CAPÍTULO 6 / TEMA 4 (REVISIÓN)

ESTADÍSTICA Y PROBABILIDAD | ¿qué aprendimos?

REPRESENTACIÓN DE DATOS

Podemos representar datos en gráficos y tablas. Los gráfico de barras se utilizan para representar información numérica en un sistema de ejes coordenados: en el eje horizontal ubicamos las categorías y en el eje vertical los datos numéricos. Otro tipo de gráfico es el lineal, el cual sirve para comparar datos, representar la frecuencia de ciertas variables y mostrar la evolución o cambios que le ocurren a un fenómeno. También están los gráficos circulares que representan variables cualitativas por medio de porcentajes y porciones. Por otro lado están los pictogramas que se construyen igual que el diagrama de barras pero se sustituyen los rectángulos por dibujos.

Múltiples gráficos estadísticos muestran el crecimiento de la población mundial gracias a los avances en la ciencia, la higiene y la medicina.

cOMBINACIONES

Las combinaciones son una forma de agrupar elementos de un conjunto sin importar el orden. Por ejemplo, cada vez que nos vestimos hacemos combinaciones de camisas, pantalones y zapatos. Las tablas de doble entrada permiten analizar los datos y combinarlos de todas las maneras posibles. Para resolver algunos problemas combinatorios también es posible utilizar los diagramas de árbol que permiten visualizar todas las formas posibles de combinar todos los elementos.

El cubo de Rubik posee millones de combinaciones posibles.

probabilidad

La probabilidad sirve para predecir de la mejor manera si un suceso puede ocurrir o no. A los fenómenos predecibles se los llama determinísticos; a los que no se pueden predecir, se los denomina aleatorios. Algunos fenómenos aleatorios pueden ser mas probables que otros, y esta probabilidad puede ser calculada matemáticamente. Por otra parte, si deseamos saber el valor característico de un conjunto, podemos calcular su media aritmética o promedio, que se obtiene al sumar los elementos de una muestra y dividir el resultado por el total de elementos.

El juego de ruleta posee 38 números para jugar: la probabilidad que salga el número al que se jugó es de 1/38.

CAPÍTULO 6 / TEMA 3

pROBABILIDAD

Al lanzar una moneda al aire, ¿sabemos si saldrá cara o sello? Es seguro que la moneda caerá de un lado o del otro, pero no sabemos con exactitud cuál de esas dos opciones tendrá lugar. Por eso recurrimos a la probabilidad, la cual sirve para predecir de la mejor manera si un evento es posible o no.

fENÓMENOS aleatorios y deterministas

La probabilidad surgió de la necesidad de medir o determinar cuantitativamente la certeza o duda de que un fenómeno ocurra o no. A los fenómenos predecibles se los llama determinísticos; en cambio, a los fenómenos que están relacionados con el azar se los llama aleatorios.

Fenómenos aleatorios

Son los que suceden al azar y no es posible predecir su resultado. Ejemplos:

  • Al lanzar una moneda al aire se desconoce si al caer la cara superior será sello o cara.
  • Al lanzar un dado no es posible saber cuál de todas las caras quedará en la parte superior.

Fenómenos determinísticos

Son los que suceden con seguridad; es decir, son los fenómenos que al repetirse en las mismas condiciones producen los mismos resultados. Ejemplos:

  • Al arrojar un dado, el color que se observe en la cara superior siempre será el mismo.
  • La hora de apertura de un banco es siempre la misma.

Los juegos de azar y sus probabilidades

Los juegos de azar son eventos aleatorios de los cuales no se conocen sus resultados. Pierre Fermat y Blaise Pascal estudiaron estos juegos para darles una explicación matemática. Estudiaron lo que pasaba al realizar una misma acción al azar, como lanzar una moneda al aire, y observaron los resultados. Así apareció la teoría de la probabilidad, que trata de prever cuál será el resultado de un fenómeno determinado.

FENÓMENOS ALEATORIOS

Entre los fenómenos aleatorios hay suceso que son más o menos probables. Por ejemplo:

Marta hace girar esta ruleta y no sabe qué color saldrá cuando pare.

 

  • Como hay más zonas verdes que amarillas, es más probable que salga el color verde que el color amarillo.
  • Como hay menos zonas moradas que rojas, es menos probable que salga el color morado que el color rojo.
  • Como hay igual cantidad de zonas verdes y moradas, es igual de probable que salgan ambos colores.
  • El color rojo es el más probable que salga porque hay más zonas con ese color en toda la ruleta.
  • El color amarillo es el menos probable que salga porque hay menos zonas con ese color en toda la ruleta.

 

– Otro ejemplo:

José debe sacar una bola de esta caja con los ojos cerrados.

 

  • Como hay más bolas azules que verdes, sacar una bola azul es más probable que sacar una bola verde.
  • Como hay menos bolas amarillas que azules, sacar una bola amarilla es menos probable que sacar una bola azul.
  • Como hay la misma cantidad de bolas rojas y amarillas, sacar una bola roja es igual de probable que sacar una bola amarilla.

 

pROBABILIDAD DE OCURRENCIA DE UN FENÓMENO

Podemos determinar la probabilidad de ocurrencia de un acontecimiento si dividimos el número de casos favorables entre el número de casos igualmente posibles.

\boldsymbol{probabilidad = \frac{casos\: \: favorables}{casos \: \: posibles}}

– Ejemplo:

Observa esta ruleta.

 

Tiene 10 zonas con diferentes colores:

 

  • 5 son rojas.
  • 2 son amarillas.
  • 2 son verdes.
  • 1 es morada.

 

 

Cada color tiene una probabilidad distinta de salir tras hacer girar la ruleta:

La probabilidad de que salga una el color rojo es: \boldsymbol{\frac{5}{10}}

La probabilidad de que salga el color amarillo es: \boldsymbol{\frac{2}{10}}

La probabilidad de que salga el color verde es: \boldsymbol{\frac{2}{10}}

La probabilidad de que salga el color morado es: \boldsymbol{\frac{1}{10}}

 

El color con mayor probabilidad de salir es el rojo porque \boldsymbol{\frac{5}{10}} > \boldsymbol{\frac{2}{10}} > \boldsymbol{\frac{1}{10}}

¿Sabías qué?
La probabilidad de que caiga un rayo encima de una persona es de 1 entre 3 millones.

¡Es tu turno!

  • ¿Cuál es la probabilidad de que al lanzar un dado salga un número mayor a 4?
Solución

Posibles resultados: 1, 2, 3, 4, 5 y 6 → Hay 6.

Resultados mayores a 4: 5 y 6 → Hay 2.

La probabilidad de que salga un número mayor a 4 es \boldsymbol{\frac{2}{6}}.

  • ¿Cuál es la probabilidad de que al lanzar un dado salga un número par?
Solución

Posibles resultados: 1, 2, 3, 4, 5 y 6 → Hay 6.

Resultados pares: 2, 4 y 6 → Hay 3.

La probabilidad de que salga un número par es \boldsymbol{\frac{3}{6}}.

La paradoja del cumpleaños

Esta paradoja hace la siguiente pregunta: ¿cuántas personas se necesitan como mínimo para que sea más probable que al menos 2 de ellas cumplan años el mismo día? A pesar de lo que nos indica la intuición, si mantenemos el supuesto de que los años tienen 365 días, la paradoja establece que hacen falta 23 personas para que haya una probabilidad del 50 % de que al menos 2 de ellas cumplan años el mismo día. Y resulta que si en una fiesta hay más de 57 invitados, la probabilidad de que dos personas cumplan años el mismo día es del 99 % .

media o promedio

El la media aritméticapromedio se calcula al sumar todos los datos de un conjunto para luego dividirlo entre el número total de datos. Este resultado sirve como referencia, pues se considera el valor característico de un conjunto.

– Ejemplo:

En el equipo de fútbol del colegio, las estaturas (en centímetros) de 11 jugadores son las siguientes: 150, 160, 155, 153, 156, 158, 160, 157, 162, 165 y 154. ¿Cuál es la altura promedio de lo jugadores?

La media o promedio será igual a la suma de todas las estaturas divididas entre la cantidad de jugadores.

\boldsymbol{\overline{x}= \frac{164+160+165+163+156+161+160+161+162+165+165}{11}}

\boldsymbol{\overline{x}=\frac{1.782}{11}}

\boldsymbol{\overline{x}=162}

 

Los jugadores de fútbol tienen una estatura promedio de 162 centímetros.

 

– Otro ejemplo:

José registró las temperaturas máximas durante una semana en su ciudad. Los resultados fueron estos:

Lunes Martes Miércoles Jueves Viernes Sábado Domingo
21 °C 24 °C 21 °C 18 °C 18 °C 21 °C 24 °C

¿Cuál es la temperatura promedio?

\boldsymbol{\overline{x}=\frac{21+24+21+18+18+21+24}{7}}

\boldsymbol{\overline{x}= \frac{147}{7}}

\boldsymbol{\overline{x}=21}

 

La temperatura promedio registrada fue de 21 °C.

¡A practicar!

1. Clasifica los resultados de los siguientes eventos como determinísticos o aleatorios.

a) Sacar al azar una moneda de un monedero.

Solución
Aleatorio.

b) Introducir una bolsa de té a una taza con agua hirviendo.

Solución
Determinístico.

c) Elegir un número de lotería.

Solución
Aleatorio.

d) Lanzar un dado a un tablero de juego.

Solución
Aleatorio.

 

2. Observa la ruleta.

a) Completa con “más probable”, “menos probable” o “igual de probable”.

  • Es ____ que salga la letra A que la letra C.

Solución
Es más probable que salga la letra A que la letra C.
  • Es ____ que salga la letra I que la letra A.

Solución
Es menos probable que salga la letra I que la letra A.
  • Es ____ que salga la letra U que la letra C.

Solución
Es igual de probable que salga la letra U que la letra C.
  • Es ____ que salga la letra O que la letra J.

Solución
Es más probable que salga la letra O que la letra J.
  • Es ____ que salga la letra F que la letra A.

Solución
Es menos probable que salga la letra F que la letra A.
  • Es ____ que salga la letra J que la letra F.

Solución
Es igual de probable que salga la letra J que la letra F.

 

b) Responde.

  • ¿Es probable que salga una letra?
Solución
Sí.
  • ¿Es probable que salga un número?
Solución
No.
  • ¿Cuál es la probabilidad de que salga la letra A?
Solución
\boldsymbol{\frac{3}{10}}
  • ¿Cuál es la probabilidad de que salga la letra U?
Solución
\boldsymbol{\frac{1}{10}}
  • ¿Cuál es la probabilidad de que salga la letra C?
Solución
\boldsymbol{\frac{1}{10}}
  • ¿Cuál es la probabilidad de que salga la letra O?
Solución
\boldsymbol{\frac{2}{10}}
  • ¿Cuál es la probabilidad de que salga la letra F?
Solución
\boldsymbol{\frac{1}{10}}
  • ¿Cuál es la probabilidad de que salga la letra I?
Solución
\boldsymbol{\frac{1}{10}}
  • ¿Cuál es la probabilidad de que salga la letra J?
Solución
\boldsymbol{\frac{1}{10}}

 

3. Los pesos en kilogramos de 15 amigos son: 32, 30, 27, 32, 27, 30, 27, 26, 25, 22, 25, 32, 29, 25 y 31. ¿Cuál es el peso medio de estos amigos?

Solución

\boldsymbol{\overline{x}=\frac{32+ 30+ 27+ 32+ 27+ 30+ 27+ 26+ 25+ 22+ 25+ 32+ 29+ 25+31}{15}}

\boldsymbol{\overline{x}=\frac{420}{15}}

\boldsymbol{\overline{x}=28}

El peso medio de los amigos es 28 kilogramos.

RECURSOS PARA DOCENTES

Artículo “Probabilidad”

Este recurso te permitirá complementar la información sobre probabilidad, fenómenos determinísticos y aleatorios y tipos de sucesos, entre otros temas.

VER