Los gráficos son representaciones visuales de alguna información numérica resultante de un proceso estadístico. Son muy efectivos para mostrar relaciones entre diferentes valores y permiten comprender fácilmente distintas situaciones de la realidad. Los datos disponibles de una población se presentan de tal manera que los mismos puedan ser visualizados sistemática y resumidamente. Los gráficos pueden ser de barras, circulares o lineales.
INTERPRETACIÓN DE DATOS
Los cuadros, los gráficos y las tablas nos brindan información muy valiosa sobre una población determinada. Sin embargo, cuando la cantidad de datos es muy numerosa conviene buscar un valor característico del conjunto, como las que aportan las medidas de tendencia central. La media aritmética o promedio es igual a cociente entre la suma de todos los valores entre la cantidad de valores; la moda es el valor que se presenta con mayor frecuencia; y la mediana, tal como su nombre lo indica, corresponde a un punto medio, equidistante de los extremos.
PROBABILIDAD
La probabilidad es un mecanismo matemático que nos permite estudiar sucesos aleatorios, es decir, operaciones cuyos resultados no pueden ser anticipados con seguridad, como lanzar un dado, lanzar una moneda o sacar una carta específica de un mazo. A través del cálculo de probabilidad se puede conocer cuántas posibilidades existen de que un fenómeno tenga lugar o no. A cada una de estas posibilidades se las denomina evento o suceso. El conjunto de eventos posibles constituye lo que se denomina espacio muestral.
¿QUÉ ES LA ESTADÍSTICA?
La estadística es una ciencia dentro del área de las matemáticas que se encarga de interpretar los datos obtenidos de la observación de un fenómeno en particular. Busca reunir información sobre determinados individuos o grupos, organizar datos y permitir una correcta interpretación. La finalidad de este proceso es tomar decisiones en base a las predicciones que pueden realizarse.
Si lanzas un dado, ¿cuáles son los posibles resultados? ¡6! Esto es así porque los dados tienen 6 caras; no obstante, no sabemos con certeza cuál de esos números saldrá. Esto es lo que se conoce como experimento aleatorio, y gracias a la probabilidad podemos medir la posibilidad de que este ocurra o no ocurra.
Todos los fenómenos que ocurren en nuestra vida pueden ser catalogados como deterministas o aleatorios.
Los experimentos o fenómenos deterministasson los que suceden con seguridad, es decir, al repetirlos en las mismas condiciones se obtiene el mismo resultado; por ejemplo:
El agua se congela a 0 °C.
Al multiplicar 2 × 2 el resultado es 4.
Los experimentos o fenómenos aleatoriossuceden al azar, no es posible predecir su resultado; por ejemplo:
Sacar una carta de un mazo de naipes.
Lanzar una moneda.
TIPOS DE EVENTOS aleatorios
Los eventos aleatorios pueden ser seguros, posibles o imposibles.
Los eventos imposibles no pueden ocurrir nunca; por ejemplo, lanzar un dado y que salga el número mayor a 7.
Los eventos posibles ocurren algunas veces; por ejemplo, lanzar un dado y que salga el número 3.
Los eventos seguros ocurren siempre y coinciden con el espacio muestral; por ejemplo, lanzar un dado y que salga un número menor a 7.
¿Qué es el espacio muestral?
Es el conjunto que contiene a todos los resultados posibles de un experimento aleatorio. Lo representamos con E. Se denomina “suceso elemental” a cada uno de los posibles resultados. Por ejemplo:
Experimento
Espacio muestral
Lanzar un dado
E = {1, 2, 3, 4, 5, 6}
Lanzar una moneda
E = {cara, cruz}
PROBABILIDAD DE UN EVENTO
La probabilidad de un resultado o acontecimiento es la proporción de las veces en que ocurrirán. En otras palabras, la probabilidad es el mecanismo matemático a través del cual pueden estudiarse sucesos aleatorios, es decir, operaciones cuyos resultados no pueden ser anticipados con seguridad, como el lanzamiento de un dado, la tirada de ruleta o un juego de cartas.
En los casos donde las posibilidades de obtener uno u otro resultado no son iguales, se analizan las probabilidades por medio de la definición del matemático francés Pierre de Laplace: “La probabilidad de un acontecimiento es igual al cociente entre el número de casos favorables y el número de casos igualmente posibles”.
– Ejemplo 1:
En un bolillero hay 24 bolas, 20 rojas y 4 azules, ¿cuál es la probabilidad de extraer una bola roja?,
Casos favorables
Casos posibles
Casos favorables/Casos posibles
20
24
20/24 = 5/6
La probabilidad de que salga una bola roja es de 5/6.
Podemos expresar la probabilidad como una fracción, un número decimal o porcentaje. Por lo tanto, para este caso podemos decir que:
P = 5/6
P = 0,83
P = 83,33 %
¿Sabías qué?
Para transformar la probabilidad en fracción a porcentaje basta con multiplicar el cociente entre el numerador y el denominador por 100.
– Ejemplo 2:
Al lanzar un dado, ¿cuál es la probabilidad de obtener un número mayor que 4?
Casos favorables
Casos posibles
Casos favorables/Casos posibles
2
{5, 6}
6
{1, 2, 3, 4, 5, 6}
2/6 = 1/3
La probabilidad de obtener un número mayor que 4 es de 1/3. También podemos expresarlo de la siguiente manera:
P = 1/3
P = 0,33
P = 33,33 %
Baraja francesa
Es un conjunto de cartas divididas en cuatro palos: corazones, picas, tréboles y rombos. De cada palo hay 13 cartas, por lo tanto, el mazo está formado por 52 cartas totales. Los corazones y los rombos son de color rojo, y los tréboles y las picas son de color negro. Estos naipes son ampliamente utilizados en juegos de mesa y azar. Si tuviésemos que sacar una carta del mazo sin ver tendríamos las siguientes probabilidades:
Evento
Probabilidad (fracción)
Probabilidad (número decimal)
Probabilidad (porcentaje)
Sacar una carta de corazones
13/52 = 1/4
0,25
25 %
Sacar el 4 de tréboles
1/52
0,02
2 %
Sacar una carta con dos palos
0
0
0 %
Sacar una carta roja
26/52 = 1/2
0,5
50 %
árbol de probabilidades
Los diagramas de árbol se utilizan en matemática principalmente para identificar formas de agrupar elementos o para indicar los factores que conforman un determinado número. Sin embargo, también pueden aplicarse a experimentos probabilísticos de distinto tipo en la que las formas de ordenar se llamarán “casos posibles”.
– Ejemplo:
Si lanzamos una moneda tres veces, ¿cuántos resultados posibles tendríamos?
En este diagrama de árbol observamos que hay 8 casos posibles u 8 posibles combinaciones de resultados si lanzamos una moneda tres veces.
– Ejemplo 2:
Observa de nuevo el diagrama, ¿cuál es la probabilidad de obtener tres veces cara al lanzar una moneda tres veces seguidas?
Para responder esta pregunta debemos ver todas las posibles opciones. Como solo una cumple este requerimiento y los posibles casos son 8, decimos que la probabilidad de obtener tres veces cara al lanzar una moneda tres veces seguidas es:
P = 1/8
P = 0,125
P = 12,5 %
¡A practicar!
Expresa en fracción, número decimal y porcentaje la probabilidad de que ocurran los siguientes eventos:
Lanzar un dado y que salga un número impar.
Solución
P = 3/6 = 1/2
P = 0,5
P = 50 %
Sacar una carta con número par de un grupo de 10 cartas numeradas del 1 al 10.
Solución
P = 5/10 = 1/2
P = 0,5
P = 50 %
Sacar una bola verde de una urna que tiene 3 bolas rojas, 5 bolas verdes y 3 bolas amarillas.
Solución
P= 5/11
P = 0,45
P = 45,5 %
Sacar una carta de tréboles de un mazo de baraja francesa.
Solución
P = 13/52 = 1/4
P = 0,25
P = 25 %
RECURSOS PARA DOCENTES
Artículo “Probabilidad”
Con este artículo se podrá profundizar sobre el concepto de probabilidad. Además hay algunos ejercicios para poner en práctica lo aprendido.
La recolección y conteo de datos es el procedimiento que se lleva a cabo para la obtención de información o respuesta de diferentes variables. Los datos pueden clasificarse como cualitativos cuando expresan cualidades o cuantitativos cuando expresan cantidades. Los datos cuantitativos se diferencian en continuos si tienen cualquier valor dentro de un intervalo; y discretos si solo ciertos valores están en un intervalo.
gráficos estadísticos
Los gráficos estadísticos son una herramienta fundamental para lograr la correcta interpretación de los datos recolectados, ya que ofrecen un gran recurso visual. Existen diversos tipos de estos como el gráfico de barras, el poligonal o el circular. Los elementos principales de cada uno de estos son el título, el cuerpo y la escala.
medidas de tendencia central
Las medidas de tendencia central se utilizan para poder representar una distribución de datos en un solo valor característico. Para esto puede calcularse la moda (Mo), la mediana (Md) o la media (). Estas estimaciones pueden hacerse a partir de la organización de todos los datos.
eventos y probabilidad
Los eventos aleatorios pueden ser seguros o imposibles, por ejemplo, al lanzar un moneda es seguro que saldrá cara o sello, pero es imposible que salga una tercera opción. La probabilidad de que ocurra un evento se mide al dividir la cantidad de casos favorables entre la cantidad de casos posibles, así, la probabilidad de que salga cara al lanzar una moneda es de 1/2. La probabilidad también se puede expresar como porcentaje. Por otro lado, los diagramas de Venn también nos ayudan a determinar visualmente probabilidades.
No siempre estamos seguros de los eventos que pueden ocurrir, por ejemplo, no sabemos cómo estará el clima en tres días o cuál será el resultado de lanzar un dado. Sin embargo, gracias a la probabilidad podemos estudiar las diferentes posibilidades de que un evento ocurra o no.
experimentos ALEATORIOS Y DETERMINISTAS
Los experimentos aleatorios suceden al azar y no es posible predecir su resultado; por ejemplo, al lanzar una moneda al aire desconocemos si al caer la parte superior será sello o cara. Por otro lado, los experimentos deterministas son los que suceden con seguridad, es decir, al repetirlo en las mismas condiciones se obtiene el mismo resultado; por ejemplo, el agua siempre hierve a 100 °C.
¡Es tu turno!
Indica si los siguientes fenómenos son aleatorios o deterministas.
El Sol saldrá mañana.
Solución
Determinista.
Sacar el número 2 en una bola de bingo.
Solución
Aleatorio.
La semana tiene 7 días.
Solución
Determinista.
Sacar una carta de corazones de un mazo de cartas.
Solución
Aleatorio.
eventos aleatorios
Los eventos aleatorios pueden ser imposibles o seguros. Los eventos imposibles no pueden ocurrir nunca, mientras que los eventos seguros ocurren siempre y coinciden con el espacio muestral. Por ejemplo, al lanzar un dado es seguro que salga un número igual o menor a 6, pero es imposible que salga el número 20.
¿Qué es el espacio muestral?
Es el conjunto que contiene a todos los resultados posibles de un experimento aleatorio. Lo representamos con E. Se denomina “suceso elemental” a cada uno de los posibles resultados. Por ejemplo:
Experimento
Espacio muestral
Lanzar un dado
E = {1, 2, 3, 4, 5, 6}
Lanzar una moneda
E = {cara, cruz}
¿Qué es la probabilidad?
Algunos eventos aleatorios tienen la misma probabilidad de ocurrir, como es el caso de arrojar una moneda, pues hay dos posibilidades: que salga sello o cara. Otros eventos aleatorios son más probables que otros, un ejemplo de esto sería un bolillero con 20 bolillas rojas y 4 azules, allí hay más probabilidad de extraer una azul que una roja.
La probabilidad estudia los resultados posibles de diferentes experimentos aleatorios y es una medida de la posibilidad de que un evento ocurra. Se denota con P, por ejemplo:
P(A) = probabilidad de que ocurra el evento A
La probabilidad se calcula como el cociente entre los casos favorables de que un evento ocurra y los casos posibles.
¿Sabías qué?
La probabilidad puede expresarse como una fracción, un número decimal o porcentaje. Su valor siempre estará entre 0 y 1 o 0 y 100 %.
– Ejemplo 1:
¿Cuál es la probabilidad de que salga el número 5 al lanzar un dado?
Casos favorables
Casos posibles
Casos favorables/Casos posibles
1
{5}
6
{1, 2, 3, 4, 5, 6}
1/6
La probabilidad de que salga el número 5 al lanzar un dado es de 1/6.
Podemos transformar la fracción a porcentaje si calculamos el cociente y multiplicamos por 100. Entonces, también podemos decir que la probabilidad de que salga el número 5 al lanzar un dado es de 16,66 %.
– Ejemplo 2:
¿Cuál es la probabilidad de que salga un número par al lanzar un dado?
Casos favorables
Casos posibles
Casos favorables/Casos posibles
3
{2, 4, 6}
6
{1, 2, 3, 4, 5, 6}
3/6
La probabilidad de que salga un número par al lanzar un dado es de 3/6 o de 50 %.
– Ejemplo 3:
En una bolsa hay 5 bolas blancas, 4 rojas y 3 verdes. ¿Cuál es la probabilidad de sacar una bola roja?
Casos favorables
Casos posibles
Casos favorables/Casos posibles
4
5 + 4 + 3 = 12
4/12
La probabilidad de que salga una bola roja es de 4/12 o de 33,33 %.
¿Sabías qué?
El origen de la probabilidad data del siglo XVII, cuando dos científicos intentaron encontrar una fórmula de resultados para los juegos de azar.
Bingo: un juego de azar
El bingo es un clásico y popular juego de azar. Consiste en 90 bolas (algunos tienen 75) dentro de un bombo y al menos un tablero con números aleatorios por persona. Tras introducir las bolas en el bombo una persona encargada extrae una a una las bolas y canta el número. Los jugadores deben marcar el número cantado en su tablero y al completar algún patrón ganador gritar “¡bingo!”. La probabilidad de que salga un número es de 1/90 o del 1,11 %.
Observa esta ruleta, ¿cuál es la probabilidad de que salga cada color?
Solución
Representación gráfica de eventos
Los eventos son conjuntos cuyos elementos son resultados posibles de un experimento aleatorio. Estos se pueden representar gráficamente por medio de dibujos circulares llamados diagramas de Venn.
– Ejemplo:
Tras realizar una encuesta a 30 estudiantes para saber sus preferencias respecto a su asignatura favorita, que puede ser Matemática (M) o Lengua (L), se obtuvieron los siguientes resultados: a 20 estudiantes les gusta Matemáticas; a 21 les gusta Lengua, y a 15 les gusta tanto Matemática como Lengua.
1. Consideramos cada caso como subconjuntos independientes.
2. De cada subconjunto hay un grupo de personas que también le gusta otra asignatura, así que se intersecan.
3. Restamos el valor correspondiente a quienes les gusta ambas lecturas de los valores de los subconjuntos independientes.
4. Escribimos las respuestas. La suma de todos los valores debe ser igual al total de estudiantes, de no ser así, significa que hay otros que no les gusta ninguno de los dos géneros, en este caso son 4.
¡Es tu turno!
Observa el diagrama de Venn y responde:
¿Cuántos estudiantes prefieren las dos asignaturas?
Solución
15 estudiantes.
¿Cuántos estudiantes no prefieren Matemáticas?
Solución
4 + 6 = 10 10 estudiantes.
¿Cuántos estudiantes solo prefieren Matemática?
Solución
5 estudiantes.
¿Cuántos estudiante no prefieren Matemática ni Lengua?
Solución
4 estudiantes.
RECURSOS PARA DOCENTES
Artículo “Probabilidad”
En este artículo encontrarás los fundamentos teóricos de fenómenos aleatorios y deterministas. También hay diversos ejemplos de los diferentes tipos de sucesos y ejercicios donde para poner en práctica todo lo aprendido.
La encuesta es una técnica de investigación estadística que consiste en aplicar un cuestionario a un grupo de personas para obtener información sobre un tema específico. Las preguntas en un cuestionario pueden ser abiertas cuando el encuestado tiene la libertad de dar cualquier respuesta, o cerradas cuando solo se contestan a partir de varias opciones. A través de esta herramienta se puede conocer la opinión de las personas sobre algún tema y se pueden recabar datos específicos para una investigación. Los resultados de las encuestas a menudo se representan en tablas o en gráficas.
TABLAS Y GRÁFICOS
Los datos se pueden organizar de forma más clara y ordenada a través de las tablas de frecuencia, de los gráficos de barra y de los pictogramas. Una tabla de frecuencia permite la organización de los datos de acuerdo su frecuencia respectiva, es decir, el número de veces que se repiten. Estas tablas pueden ser simples o de doble entrada si representan uno o dos conjuntos de datos respectivamente. Por otra parte, un gráfico de barra emplea barras rectangulares para representar la frecuencia de un dato. Finalmente, un pictograma es un diagrama que al igual que las tablas y los gráficos de barra, representa las frecuencias de los datos pero a través de imágenes.
PROBABILIDAD
Hay eventos en los que no se puede saber con exactitud cuál será su resultado porque dependen del azar: lanzar una moneda, sacar una carta de un mazo, lanzar un dado, etc. Estos son ejemplos de eventos aleatorios que pueden ser más, menos o igual de probables que otros. De acuerdo a la posibilidad u ocurrencia de un fenómeno podemos clasificar los eventos en seguros, cuando siempre ocurren; posibles, cuando podrían ocurrir; e imposibles, cuando nunca ocurren. A menudo practicamos juegos como piedra, papel o tijera donde podemos observar eventos aleatorios.
Lanzar un dado, sacar un número de una esfera de bingo o tomar una carta de un mazo sin ver son algunos eventos en los que no conocemos con certeza qué resultado se va a obtener. Sin embargo, gracias a la probabilidad, sí podemos conocer qué tan probable es que sucedan.
evento aleatorio
Un evento es el resultado o conjunto de resultados que pueden ocurrir en un experimento. Se dice que un evento es aleatorio cuando no es posible determinarlo con exactitud y por ello, está sujeto al azar.
En ocasiones realizamos acciones como lanzar un dado, en donde conocemos de antemano los posibles resultados que se pueden dar (1, 2, 3, 4, 5 o 6), sin embargo; no sabemos exactamente cuál de ellos va a ocurrir.
Los resultados de estas acciones son eventos aleatorios.
Por ejemplo, observa los colores de las esferas que contiene la bolsa:
Al sacar al azar una esfera de la bolsa, puede suceder que la esfera sea verde, roja, violeta o azul, pero no puede suceder que la esfera sea de color amarillo, porque no hay en la bolsa esferas de color amarillo.
Regla de Laplace
El análisis de las probabilidades fue definido por el matemático francés Pierre de Laplace, quien la definió como el cociente entre los casos favorables entre los casos posibles.
El estudio de la probabilidad es usado desde una fábrica hasta las empresas de juegos de lotería. En la ciencia, las probabilidades han tenido una importancia incalculable porque permiten realizar estimaciones de eventos en donde participa el azar.
OCURRENCIA de un suceso
Los eventos aleatorios pueden ser eventos o sucesos seguros, posibles e imposibles de que ocurran.
En un evento seguro el resultado siempre se va a dar.
En un eventoposible el resultado podría darse.
En un eventoimposible el resultado no podría darse.
Por ejemplo, observa las frutas que hay en la cesta:
Imagina que tienes los ojos vendados y tomas unas frutas, se pueden dar los diferentes tipos de eventos a continuación:
Un evento seguro es agarrar una manzana.
Un evento posible es agarrar una manzana roja.
Un evento imposible es agarrar una fresa.
Probabilidades de los eventos
Dentro de los posibles eventos podemos distinguir:
Evento igual de probable: es aquel resultado que tiene la misma probabilidad que los demás. Por ejemplo, cuando lanzamos una moneda, el evento “cara” tiene las mismas probabilidades que el evento “cruz”.
Evento muy probable: es aquel resultado que tiene muchas probabilidades de darse. Por ejemplo, en una caja con 10 tarjetas, 9 de color amarillo y 1 de color rojo, el evento “sacar una tarjeta amarilla” tiene muchas probabilidades de ocurrir.
Evento poco probable: es aquel resultado que tiene muy pocas probabilidades de darse. Por ejemplo, en una caja con 10 tarjetas, 9 de color azul y 1 de color verde, el suceso “sacar una tarjeta verde” tiene pocas probabilidades de ocurrir.
¿Sabías qué?
Si reúnes 23 personas al azar es muy probable que una ellas cumpla el mismo día que tú.
juegos aleatorios
Juego de los dados
En este juego participan dos personas, las reglas son muy sencillas: cada jugador tira un dado y el jugador con la puntuación más alta gana.
La probabilidad de victoria es la misma para cada uno de los jugadores.
Para visualizarlo, imaginemos que el dado de un jugador es de color azul y el del oponente verde. Esto nos permite representar de un modo muy visual los 36 posibles desenlaces de una mano. Representamos en azul las victorias del dado azul y en verde las victorias del dado verde, y en blanco los empates. Observa:
Observamos que de los 36 posibles desenlaces 15 son victorias azules y 15 victorias verdes. Es decir, la probabilidad de que gane cada uno de los jugadores es la misma (15/36) y por lo tanto, ninguno tiene ventaja.
Pares o nones
Este es un juego que se utiliza para elegir entre dos personas a una de las dos, mediante un evento aleatorio: uno de los jugadores escoge “pares” y el otro “nones”, cada uno representa un número del 1 al 5 con una mano en la espalda, cuentan hasta tres y la sacan con cualquier número de dedos extendidos
Podemos representar datos en gráficos y tablas. Los gráfico de barras se utilizan para representar información numérica en un sistema de ejes coordenados: en el eje horizontal ubicamos las categorías y en el eje vertical los datos numéricos. Otro tipo de gráfico es el lineal, el cual sirve para comparar datos, representar la frecuencia de ciertas variables y mostrar la evolución o cambios que le ocurren a un fenómeno. También están los gráficos circulares que representan variables cualitativas por medio de porcentajes y porciones. Por otro lado están los pictogramas que se construyen igual que el diagrama de barras pero se sustituyen los rectángulos por dibujos.
cOMBINACIONES
Las combinaciones son una forma de agrupar elementos de un conjunto sin importar el orden. Por ejemplo, cada vez que nos vestimos hacemos combinaciones de camisas, pantalones y zapatos. Las tablas de dobleentrada permiten analizar los datos y combinarlos de todas las maneras posibles. Para resolver algunos problemas combinatorios también es posible utilizar los diagramas de árbol que permiten visualizar todas las formas posibles de combinar todos los elementos.
probabilidad
La probabilidad sirve para predecir de la mejor manera si un suceso puede ocurrir o no. A los fenómenos predecibles se los llama determinísticos; a los que no se pueden predecir, se los denomina aleatorios. Algunos fenómenos aleatorios pueden ser mas probables que otros, y esta probabilidad puede ser calculada matemáticamente. Por otra parte, si deseamos saber el valor característico de un conjunto, podemos calcular su media aritmética o promedio, que se obtiene al sumar los elementos de una muestra y dividir el resultado por el total de elementos.
Al lanzar una moneda al aire, ¿sabemos si saldrá cara o sello? Es seguro que la moneda caerá de un lado o del otro, pero no sabemos con exactitud cuál de esas dos opciones tendrá lugar. Por eso recurrimos a la probabilidad, la cual sirve para predecir de la mejor manera si un evento es posible o no.
fENÓMENOS aleatorios y deterministas
La probabilidad surgió de la necesidad de medir o determinar cuantitativamente la certeza o duda de que un fenómeno ocurra o no. A los fenómenos predecibles se los llama determinísticos; en cambio, a los fenómenos que están relacionados con el azar se los llama aleatorios.
Fenómenos aleatorios
Son los que suceden al azar y no es posible predecir su resultado. Ejemplos:
Al lanzar una moneda al aire se desconoce si al caer la cara superior será sello o cara.
Al lanzar un dado no es posible saber cuál de todas las caras quedará en la parte superior.
Fenómenos determinísticos
Son los que suceden con seguridad; es decir, son los fenómenos que al repetirse en las mismas condiciones producen los mismos resultados. Ejemplos:
Al arrojar un dado, el color que se observe en la cara superior siempre será el mismo.
La hora de apertura de un banco es siempre la misma.
Los juegos de azar y sus probabilidades
Los juegos de azar son eventos aleatorios de los cuales no se conocen sus resultados. Pierre Fermat y Blaise Pascal estudiaron estos juegos para darles una explicación matemática. Estudiaron lo que pasaba al realizar una misma acción al azar, como lanzar una moneda al aire, y observaron los resultados. Así apareció la teoría de la probabilidad, que trata de prever cuál será el resultado de un fenómeno determinado.
FENÓMENOS ALEATORIOS
Entre los fenómenos aleatorios hay suceso que son más o menos probables. Por ejemplo:
Marta hace girar esta ruleta y no sabe qué color saldrá cuando pare.
Como hay más zonas verdes que amarillas, es más probable que salga el color verde que el color amarillo.
Como hay menos zonas moradas que rojas, es menos probable que salga el color morado que el color rojo.
Como hay igual cantidad de zonas verdes y moradas, es igual de probable que salgan ambos colores.
El color rojo es el más probable que salga porque hay más zonas con ese color en toda la ruleta.
El color amarillo es el menos probable que salga porque hay menos zonas con ese color en toda la ruleta.
– Otro ejemplo:
José debe sacar una bola de esta caja con los ojos cerrados.
Como hay más bolas azules que verdes, sacar una bola azul es más probable que sacar una bola verde.
Como hay menos bolas amarillas que azules, sacar una bola amarilla es menos probable que sacar una bola azul.
Como hay la misma cantidad de bolas rojas y amarillas, sacar una bola roja es igual de probable que sacar una bola amarilla.
pROBABILIDAD DE OCURRENCIA DE UN FENÓMENO
Podemos determinar la probabilidad de ocurrencia de un acontecimiento si dividimos el número de casos favorables entre el número de casos igualmente posibles.
– Ejemplo:
Observa esta ruleta.
Tiene 10 zonas con diferentes colores:
5 son rojas.
2 son amarillas.
2 son verdes.
1 es morada.
Cada color tiene una probabilidad distinta de salir tras hacer girar la ruleta:
La probabilidad de que salga una el color rojo es:
La probabilidad de que salga el color amarillo es:
La probabilidad de que salga el color verde es:
La probabilidad de que salga el colormorado es:
El color con mayor probabilidad de salir es el rojo porque > >
¿Sabías qué?
La probabilidad de que caiga un rayo encima de una persona es de 1 entre 3 millones.
¡Es tu turno!
¿Cuál es la probabilidad de que al lanzar un dado salga un número mayor a 4?
Solución
Posibles resultados: 1, 2, 3, 4, 5 y 6 → Hay 6.
Resultados mayores a 4: 5 y 6 → Hay 2.
La probabilidad de que salga un número mayor a 4 es .
¿Cuál es la probabilidad de que al lanzar un dado salga un número par?
Solución
Posibles resultados: 1, 2, 3, 4, 5 y 6 → Hay 6.
Resultados pares: 2, 4 y 6 → Hay 3.
La probabilidad de que salga un número par es .
La paradoja del cumpleaños
Esta paradoja hace la siguiente pregunta: ¿cuántas personas se necesitan como mínimo para que sea más probable que al menos 2 de ellas cumplan años el mismo día? A pesar de lo que nos indica la intuición, si mantenemos el supuesto de que los años tienen 365 días, la paradoja establece que hacen falta 23 personas para que haya una probabilidad del 50 % de que al menos 2 de ellas cumplan años el mismo día. Y resulta que si en una fiesta hay más de 57 invitados, la probabilidad de que dos personas cumplan años el mismo día es del 99 % .
media o promedio
El la media aritmética o promedio se calcula al sumar todos los datos de un conjunto para luego dividirlo entre el número total de datos. Este resultado sirve como referencia, pues se considera el valor característico de un conjunto.
– Ejemplo:
En el equipo de fútbol del colegio, las estaturas (en centímetros) de 11 jugadores son las siguientes: 150, 160, 155, 153, 156, 158, 160, 157, 162, 165 y 154. ¿Cuál es la altura promedio de lo jugadores?
La media o promedio será igual a la suma de todas las estaturas divididas entre la cantidad de jugadores.
Los jugadores de fútbol tienen una estatura promedio de 162 centímetros.
– Otro ejemplo:
José registró las temperaturas máximas durante una semana en su ciudad. Los resultados fueron estos:
Lunes
Martes
Miércoles
Jueves
Viernes
Sábado
Domingo
21 °C
24 °C
21 °C
18 °C
18 °C
21 °C
24 °C
¿Cuál es la temperatura promedio?
La temperatura promedio registrada fue de 21 °C.
¡A practicar!
1. Clasifica los resultados de los siguientes eventos como determinísticos o aleatorios.
a) Sacar al azar una moneda de un monedero.
Solución
Aleatorio.
b) Introducir una bolsa de té a una taza con agua hirviendo.
Solución
Determinístico.
c) Elegir un número de lotería.
Solución
Aleatorio.
d) Lanzar un dado a un tablero de juego.
Solución
Aleatorio.
2. Observa la ruleta.
a) Completa con “más probable”, “menos probable” o “igual de probable”.
Es ____ que salga la letra A que la letra C.
Solución
Es más probable que salga la letra A que la letra C.
Es ____ que salga la letra I que la letra A.
Solución
Es menos probable que salga la letra I que la letra A.
Es ____ que salga la letra U que la letra C.
Solución
Es igual de probable que salga la letra U que la letra C.
Es ____ que salga la letra O que la letra J.
Solución
Es más probable que salga la letra O que la letra J.
Es ____ que salga la letra F que la letra A.
Solución
Es menos probable que salga la letra F que la letra A.
Es ____ que salga la letra J que la letra F.
Solución
Es igual de probable que salga la letra J que la letra F.
b) Responde.
¿Es probable que salga una letra?
Solución
Sí.
¿Es probable que salga un número?
Solución
No.
¿Cuál es la probabilidad de que salga la letra A?
Solución
¿Cuál es la probabilidad de que salga la letra U?
Solución
¿Cuál es la probabilidad de que salga la letra C?
Solución
¿Cuál es la probabilidad de que salga la letra O?
Solución
¿Cuál es la probabilidad de que salga la letra F?
Solución
¿Cuál es la probabilidad de que salga la letra I?
Solución
¿Cuál es la probabilidad de que salga la letra J?
Solución
3. Los pesos en kilogramos de 15 amigos son: 32, 30, 27, 32, 27, 30, 27, 26, 25, 22, 25, 32, 29, 25 y 31. ¿Cuál es el peso medio de estos amigos?
Solución
El peso medio de los amigos es 28 kilogramos.
RECURSOS PARA DOCENTES
Artículo “Probabilidad”
Este recurso te permitirá complementar la información sobre probabilidad, fenómenos determinísticos y aleatorios y tipos de sucesos, entre otros temas.
EL SER HUMANO SIEMPRE HA INTENTADO COMUNICARSE A TRAVÉS DE PINTURAS EN CAVERNAS O CON TALLADOS EN METALES Y MADERA. HOY DÍA TAMBIÉN LO HACEMOS Y EXPRESAMOS NUESTROS SENTIMIENTOS O DESEOS POR MEDIO DE IMÁGENES, COSA QUE LLAMAMOS “PICTOGRAMAS“. ESTOS PICTOGRAMAS SON USADOS EN SEÑALES DE TRÁNSITO, CARTELES PUBLICITARIOS, HISTORIETAS, AVISOS Y GRÁFICOS DE DE INFORMACIÓN QUE PUEDEN SER ENTENDIDOS POR TODAS LAS PERSONAS DEL MUNDO DE FORMA CLARA.
TABLAS
LOS DATOS RECOLECTADOS TRAS UNA ENCUESTA PUEDEN ORGANIZARSE EN UNA TABLA. UNA TABLA ES UN CUADRO FORMADO POR FILAS, COLUMNAS Y CELDAS. LAS COLUMNAS SON LAS HILERAS VERTICALES, LAS FILAS SON LAS HILERAS HORIZONTALES Y LAS CELDAS RESULTAN DE LA UNIÓN ENTRE UNA FILA Y UNA COLUMNA. PUEDEN HACERSE CON NÚMEROS, CON PICTOGRAMAS Y CON MÁS DE DOS DATOS.
GRÁFICO DE BARRAS
LOS GRÁFICOS DE BARRAS MUESTRAN CON RECTÁNGULOS UNA INFORMACIÓN. ESTOS GRÁFICOS EXPRESAN A TRAVÉS DE BARRAS EL VALOR DE UNA CATEGORÍA Y SON MUY ÚTILES PARA VER DE FORMA RÁPIDA CUÁL TIENE UN MAYOR VALOR O UN MENOR VALOR. PARA REALIZARLO EN NECESARIO QUE PRIMERO ORGANICEMOS LOS DATOS EN UNA TABLA.
PROBABILIDAD
LA PROBABILIDAD ESTUDIA LA POSIBILIDAD DE QUE UN EVENTO OCURRA O NO. POR EJEMPLO, SI LANZAMOS UN PAR DE DADOS NO SABEMOS CON SEGURIDAD QUÉ NÚMERO SALDRÁ, PERO SÍ SABEMOS QUE SALDRÁ EN CADA UNO UN NÚMERO MENOR A 7. ESTOS SON SUCESOS ALEATORIOS EN LOS QUE INTERVIENE EL AZAR, ES DECIR, QUE NO PODEMOS PREDECIR.
¿ALGUNA VEZ HAS LANZADO UN DADO? ¿SIEMPRE SABES QUE NÚMERO SALDRÁ? ¡NO! ¿VERDAD? AUNQUE SABES QUE PUEDE SALIR UN NÚMERO DEL 1 AL 6 NO TIENES SEGURIDAD DE CUÁL DE ESOS NÚMEROS SERÁ. GRACIAS A LA PROBABILIDAD PODEMOS CALCULAR LA CANTIDAD DE VECES QUE UN EVENTO ALEATORIO COMO ESTE PUEDE OCURRIR O NO.
evento ALEATORIO
UN EVENTO ALEATORIO ES AQUEL QUE PUEDE OCURRIR O NO PUEDE OCURRIR Y EN EL QUE INTERVIENE EL AZAR. ES DECIR, QUE SI REPETIMOS EL MISMO EL EVENTO PODEMOS TENER SIEMPRE DISTINTOS RESULTADOS.
– EJEMPLOS:
LANZAR UNA MONEDA.
LANZAR UN DADO.
ELEGIR UNA CARTA DE UN MAZO.
SACAR UN CARAMELO ROJO DE UNA BOLSA CON CARAMELOS DE MÚLTIPLES COLORES.
COMO VES, NO PODEMOS PREDECIR EL RESULTADO DE ESTOS EVENTOS.
sucesos posibles
OBSERVA ESTAS BOLSAS CON BOLAS DE COLORES. SI SACAMOS UNA BOLA CON LOS OJOS CERRADOS NO SABRÍAMOS DE QUÉ COLOR SALDRÍA LA BOLA. SIN EMBARGO, PODEMOS PREDECIR QUÉ TAN PROBABLE ES QUE SAQUEMOS UN COLOR U OTRO.
– EJEMPLO:
NOTA QUE:
HAY 2 BOLAS ROJAS.
HAY 10 BOLAS AMARILLAS.
HAY MÁS BOLAS DE COLOR AMARILLO, ASÍ QUE:
ES MÁS PROBABLE QUE SAQUEMOS UNA BOLA DE COLOR AMARILLO.
NOTA QUE:
HAY 6 BOLAS ROJAS.
HAY 6 BOLAS AMARILLAS.
HAY IGUAL CANTIDAD DE BOLAS DE COLOR ROJO Y AMARILLO, ASÍ QUE:
ES IGUAL DE PROBABLE QUE SAQUEMOS UNA BOLA DE COLOR AMARILLO O DE COLOR ROJO.
NOTA QUE:
HAY 10 BOLAS ROJAS.
HAY 2 BOLAS AMARILLAS.
HAY MENOS BOLAS DE COLOR AMARILLO, ASÍ QUE:
ES MENOS PROBABLE QUE SAQUEMOS UNA BOLA DE COLOR AMARILLO.
SEGURO, PROBABLE O IMPOSIBLE
LOS SUCESOS SON CADA UNO DE LOS RESULTADOS POSIBLES DE UN EVENTO ALEATORIO. ESTOS PUEDEN SER SEGUROS, PROBABLES O IMPOSIBLES.
LOS SUCESOS SEGUROS OCURREN SIEMPRE.
LOS SUCESOS PROBABLES OCURREN A VECES.
LOS SUCESOS IMPOSIBLES NO OCURREN NUNCA.
– EJEMPLO:
ES SEGUROSACAR UNA BOLA AMARILLA.
ES PROBABLE SACAR UNA BOLA VERDE.
ES IMPOSIBLESACAR UNA BOLA AZUL.
¿SABÍAS QUÉ?
LOS SUCESOS QUE OCURREN CON SEGURIDAD SE LLAMAN “SUCESOS DETERMINISTAS”, POR EJEMPLO, LA HORA EN LA QUE ABRE UN BANCO SIEMPRE ES LA MISMA.
RECOPILACIÓN DE DATOS
TODOS LOS DATOS PUEDEN ORGANIZARSE EN UNA TABLA, EN UNA TABLA DE PICTOGRAMAS O EN UN GRÁFICO DE BARRAS. POR EJEMPLO, SI QUEREMOS ORGANIZAR LOS BLOQUES PARA JUGAR POR COLOR TENEMOS QUE CONTAR UNO POR UNO Y HACER GRUPOS DE COLORES. LUEGO LOS REPRESENTAMOS. POR EJEMPLO:
TABLA
COLOR DEL BLOQUE
CANTIDAD DE BLOQUES
AMARILLO
16
AZUL
28
ROJO
32
VERDE
20
TABLA DE PICTOGRAMA
COLOR DEL BLOQUE
CANTIDAD DE BLOQUES
AMARILLO
AZUL
ROJO
VERDE
CLAVE
= 4 BLOQUES
GRÁFICO DE BARRAS
NOTA QUE TANTO LA TABLA, COMO LA TABLA DE PICTOGRAMAS Y EL GRÁFICO DE BARRAS REPRESENTAN LOS MISMOS DATOS.
¡A PRACTICAR!
COMPLETA CON “SEGURO”, “PROBABLE” O “IMPOSIBLE” LAS SIGUIENTES ORACIONES.
ES ____ LANZAR UN DADO Y QUE SALGA EL NÚMERO 7.
SOLUCIÓN
IMPOSIBLE
ES ____ LANZAR UNA MONEDA Y QUE SALGA CARA.
SOLUCIÓN
PROBABLE
ES ____ LANZAR UN DADO Y QUE SALGA UN NÚMERO MENOR A 7.
SOLUCIÓN
SEGURO
2. OBSERVA ESTA RULETA. LUEGO RESPONDE LAS PREGUNTAS.
¿CUÁNTAS ZONAS ROJAS HAY?
SOLUCIÓN
3
¿CUÁNTAS ZONAS VERDES HAY?
SOLUCIÓN
2
¿CUÁNTAS ZONAS MORADAS HAY?
SOLUCIÓN
2
¿CUÁNTAS ZONAS AMARILLAS HAY?
SOLUCIÓN
1
¿CUÁL COLOR ES MÁS PROBABLE QUE SALGA LUEGO DE GIRAR LA RULETA?
SOLUCIÓN
EL ROJO.
¿CUÁL COLOR ES MENOS PROBABLE QUE SALGA LUEGO DE GIRAR LA RULETA?
SOLUCIÓN
EL AMARILLO.
¿CUÁLES COLORES TIENEN IGUAL PROBABILIDAD DE SALIR LUEGO DE GIRAR LA RULETA?
SOLUCIÓN
EL VERDE Y EL MORADO.
RECURSOS PARA DOCENTES
Artículo “Probabilidad”
Este artículo servirá de ayuda para profundizar sobre los conceptos básicos de la probabilidad.