué aprendimos?

ADICIÓN Y SUSTRACCIÓN

La adición consiste en combinar, agrupar o sumar números; la sustracción, en cambio, consiste en quitar o restar números a un grupo. Siempre que queramos resolver cualquiera de estas operaciones, debemos considerar el valor posicional de cada una de las cifras de los números. Por otro lado, la adición cumple con ciertas propiedades como la asociativa y la conmutativa que no se pueden aplicar a la sustracción.

Un ejemplo de la adición por reagrupación es la suma de dinero. Si tienes $ 1.324 y luego te dan $ 3.984, tienes en total  $ 1.324 + $ 3.984 = $ 5.318.

Multiplicación

La multiplicación es una operación matemática que consiste en sumar varias veces un mismo número. Los factores son los números que se multiplican o suman reiteradas veces y el producto es el resultado de la multiplicación. La multiplicación sin reagrupación es un método que consiste en multiplicar las unidades, las decenas y las centenas de 2 factores entre sí cuando ninguno de los productos formados supera la decena, mientras que la multiplicación con reagrupación es un procedimiento que podemos utilizar cuando algún producto entre dos cifras es igual o mayor a 10.

La multiplicación por reagrupación es útil en muchas situaciones cotidianas, como saber la cantidad de butacas que hay en el cine. Si cuentas las que hay en una fila (6) y las multiplicas por la cantidad de filas (3) tienes que 6 x 3 = 18. Así que hay 18 butacas.

División

La división es la operación opuesta a la multiplicación. Sus elementos son el dividendo, el divisor, el cociente y el resto. El dividendo es la cantidad que se quiere repartir; el divisor indica entre cuántas partes se reparte; el cociente es la cantidad que le corresponde a cada parte y también es el resultado de la división; y el resto representa lo que no se puede repartir. Cuando el resto es igual a cero (0) decimos que la división es exacta.

El cociente de una división también puede ser un número decimal, por ejemplo, si deseamos repartir 3 naranjas entre 6 personas, cada una tendrá 0,5 = 1/2, es decir, cada una tendrá media naranja.

OPERACIONES CON NÚMEROS DECIMALES

Para la adición y sustracción de números decimales procedemos igual que en el caso de los números naturales, pues debemos colocar cada elemento uno sobre otro según su valor posicional, al final nos aseguramos de que la coma esté en la misma columna. En el caso de las multiplicaciones, realizamos la operación tal y como si fuera una de números naturales, luego le colocamos al producto final la coma de acuerdo a los decimales de los factores.

Si sube la temperatura corporal un grado más allá de los 36,6° de la imagen, la persona tiene fiebre. ¿Cuál es la temperatura a la que puede tener fiebre? El cálculo es 36,6° + 1° = 37,6°. Este es un ejemplo de adición de decimales.

OPERACIONES COMBINADAS

Las operaciones combinadas son aquellas que agrupan diversos cálculos en una sola expresión. Cuando no hay paréntesis debemos seguir un orden de resolución: primero las multiplicaciones y divisiones, luego las sumas y restas. Si la operación combinada tiene paréntesis tenemos que realizar primero los cálculos que están dentro de ellos, es decir, estos tienen prioridad sobre otros.

Los paréntesis son de gran importancia si deseamos realizar operaciones en una calculadora, pues indican que son prioritarias sobre las demás.

MÍNIMO COMÚN MÚLTIPLO Y MÁXIMO COMÚN DIVISOR

El mínimo común múltiplo (mcm) y el máximo común divisor (mcd) son operaciones que nos ayudan a simplificar cálculos más complejos. El mcm es el mínimo múltiplo que tienen en común dos o más números y el mcd es el divisor mayor que tienen en común dos o más números. Ambos pueden ser calculados por comparación de múltiplos y divisores o por descomposición de su números en factores primos.

La descomposición en factores primos consiste en dividir cada número entre su divisor mínimo para representar un número como producto de sus números primos. Algunos números primos están en esta imagen.

CONVERSIONES DE MEDIDAS

Algunas magnitudes que podemos medir son la longitud, la masa, el volumen y el tiempo. Cada una de ellas tiene una unidad básica de medida pero no son las únicas. Para medir longitudes podemos usar unidades como el metro, el kilómetro o el centímetro; para medir masas usamos unidades como el gramo, el kilogramo o el miligramo; para medir el volumen usamos unidades como el centímetro cúbico o el metro cúbico; y para medir el tiempo usamos unidades como los segundos, los minutos, las horas, los días o los años.

Hay mariposas que solo viven 1 día. Si convertimos esta unidad, también podemos decir que hay mariposas que viven 24 horas.

CAPÍTULO 3 / TEMA 6 (REVISIÓN)

FRACCIONES Y PORCENTAJES | REVISIÓN

LAS FRACCIONES Y SUS USOS

En toda fracción podemos distinguir dos partes principales: el numerador y el denominador, ambos se encuentran separados por una línea horizontal. El denominador indica en cuántas partes se divide la unidad y el numerador señala cuántas de esas partes se han de tomar. Las fracciones se pueden clasificar en propias, impropias y aparentes. Las fracciones propias son aquellas en las que el numerador es menor que el denominador y representan un número menor a uno. Las fracciones impropias son la que tienen el numerador mayor que el denominador y representan a un número mayor a uno. Las fracciones aparentes son aquellas cuyo numerador es múltiplo de su denominador.

Además de la raya horizontal también podemos representar a las fracciones con una raya diagonal “/” o con el símbolo de las divisiones “÷”.

FRACCIONES EQUIVALENTES

Decimos que dos o más fracciones son equivalentes cuando todas ellas representan a la misma cantidad. Las fracciones equivalentes se pueden obtener por medio de dos métodos: amplificación y simplificación. Para obtener fracciones equivalentes por amplificación debemos multiplicar al numerador y al denominador de la fracción por un mismo número, distinto de cero. Para obtenerlas por simplificación, debemos dividir al numerador y al denominador de la fracción por un mismo número, distinto de cero y que sea un divisor común entre ambos. Es importante recordar que las fracciones equivalentes se pueden utilizar para sumar y restar fracciones heterogéneas (que tienen distinto denominador).

Media sandía se puede expresar como 1/2, 2/4, 4/8, 8/16, 16/32… Todas ellas son fracciones equivalentes que indican la mitad de un entero.

OPERACIONES CON FRACCIONES

La suma y resta de fracciones depende del tipo de estas. En las fracciones homogéneas (mismo denominador) se suman o restan los numeradores y se conserva el mismo denominador. En las fracciones heterogéneas (diferente denominador) se debe multiplicar el numerador de la primera fracción por el denominador de la segunda y el resultado se suma o se resta al producto del numerador de la segunda fracción por el denominador de la primera, el número obtenido es el numerador de la fracción resultante; luego se multiplican ambos denominadores y el número obtenido corresponderá al denominador de la fracción resultante. Para la multiplicación se multiplican los numeradores y denominadores de forma lineal. Para la división, se debe multiplicar en forma de cruz: el numerador de la primera fracción por el denominador de la segunda es igual al numerador de la fracción resultante y el numerador de la segunda fracción por el denominador de la primera es igual al denominador de la fracción resultante.

Algunas fracciones se pueden simplificar, es decir, pueden expresarse en fracciones equivalentes más sencillas

FRACCIONES MIXTAS

Una fracción mixta o número mixto es una forma de representar a una cantidad  compuesta por una parte entera y una parte fraccionaria. Para graficarla, dividimos al entero en tantas partes como indique el denominador de la parte fraccionaria. Luego, pintamos tantos enteros (completos) como indique el número entero de la fracción mixta. Por último, dibujamos otro entero y pintamos tantas partes de este como indique el numerador de la fracción mixta. Para transformar una fracción mixta a una fracción convencional, lo que se realiza es sumar la parte entera con la parte fraccionaria. Siempre se debe obtener una fracción impropia.

En este caso la parte entera de la fracción mixta es 2, y la parte fraccionaria es 1/3. Se lee “dos enteros y un tercio”.

PORCENTAJES

Un porcentaje, al igual que una fracción, es una forma de indicar una parte de un todo. Un porcentaje siempre representa a una fracción decimal cuyo denominador es 100. El símbolo que utilizamos para indicar un porcentaje es %. Para calcular el porcentaje de una cantidad conocida se multiplican ambos valores y se divide entre 100. Para convertir cualquier fracción a porcentaje, debemos dividir el numerador con el denominador, y luego multiplicar dicho resultado por cien. Por otro lado, para convertir un porcentaje a fracción, simplemente colocamos el porcentaje en el numerador y 100 como denominador, posteriormente se realiza una simplificación.

Los porcentajes se utilizan para indicar descuentos y recargos. También se utilizan en la estadística y en la economía.

CAPÍTULO 1 / TEMA 7 (REVISIÓN)

SENTIDO NUMÉRICO | REVISIÓN

UNIVERSO DE LOS NÚMEROS

Los números desde su invención han servido para contar cosas y por eso existen diferentes sistemas y tipos de números que permiten un mejor conocimiento de las cantidades. Para comprender el sentido numérico, dentro del universo de los números se utilizan diversas clasificaciones. Un tipo de números son los ordinales que sirven para establecer un orden. Por otro lado, existen los cardinales que indican cantidades numéricas de elementos que pertenecen a un grupo o conjunto. Actualmente, el sistema más usado es el sistema numérico decimal pero no es el único que existe. Otras culturas crearon sistemas de numeración distintos al decimal, como por ejemplo, los mayas y los romanos.

El sistema de numeración binario se utiliza principalmente en la informática. Está conformado solo por dos cifras: el 0 y el 1.

NÚMEROS PRIMOS Y COMPUESTOS

De acuerdo a la cantidad de divisores que poseen los número, los podemos clasificar en primos y compuestos. Los números primos son aquellos que solo son divisibles por el número uno y por sí mismos. En cambio, los números compuestos son aquellos que además de ser divisibles por el uno y por sí mismos, también son divisibles por otro u otros números, es decir, tienen más de dos divisores. Todos los números compuestos pueden expresarse como un producto de factores primos.

Para determinar los factores primos de un número compuesto se emplean los criterios de divisibilidad.

VALOR POSICIONAL

Una de las principales características de nuestro sistema de numeración decimal es que el valor de los dígitos varía de acuerdo a su ubicación dentro del número. Esta característica se denomina valor posicional y aplica tanto en los números enteros como en los fraccionarios. Una herramienta que nos permite observar directamente el valor de cada dígito de acuerdo al lugar que ocupa es la tabla posicional.

Según la posición de cada dígito, los números pueden descomponerse en forma de suma (descomposición aditiva) o de multiplicación (descomposición multiplicativa).

NÚMEROS DECIMALES

Hay números que se ubican entre dos números enteros consecutivos, estos números se denominan números decimales y se caracterizan porque presentan una parte entera y una decimal, que se encuentran separadas por una coma o punto de acuerdo a la convención del país. Los números decimales se clasifican en racionales y en irracionales. Los racionales se pueden representar en forma de fracción, y los irracionales son números infinitos cuya parte decimal no sigue ningún patrón, como sucede en el caso del número pi.

A menudo se pueden aplicar redondeos en las cifras decimales de un número para simplificar los cálculos.

POTENCIAS

La potenciación es una operación compuesta de tres partes fundamentales: el exponente, la base y la potencia. El exponente indica cuántas veces se debe multiplicar la base por si misma. La base es el número que se multiplica por sí mismo las veces que indique el exponente. La potencia es el resultado de la operación de potenciación. Como toda operación matemática, las potencias cumplen con algunas propiedades. Por ejemplo, todo número elevado a 0 es igual a 1. Para resolver potencias se aplican sus propiedades y se realizan multiplicaciones sucesivas de la base.

Cuando el exponente es 1, la potencia es siempre igual a la base.

RAÍZ DE UN NÚMERO

La radicación es la operación inversa a la potenciación y por ello se encuentran estrechamente relacionadas. Esta operación emplea el símbolo (√) denominado radical. Sus elementos principales son el radicando, el índice y la raíz. El radicando es el número al cual se le va a calcular la raíz y se encuentra en la parte inferior del radical. El índice es el número que índica la cantidad de veces en las que debe multiplicarse un número por sí mismo para que el resultado sea igual al radicando, y se ubica en la parte izquierda del radical. La raíz es el resultado de la operación. Para calcular una raíz se debe buscar un número que multiplicado por sí mismo las veces que indique el índice dé como resultado el mismo valor del radicando.

En las raíces cuadradas, el índice 2 no se coloca en el radical: simplemente se denotan como (√).