CAPÍTULO 6 / TEMA 5 (REVISIÓN)

estadística y probabilidad | ¿qué aprendimos?

REPRESENTACIÓN GRÁFICA DE DATOS

Los gráficos son representaciones visuales de alguna información numérica resultante de un proceso estadístico. Son muy efectivos para mostrar relaciones entre diferentes valores y permiten comprender fácilmente distintas situaciones de la realidad. Los datos disponibles de una población se presentan de tal manera que los mismos puedan ser visualizados sistemática y resumidamente. Los gráficos pueden ser de barras, circulares o lineales.

Los gráficos son una gran herramienta visual, porque captan la atención, dan información puntual de los datos y permiten una comparación eficaz.

INTERPRETACIÓN DE DATOS

Los cuadros, los gráficos y las tablas nos brindan información muy valiosa sobre una población determinada. Sin embargo, cuando la cantidad de datos es muy numerosa conviene buscar un valor característico del conjunto, como las que aportan las medidas de tendencia central. La media aritmética o promedio es igual a cociente entre la suma de todos los valores entre la cantidad de valores; la moda es el valor que se presenta con mayor frecuencia; y la mediana, tal como su nombre lo indica, corresponde a un punto medio, equidistante de los extremos.

Un conjunto de datos sin el análisis adecuado solo son valores o números. Requieren de lectura e interpretación adecuada para volverse útiles.

PROBABILIDAD

La probabilidad es un mecanismo matemático que nos permite estudiar sucesos aleatorios, es decir, operaciones cuyos resultados no pueden ser anticipados con seguridad, como lanzar un dado, lanzar una moneda o sacar una carta específica de un mazo. A través del cálculo de probabilidad se puede conocer cuántas posibilidades existen de que un fenómeno tenga lugar o no. A cada una de estas posibilidades se las denomina evento o suceso. El conjunto de eventos posibles constituye lo que se denomina espacio muestral.

Las probabilidades no predicen el futuro, únicamente valoran las diferentes posibilidades de un evento. Esta valoración es producto de un cálculo matemático que va de 0 (imposible) a 1 (totalmente posible).

¿QUÉ ES LA ESTADÍSTICA?

La estadística es una ciencia dentro del área de las matemáticas que se encarga de interpretar los datos obtenidos de la observación de un fenómeno en particular. Busca reunir información sobre determinados individuos o grupos, organizar datos y permitir una correcta interpretación. La finalidad de este proceso es tomar decisiones en base a las predicciones que pueden realizarse.

Los procedimientos estadísticos se hacen sobre el total de una población o sobre una muestra. Por ejemplo, cuando nos hacen un análisis de sangre no toman toda nuestra sangre, solo un poco de esta, es decir, una muestra.

CAPÍTULO 6 / TEMA 4

¿QUÉ ES LA ESTADÍSTICA?

Probablemente has pensado cómo se determina, por ejemplo, la magnitud de un grupo con ciertos ideales religiosos o el porcentaje de mujeres en una población. Existen una serie de procedimientos para recolectar datos, analizarlos y generar conclusiones y así dar respuesta a estos interrogantes. La ciencia que se encarga de ello es la estadística.

La estadística se encarga de interpretar los datos obtenidos de la observación de un fenómeno en particular. Esta reúne información sobre determinados individuos o grupos y organiza dichos datos para interpretarlos de forma clara y rápida. La finalidad de este proceso es lograr tomar decisiones en base a las predicciones que pueden realizarse.

¿Sabías qué?
La estadística nació por la necesidad de analizar los datos del Estado, de allí su nombre, que significa “ciencia del Estado”.

LA ESTADÍSTICA Y SU ramas

La estadística es una rama de las matemáticas que se ocupa de reunir y organizar datos relacionados con fenómenos colectivos. Estudia características o propiedades de los individuos, objetos o acontecimientos que integran un conjunto determinado que se denomina genéricamente “población”.

La utilización de procedimientos estadísticos tiene gran difusión. El campo de estudio de la estadística es realmente amplio, va desde fenómenos como las características biológicas o sociológicas de un conjunto de individuos, hasta fenómenos físicos, de producción, de calidad de vida o de tamaño de una población.

En estadística se puede definir la medición como un procedimiento para asignar un número a cada uno de los miembros de la población estudiada, de acuerdo con unas reglas determinadas. Según esto, una variable estadística será cualquier característica de los miembros de una población a la que se le pueda asignar valores por medio de la medición.

 

Ramas de la estadística

La estadística se divide en dos áreas que van de la mano: la estadística descriptiva y la estadística inferencial.

  • La estadística descriptiva se encarga de describir y resumir de manera cuantitativa las características o propiedades una población. Es común que se empleen medidas de tendencia central como la media aritmética, la mediana o la moda. Por lo general, la estadística descriptiva es la primera parte realizada cuando hacemos un análisis estadístico.
  • La estadística inferencial se caracteriza por usar la inducción y la inferencia, es decir, además de recolectar y resumir datos, trata de deducir y explicar las propiedades de una población. Involucra la obtención de conclusiones correctas.

¿QUÉ PROFESIONES APLICAN LA ESTADÍSTICA?

La aplicación de la estadística es universal y puede encontrarse en casi cualquier campo científico, algunos de los más comunes son los siguientes:

  • En las Ciencias Naturales, para describir modelos termodinámicos, variables biológicas y sistemas químicos.
  • En las Ciencias Sociales, para analizar información relacionada con la demografía y la sociología. Así como, recopilar datos para establecer relaciones entre variables macro y microeconómicas.
  • En la Medicina, para conocer el desarrollo y la evolución de diferentes enfermedades, así como los índices de mortalidad relacionados a distintos proceso o qué tan eficaz es un medicamento.

¿Sabías qué?
La palabra “demografía” viene del griego demos que significa “pueblo” y grafía que significa “trazo” o “descripción”.

Demografía: estudio estadístico de la población humana

La demografía es una ciencia que se encarga de estudiar las poblaciones humanas y sus características, como la estructura, evolución y dimensión, desde una perspectiva cuantitativa. Esta ciencia analiza a través de patrones estadísticos la dinámica poblacional y las leyes que rigen los fenómenos demográficos. Algunos fenómenos demográficos son la fecundidad, la natalidad, la mortalidad y la migración.

USOS DE LA ESTADÍSTICA

La importancia de la estadística radica en sus múltiples y significativos usos, que van desde la resolución de problemas hasta la toma de decisiones. Por medio de las operaciones estadísticas es posible lograr comprender el comportamiento de unos datos que representan una realidad cotidiana.

Por ejemplo, si vendimos helados durante cuatro semanas y queremos saber las ventas totales y cuáles son los sabores más vendidos, podemos registrar los datos en una tabla como esta:

Chocolate Fresa Vainilla Total
1 10 8 12 30
2 20 15 20 55
3 15 10 10 35
4 25 20 15 60
Total 70 53 57 180

Luego graficamos:

De este gráfico podemos concluir que el sabor de helado más vendido en la segunda y cuarta semana fue el de chocolate, y el menos vendido en el primera, segunda y tercera semana fue el de fresa.

¡Es tu turno!

Observa la tabla y la gráfica anterior. Responde.

  • ¿Cuántos helados en total se vendieron la primera semana?
    Solución
    30
  • ¿Cuántos helados en total se vendieron la segunda semana?
    Solución
    55
  • ¿Cuántos helados en total se vendieron la tercera semana?
    Solución
    35
  • ¿Cuántos helados en total se vendieron la cuarta semana?
    Solución
    60
  • ¿Cuántos helados de chocolate se vendieron en las cuatros semanas?
    Solución
    70
  • ¿Cuántos helados de fresa se vendieron en las cuatro semanas?
    Solución
    53
  • ¿Cuántos helados de vainilla se vendieron en las cuatro semanas?
    Solución
    57
  • ¿Cuántos helados se vendieron en las cuatro semanas? 
    Solución
    180
  • ¿En cuál semana se vendieron más helados?
    Solución
    En la cuarta semana.
  • ¿En cuál semana se vendieron menos helados?
    Solución
    En la primera semana.
  • ¿Cuál fue el sabor de helado más vendido?
    Solución
    Chocolate.
  • ¿Cuál fue el sabor de helado menos vendido?
    Solución
    Fresa.
RECURSOS PARA DOCENTES

Artículo “La estadística”

En el siguiente artículo podrás encontrar los concepto básicos de la estadística.

VER

CAPÍTULO 6 / TEMA 3

PROBABILIDAD

Si lanzas un dado, ¿cuáles son los posibles resultados? ¡6! Esto es así porque los dados tienen 6 caras; no obstante, no sabemos con certeza cuál de esos números saldrá. Esto es lo que se conoce como experimento aleatorio, y gracias a la probabilidad podemos medir la posibilidad de que este ocurra o no ocurra.

Los juegos de azar son aquellos cuyo resultado es aleatorio y dependen principalmente de la casualidad, sin que la habilidad del jugador sea un factor importante. La mayoría de estos involucra apuestas y mientras menor sea la probabilidad de ganar, mayor será el premio obtenido. El bingo, la ruleta y las quinielas son algunos ejemplos de juegos de azar.

VER INFOGRAFÍA

experimento determinista y aleatorio

Todos los fenómenos que ocurren en nuestra vida pueden ser catalogados como deterministas o aleatorios.

Los experimentos o fenómenos deterministas son los que suceden con seguridad, es decir, al repetirlos en las mismas condiciones se obtiene el mismo resultado; por ejemplo:

  • El agua se congela a 0 °C.
  • Al multiplicar 2 × 2 el resultado es 4.

Los experimentos o fenómenos aleatorios suceden al azar, no es posible predecir su resultado; por ejemplo:

  • Sacar una carta de un mazo de naipes.
  • Lanzar una moneda.
Lanzar un dado es un experimento aleatorio que podrías analizar por medio de cálculos de probabilidad. Aquí las variables aleatorias pueden tomar dos o más valores que no se pueden anticipar con certeza. Por ejemplo, al arrojar un dado los posibles resultados son 1, 2, 3, 4, 5 y 6. Sabemos qué valores pueden salir, pero no podemos asegurar cuál de ellos será.

TIPOS DE EVENTOS aleatorios

Los eventos aleatorios pueden ser seguros, posiblesimposibles. 

  • Los eventos imposibles no pueden ocurrir nunca; por ejemplo, lanzar un dado y que salga el número mayor a 7.
  • Los eventos posibles ocurren algunas veces; por ejemplo, lanzar un dado y que salga el número 3.
  • Los eventos seguros ocurren siempre y coinciden con el espacio muestral; por ejemplo, lanzar un dado y que salga un número menor a 7.

¿Qué es el espacio muestral?

Es el conjunto que contiene a todos los resultados posibles de un experimento aleatorio. Lo representamos con E. Se denomina “suceso elemental” a cada uno de los posibles resultados. Por ejemplo:

Experimento Espacio muestral
Lanzar un dado E = {1, 2, 3, 4, 5, 6}
Lanzar una moneda E = {cara, cruz}

PROBABILIDAD DE UN EVENTO

La probabilidad de un resultado o acontecimiento es la proporción de las veces en que ocurrirán. En otras palabras, la probabilidad es el mecanismo matemático a través del cual pueden estudiarse sucesos aleatorios, es decir, operaciones cuyos resultados no pueden ser anticipados con seguridad, como el lanzamiento de un dado, la tirada de ruleta o un juego de cartas.

En los casos donde las posibilidades de obtener uno u otro resultado no son iguales, se analizan las probabilidades por medio de la definición del matemático francés Pierre de Laplace: La probabilidad de un acontecimiento es igual al cociente entre el número de casos favorables y el número de casos igualmente posibles”.

P=\frac{casos \: favorables}{casos\: posibles}

– Ejemplo 1:

En un bolillero hay 24 bolas, 20 rojas y 4 azules, ¿cuál es la probabilidad de extraer una bola roja?,

Casos favorables Casos posibles Casos favorables/Casos posibles
20 24 20/24 = 5/6

La probabilidad de que salga una bola roja es de 5/6.

Podemos expresar la probabilidad como una fracción, un número decimal o porcentaje. Por lo tanto, para este caso podemos decir que:

P = 5/6

P = 0,83

P = 83,33 %

¿Sabías qué?
Para transformar la probabilidad en fracción a porcentaje basta con multiplicar el cociente entre el numerador y el denominador por 100.

– Ejemplo 2:

Al lanzar un dado, ¿cuál es la probabilidad de obtener un número mayor que 4?

Casos favorables Casos posibles Casos favorables/Casos posibles
2

{5, 6}

6

{1, 2, 3, 4, 5, 6}

2/6 = 1/3

La probabilidad de obtener un número mayor que 4 es de 1/3. También podemos expresarlo de la siguiente manera:

P = 1/3

P = 0,33

P = 33,33 %

Baraja francesa

Es un conjunto de cartas divididas en cuatro palos: corazones, picas, tréboles y rombos. De cada palo hay 13 cartas, por lo tanto, el mazo está formado por 52 cartas totales. Los corazones y los rombos son de color rojo, y los tréboles y las picas son de color negro. Estos naipes son ampliamente utilizados en juegos de mesa y azar. Si tuviésemos que sacar una carta del mazo sin ver tendríamos las siguientes probabilidades:

Evento Probabilidad (fracción) Probabilidad (número decimal) Probabilidad (porcentaje)
Sacar una carta de corazones 13/52 = 1/4 0,25 25 %
Sacar el 4 de tréboles 1/52 0,02 2 %
Sacar una carta con dos palos 0 0 0 %
Sacar una carta roja 26/52 = 1/2 0,5 50 %

árbol de probabilidades

Los diagramas de árbol se utilizan en matemática principalmente para identificar formas de agrupar elementos o para indicar los factores que conforman un determinado número. Sin embargo, también pueden aplicarse a experimentos probabilísticos de distinto tipo en la que las formas de ordenar se llamarán “casos posibles”.

– Ejemplo:

Si lanzamos una moneda tres veces, ¿cuántos resultados posibles tendríamos?

En este diagrama de árbol observamos que hay 8 casos posibles u 8 posibles combinaciones de resultados si lanzamos una moneda tres veces.

– Ejemplo 2:

Observa de nuevo el diagrama, ¿cuál es la probabilidad de obtener tres veces cara al lanzar una moneda tres veces seguidas?

Para responder esta pregunta debemos ver todas las posibles opciones. Como solo una cumple este requerimiento y los posibles casos son 8, decimos que la probabilidad de obtener tres veces cara al lanzar una moneda tres veces seguidas es:

P = 1/8

P = 0,125

P = 12,5 %

¡A practicar!

Expresa en fracción, número decimal y porcentaje la probabilidad de que ocurran los siguientes eventos:

  • Lanzar un dado y que salga un número impar.
Solución

P = 3/6 = 1/2

P = 0,5

P = 50 %

  • Sacar una carta con número par de un grupo de 10 cartas numeradas del 1 al 10.
Solución

P = 5/10 = 1/2

P = 0,5

P = 50 %

  • Sacar una bola verde de una urna que tiene 3 bolas rojas, 5 bolas verdes y 3 bolas amarillas.
Solución

P= 5/11

P = 0,45

P = 45,5 %

  • Sacar una carta de tréboles de un mazo de baraja francesa.
Solución

P = 13/52 = 1/4

P = 0,25

P = 25 %

RECURSOS PARA DOCENTES

Artículo “Probabilidad”

Con este artículo se podrá profundizar sobre el concepto de probabilidad. Además hay algunos ejercicios para poner en práctica lo aprendido.

VER

CAPÍTULO 6 / TEMA 2

INTERPRETACIÓN DE DATOS

Existen diversas maneras de recopilar datos, por ejemplo, en un censo demográfico se hacen encuestas a nivel nacional para saber el tamaño de la población y composición del hogar. Cuando la cantidad de datos es numerosa, necesitamos un valor que sea característico de ese conjunto, para eso empleamos la media, la moda y la mediana.

Las medidas de tendencia central también son llamadas medidas de posición o de centralización. Estas hacen referencia a los valores centrales de una determinada distribución de datos. La moda, media aritmética y mediana comprenden este grupo de medidas. Es usual que las usemos junto a gráficos para comprender el comportamiento de un conjunto de elementos.

media aritmética

La media aritmética o promedio es utilizada con frecuencia en la vida cotidiana, este sencillo cálculo permite determinar el valor característico de un grupo. Dado un conjunto de números (n): x1, x2, x3,…, xn, la media aritmética es igual a la suma de todos los datos entre la cantidad total de estos. La fórmula es la siguiente:

\overline{x}=\frac{x_{1}+\: x_{2}+\: x_{3}+\: ...\: +x_{n}}{n}

– Ejemplo 1:

Pedro vendió galletas durante una semana y registró sus ventas en una tabla. ¿Cuántas galletas en promedio vendió Pedro por día?

Días Galletas vendidas
Lunes 12
Martes 6
Miércoles 7
Jueves 8
Viernes 4
Sábado 7
Domingo 12

Para saber la cantidad de galletas que se vendieron en promedio solo tenemos que aplicar la fórmula. Sumamos todos los valores y dividimos entre la cantidad de días.

\overline{x}=\frac{12+6+7+8+4+7+12}{7}=\frac{56}{7}=\boldsymbol{8}

En promedio, Pedro vendió 8 galletas diarias.


– Ejemplo 2:

María obtuvo las siguientes calificaciones en cada corte del año: 15, 17, 18 y 16. ¿Cuál es su calificación promedio?

\overline{x}=\frac{15+17+18+16}{4}=\frac{66}{4}=\boldsymbol{16,5}

El promedio de calificaciones de María es 16,5 puntos.

¡Es tu turno!

Las estaturas de un grupo de alumnos son: 155 cm, 152 cm, 158 cm, 162 cm, 158 cm y 163 cm. ¿Cuál es la estatura promedio?

Solución

\overline{x}=\frac{155+152+158+162+158+163}{6}=\frac{948}{6}=\boldsymbol{158}

Este grupo de alumnos tiene una estatura promedio de 158 cm.

¿Sabías qué?
Los docentes suelen utilizar el cálculo del promedio o media aritmética para informar las calificaciones finales de sus alumnos.

LA MODA

La moda (Mo) es el valor que se presenta con mayor frecuencia en una muestra, es decir, es el valor que más se repite. Para hallar la moda es recomendable ordenar los datos y verificar la cantidad de veces que aparece cada uno.

– Ejemplo:

En una venta de helados se anotaron los sabores más vendidos durante la semana. El registro está en esta tabla. Obsérvala y responde: ¿cuál es la moda de los sabores?

Sabor del helado Cantidad de helados vendidos
Fresa 45
Chocolate 56
Vainilla 34
Colita 29

La moda es el valor con mayor frecuencia, en este caso el sabor de helado que más se vendió fue el de chocolate porque 56 > 45 > 34 > 29. Así que:

Mo = 56

¡Es tu turno!

¿Cuál es la moda de los siguientes conjuntos de datos?

  • 8, 5, 7, 8, 6, 10, 9, 7, 2 y 7.
    Solución
    Mo = 7
  • 8, 10, 6, 10, 2, 5, 7, 8, 10, 10 y 8.
    Solución
    Mo = 10

Distribución bimodal

La moda es el valor con mayor frecuencia en las distribuciones de los datos y en gráfico estadístico es fácil de distinguir porque representa la punta más alta. Sin embargo, puede suceder que se encuentren dos modas, en este caso la distribución de los datos se llama “bimodal”. En la imagen podemos ver una distribución normal (izquierda) y una bimodal (derecha).

 

LA MEDIANA

La mediana (Me), tal como su nombre lo indica, corresponde a un punto medio, equidistante de los extremos. Esta corresponde al valor para el cual la cantidad de datos menores y mayores a él es igual. Cuando los elementos del conjunto de datos son un número impar, la mediana queda definida. Si la cantidad de datos es par, la mediana es el promedio entre los dos datos centrales.

– Ejemplo 1:

Las calificaciones de 7 alumnos son: 12, 15, 12, 11, 16, 19 y 12. ¿Cuál es la mediana?

Primero organizamos de menor a mayor los datos, luego ubicamos el valor central.

11, 12, 1212, 15, 16, 19 

Nota que hay tres valores tanto a la derecha como a la izquierda del centro. Por lo tanto:

Me = 12


– Ejemplo 2:

En un grupo de baile hay 8 alumnos cuyas edades son: 22, 16, 18, 21, 20, 21, 14, 17. ¿Cuál es la mediana?

Organizamos lo datos y ubicamos los valores centrales:

14, 16, 17, 18, 20, 21, 21, 22

Como la cantidad de datos es par, hay dos valores centrales: 18 y 20. Para saber la mediana calculamos la media aritmética de ambos valores:

\overline{x}=\frac{18+20}{2}=\boldsymbol{19}

Por lo tanto,

Me = 19

¡Es tu turno!

  • 14, 16, 12, 12, 10, 18, 20, 14
    Solución
    Me = 14
  • 12, 13, 14, 15, 16, 17, 18, 19, 20
    Solución
    Me =16

TABLAS DE DOBLE ENTRADA

Las tablas de doble entrada son un recurso muy útil a la hora de organizar la información. Las mismas posibilitan presentar los datos de forma clara. Se trata de un conjunto de filas y columnas que representan la interacción entre dos o más variables.

– Ejemplo:

Esta tabla muestra la cantidad de veces que Marcos, Pedro y Lucía fueron al museo en tres meses:

Febrero Marzo Abril
Marcos 1 2 3
Pedro 4 5 1
Lucía 5 4 2

De la tabla podemos concluir que:

  • Lucía visitó el museo más veces en febrero.
  • Pedro visitó el museo más veces en marzo.
  • Marcos visitó el museo más veces en abril.

¡Es tu turno!

1. Calcula el promedio de las visitas por persona.

Solución
  • Marcos: {1, 2, 3}

\overline{x}=\boldsymbol{2}

  • Pedro: {4, 5, 1}

\overline{x}=\boldsymbol{3,33}

  • Lucía: {5, 4, 2}

\overline{x}=\boldsymbol{3,66}

2. Calcula el promedio de las visitas por mes.

Solución
  • Febrero: {1, 4, 5}

\overline{x}=\boldsymbol{3,33}

  • Marzo: {2, 5, 4}

\overline{x}=\boldsymbol{3,66}

  • Abril: {3,1, 2}

\overline{x}=\boldsymbol{2}

Para presentar los datos recopilados se utilizan tablas que permiten apreciar en forma organizada los valores obtenidos. Estas tablas cuentan con algunos elementos como la frecuencia o la amplitud de la variable. Una vez confeccionada una tabla de valores estadísticos se puede realizar un gráfico para visualizar con mayor facilidad los resultados.

¡A practicar!

1. Un grupo de 11 alumnos recibió sus calificaciones de música: 7, 2, 5, 6 ,8 ,9 ,6, 5, 4, 6 y 8. ¿Cuál es el promedio, la moda y la mediana?

Solución

\overline{x}=6

Mo=6

Me=6

2. Las estaturas en centímetros de un grupo de alumnos son las siguientes: 139, 134, 128, 135, 129, 139. ¿Cuál es el promedio, la moda y la mediana?

Solución

\overline{x}=134

Mo=139

Me=134,5

RECURSOS PARA DOCENTES

Artículo “Las medidas de tendencia central”

En el siguiente artículo encontrarás detalladas las principales medidas de tendencia central explicadas con ejercicios adecuados para la edad de los alumnos.

VER

CAPÍTULO 8 / TEMA 5 (REVISIÓN)

estadística y probabilidad │ ¿QUÉ APRENDIMOS?

recolección y conteo de datos

La recolección y conteo de datos es el procedimiento que se lleva a cabo para la obtención de información o respuesta de diferentes variables. Los datos pueden clasificarse como cualitativos cuando expresan cualidades o cuantitativos cuando expresan cantidades. Los datos cuantitativos se diferencian en continuos si tienen cualquier valor dentro de un intervalo; y discretos si solo ciertos valores están en un intervalo.

Los términos “niño” y “adulto” son datos cualitativos sobre una persona, mientras que la estatura, como “1,65 metros” o “1,2 metros” son datos cuantitativos.

gráficos estadísticos

Los gráficos estadísticos son una herramienta fundamental para lograr la correcta interpretación de los datos recolectados, ya que ofrecen un gran recurso visual. Existen diversos tipos de estos como el gráfico de barras, el poligonal o el circular. Los elementos principales de cada uno de estos son el título, el cuerpo y la escala.

Los gráficos de barras representan variables cualitativas o cuantitativas discretas, los poligonales representan magnitudes y frecuencias de diferentes variables y los circulares expresan porcentajes y proporciones de una variable en particular.

medidas de tendencia central

Las medidas de tendencia central se utilizan para poder representar una distribución de datos en un solo valor característico. Para esto puede calcularse la moda (Mo), la mediana (Md) o la media (\fn_phv \small \overline{x}). Estas estimaciones pueden hacerse a partir de la organización de todos los datos.

La moda es el valor de más frecuencia, la mediana es el valor central de la distribución de todos los datos y la media se calcula como la sumatoria de todos los valores dividido entre la cantidad total.

eventos y probabilidad

Los eventos aleatorios pueden ser seguros o imposibles, por ejemplo, al lanzar un moneda es seguro que saldrá cara o sello, pero es imposible que salga una tercera opción. La probabilidad de que ocurra un evento se mide al dividir la cantidad de casos favorables entre la cantidad de casos posibles, así, la probabilidad de que salga cara al lanzar una moneda es de 1/2. La probabilidad también se puede expresar como porcentaje. Por otro lado, los diagramas de Venn también nos ayudan a determinar visualmente probabilidades.

En los juegos de azar la suerte tiene un papel importante, no siempre el que tiene mejor habilidad gana.

CAPÍTULO 6 / TEMA 1

REPRESENTACIÓN GRÁFICA DE DATOS

Habrás observado que muchas veces la información en los medios de comunicación está acompañada por una variedad de gráficos. Los gráficos son representaciones visuales de un conjunto de datos; por ejemplo, la cantidad de habitantes de cada ciudad del país o el porcentaje del crecimiento interanual de una economía. Son muy efectivos para mostrar relaciones entre diferentes valores y permiten comprender fácilmente distintas situaciones de la realidad.

Es frecuente encontrar gráficos en los análisis estadísticos que refuercen de forma visual la información necesaria. Estas representaciones se adaptan en cada caso a aquello que se busca transmitir y al objetivo de la investigación. Dichos resultados se presentan de forma rápida, directa, atractiva y comprensible para un conjunto amplio de personas.

LOS DATOS Y LAS GRÁFICAS

Un dato no es más que una información que permite describir alguna característica de una situación de estudio. Este puede ser un número, una palabra o cualquier símbolo. Si un dato describe una cualidad se dice que es cualitativo, pero si señala una cantidad se llama cuantitativo. Por ejemplo:

Datos cualitativos Datos cuantitativos
– Profesión: {médico, policía, ingeniero}

– Color de ojos: {negro, azul, verde, marrón}

– Estado civil: {soltero, casado, viudo}

– Edad: {10 años, 11 años, 13 años}

– Peso: {40 kg, 37 kg, 41 kg}

– Cantidad de hermanos: {1, 3, 4}

Cuando tenemos una cantidad numerosa de datos recurrimos a las tablas. Allí, organizamos en filas y columnas los valores obtenidos y luego los clasificamos de acuerdo a los objetivos de la investigación. Posteriormente graficamos la información, pues estas gráficas brindan una mayor rapidez en la comprensión de los datos porque los presentan de forma clara, organizada y llamativa.

– Ejemplo:

30 personas fueron encuestadas acerca de cuál era su fruta favorita. Las respuestas obtenidas fueron las siguientes:

Manzana Pera Ananá Ananá Naranja Naranja
Banana Fresa Naranja Manzana Naranja Manzana
Naranja Durazno Manzana Ananá Naranja Pera
Banana Fresa Banana Fresa Manzana Fresa
Ananá Naranja Manzana Ananá Naranja Banana

Con estos datos podemos realizar una tabla que muestre la frecuencia o al cantidad de veces que cada fruta se repite.

Fruta Frecuencia
Manzana 6
Banana 4
Naranja 8
Pera 2
Ananá 5
Fresa 4
Durazno 1
Total 30

Si bien los datos se ven claramente en esta tabla, podemos graficarlos para que sea aún más sencillo visualizar cuáles son las frutas más o menos preferidas por este grupo de personas.

Elementos de los gráficos

Existen diferentes tipos de gráficos y la selección dependerá de la información que se quiera mostrar, sin embargo todos los gráficos tienen algunos elementos en común:

  • Título: todo gráfico debe tener un título para saber rápidamente de qué se trata. El mismo se ubica en la parte superior de la gráfica, debe ser claro, breve e informar sobre el contenido del cuadro.
  • Cuerpo: el cuerpo varía en función al estilo de gráfico que se seleccione, entre los más usados se encuentran el lineal, el de barras y el circular.

VER INFOGRAFÍA

TIPOS DE GRÁFICOS

Gráficos de barras

En este tipo de gráficos se construyen barras cuyas longitudes permiten comparar las categorías, observar los diferentes valores y obtener información con respecto a lapsos de tiempo. Las variables estudiadas se colocan en el eje horizontal y las frecuencias se colocan en el eje vertical, luego ubicamos los puntos y trazamos barras verticales para cada variable.

– Ejemplo:

Esta gráfica muestra la cantidad de hombres y mujeres en cada grado de un colegio.

Con esta gráfica vemos de forma muy clara la cantidad de hombres y mujeres que hay en cada grado. Nota que las barras de colores azul corresponden a los hombres y las barras de color naranja corresponden a las mujeres.

De acuerdo a la tabla, el grado con mayor cantidad de hombres es 6º (20), y el grado con menor cantidad de hombres es 1º (9).

¡Es tu turno!

Realiza la tabla de datos de acuerdo a la gráfica anterior.

Solución
Grado Hombres Mujeres Total
9 11 20
10 15 25
14 14 28
15 17 32
14 10 24
20 11 31
18 15 33
Total 100 93 193

¿Sabías qué?
Los gráficos de barras pueden ser verticales, horizontales, agrupados o apilados.

Gráficos lineales

Los gráficos lineales, también llamados gráficos poligonales, se representan en un plano (dos dimensiones) mediante el uso de un sistema de coordenadas. Para construirlos basta con ubicar los puntos en el plano y luego unirlos por medio de líneas.

– Ejemplo:

Con los mismos datos del ejemplo anterior en el que realizamos un gráfico de barras podemos dibujar un gráfico lineal.

Gráficos circulares

También son conocidos como gráficos de torta o pastel. Se usan para comparar porcentajes con respecto a un total de datos. Son útiles cuando deseas mostrar una sola serie de datos, por ejemplo, el sexo de la población. Para hallar los porcentajes parciales se dividen los 360° del círculo de acuerdo a los valores dados.

– Ejemplo:

La siguiente tabla muestra la cantidad de huéspedes en un hotel según su nacionalidad:

Nacionalidad Cantidad de turistas
Colombiana 12
Argentina 23
Chilena 5
Venezolana 15
Italiana 18
Total 73

Es normal colocar los valores de porcentajes en los gráficos de este tipo, para calcularlos solo dividimos la cantidad de cada nacionalidad entre el total de turista. Luego multiplicamos por 100. La suma de todos los porcentajes debe ser igual a 100 %.

Nacionalidad Cantidad de turistas Porcentaje
Colombiana 12 (12/73) × 100 = 16,44 %
Argentina 23 (23/73) × 100 = 31,50 %
Chilena 5 (5/73) × 100 = 6,85 %
Venezolana 15 (15/73) × 100 = 20,55 %
Italiana 18 (18/73) × 100 = 24,66 %
Total 73 100 %

Ahora, para ilustrar los datos en un círculo multiplicamos la fracción de cada nacionalidad por 360°. La suma de todos los grados debe ser igual a 360°. Por conveniencia redondeamos a la unidad cada producto.

Nacionalidad Cantidad de turistas Grados
Colombiana 12 (12/73) × 360° = 59,18° ≈ 59°
Argentina 23 (23/73) × 360° = 113,42° ≈ 113°
Chilena 5 (5/73) × 360° = 24,66° ≈ 25°
Venezolana 15 (15/73) × 360° = 73,97° ≈ 74°
Italiana 18 (18/73) × 360° = 88,77° ≈ 89°
Total 73 360°

De ese modo, tras dibujar la circunferencia, medimos con el transportador los grados correspondientes a cada porción y anotamos el porcentaje redondeado que lo representa.

¿Qué es una muestra?

Se denomina población al conjunto de elementos estudiados, es decir, al total. Una muestra es una parte de esa población, es decir, es una porción seleccionada que resulta representativa del conjunto. Se toman muestras cuando la población que se quiere estudiar es muy amplia e inabarcable, entonces se decide realizar una selección estratégica que recorte la cantidad de individuos a estudiar y que mantengan los rasgos representativos de toda la población analizada.

IMPORTANCIA DE REPRESENTAR DATOS EN GRÁFICOS

La estadística, entre otras cosas, se encarga de recopilar, analizar y sistematizar datos. Luego, debe comunicar la información generada en este proceso. La presentación de datos es uno de los aspectos mayormente utilizados en la estadística descriptiva. Los gráficos son muy importantes ya que posibilitan un abordaje dinámico, claro y entretenido.

En este sentido, los gráficos son una gran herramienta ya que permiten:

  • Registrar datos de manera clara y concreta.
  • Comunicar la información en forma sencilla.
  • Comprender la estructura del conjunto de datos.
La cartografía tiene como objetivo la concepción, redacción y realización de los mapas, es decir, la representación plana y simplificada de toda o de una parte de la superficie terrestre. Los mapas estadísticos o cartogramas son aquellos que presentan datos por regiones o zonas. Al igual que en un mapa topográfico, los colores y las tramas indican áreas que están en el mismo rango de valores.

 

¡A practicar!

Observa los gráficos y responde:

1. Marta vendió magdalenas durante toda la semana. La cantidad de magdalenas vendidas se muestra en el siguiente gráfico:

  • ¿Cuántas magdalenas vendió Marta el lunes?
    Solución
    Vendió 10 magdalenas.
  • ¿Cuál día vendió más magdalenas?
    Solución
    El martes.
  • ¿Cuál día vendió menos magdalenas?
    Solución
    El domingo.
  • ¿Cuántas magdalenas vendió durante la semana?
    Solución
    Vendió 68 magdalenas durante la semana.
  • ¿Cuál día vendió solo 8 magdalenas?
    Solución
    El viernes.

 

2. Se hizo una encuesta sobre el deporte favorito de un grupo de estudiantes. Los resultados se muestran en este gráfico.

  • ¿Cuál es el deporte favorito de la mayoría de encuestados?
    Solución
    El fútbol.
  • ¿Qué porcentaje de encuestados prefiere el béisbol?
    Solución
    El 14 %.
  • ¿Qué porcentaje de encuestados prefiere el baloncesto?
    Solución
    El 23 %.
  • ¿Cuál es el deporte menos preferido por los encuestados?
    Solución
    El béisbol.
RECURSOS PARA DOCENTES

Artículo “Gráficos estadísticos”

Con el siguiente artículo podrás ampliar tu conocimiento sobre tipos de gráficos estadísticos y sus funciones.

VER

Artículo “Lectura de gráficos”

En el siguiente artículo encontrarás ejemplos claros y explicados para abordar la interpretación y lectura de gráficos.

VER 

CAPÍTULO 6 / TEMA 4 (REVISIÓN)

GRÁFICOS Y ESTADÍSTICA |¿QUÉ APRENDIMOS?

LA ENCUESTA

La encuesta es una técnica de investigación estadística que consiste en aplicar un cuestionario a un grupo de personas para obtener información sobre un tema específico. Las preguntas en un cuestionario pueden ser abiertas cuando el encuestado tiene la libertad de dar cualquier respuesta, o cerradas cuando solo se contestan a partir de varias opciones. A través de esta herramienta se puede conocer la opinión de las personas sobre algún tema y se pueden recabar datos específicos para una investigación. Los resultados de las encuestas a menudo se representan en tablas o en gráficas.

Las encuestas se pueden hacer de forma presencial, por vía telefónica, por correo o por Internet.

TABLAS Y GRÁFICOS

Los datos se pueden organizar de forma más clara y ordenada a través de las tablas de frecuencia, de los gráficos de barra y de los pictogramas. Una tabla de frecuencia permite la organización de los datos de acuerdo su frecuencia respectiva, es decir, el número de veces que se repiten. Estas tablas pueden ser simples o de doble entrada si representan uno o dos conjuntos de datos respectivamente. Por otra parte, un gráfico de barra emplea barras rectangulares para representar la frecuencia de un dato. Finalmente, un pictograma es un diagrama que al igual que las tablas y los gráficos de barra, representa las frecuencias de los datos pero a través de imágenes.

La longitud de los rectángulos en los gráficos de barra indica la frecuencia de la variable.

PROBABILIDAD

Hay eventos en los que no se puede saber con exactitud cuál será su resultado porque dependen del azar: lanzar una moneda, sacar una carta de un mazo, lanzar un dado, etc. Estos son ejemplos de eventos aleatorios que pueden ser más, menos o igual de probables que otros. De acuerdo a la posibilidad u ocurrencia de un fenómeno podemos clasificar los eventos en seguros, cuando siempre ocurren; posibles, cuando podrían ocurrir; e imposibles, cuando nunca ocurren. A menudo practicamos juegos como piedra, papel o tijera donde podemos observar eventos aleatorios.

En un juego aleatorio, el resultado de ganar o no depende de la destreza del jugador y del azar.

CAPÍTULO 6 / TEMA 3

PROBABILIDAD

Lanzar un dado, sacar un número de una esfera de bingo o tomar una carta de un mazo sin ver son algunos eventos en los que no conocemos con certeza qué resultado se va a obtener. Sin embargo, gracias a la probabilidad, sí podemos conocer qué tan probable es que sucedan.

evento aleatorio

Un evento es el resultado o conjunto de resultados que pueden ocurrir en un experimento. Se dice que un evento es aleatorio cuando no es posible determinarlo con exactitud y por ello, está sujeto al azar.

En un experimento aleatorio no se conoce con seguridad cuál será el resultado. Por ejemplo, un evento aleatorio puede ser lanzar una moneda y observar si cae la cara o la cruz. Esto se debe a que en los eventos aleatorios interviene el azar. Aunque nunca conoceremos con certeza cuál será el resultado, sí conocemos los posibles resultados, en este caso sería cara o cruz.

En ocasiones realizamos acciones como lanzar un dado, en donde conocemos de antemano los posibles resultados que se pueden dar (1, 2, 3, 4, 5 o 6), sin embargo; no sabemos exactamente cuál de ellos va a ocurrir.

Los resultados de estas acciones son eventos aleatorios.

Por ejemplo, observa los colores de las esferas que contiene la bolsa:

Al sacar al azar una esfera de la bolsa, puede suceder que la esfera sea verde, roja, violeta o azul, pero no puede suceder que la esfera sea de color amarillo, porque no hay en la bolsa esferas de color amarillo.

Regla de Laplace

El análisis de las probabilidades fue definido por el matemático francés Pierre de Laplace, quien la definió como el cociente entre los casos favorables entre los casos posibles.

\boldsymbol{probabilida = \frac{casos \: \: favorables}{casos\: \: posibles}}

El estudio de la probabilidad es usado desde una fábrica hasta las empresas de juegos de lotería. En la ciencia, las probabilidades han tenido una importancia incalculable porque permiten realizar estimaciones de eventos en donde participa el azar.

Los eventos pueden ser seguros, posibles o imposibles. Un evento seguro siempre sucede, por ejemplo, lanzar una moneda y que se obtenga cara o sello. Un evento imposible nunca ocurre, como por ejemplo lanzar un dado y obtener el número siete. Un evento posible es el que podría suceder, como sacar una carta de póquer de un mazo y que sea una reina.

OCURRENCIA de un suceso

Los eventos aleatorios pueden ser eventos o sucesos seguros, posibles e imposibles de que ocurran.

  • En un evento seguro el resultado siempre se va a dar.
  • En un evento posible el resultado podría darse.
  • En un evento imposible el resultado no podría darse.

Por ejemplo, observa las frutas que hay en la cesta:

Imagina que tienes los ojos vendados y tomas unas frutas, se pueden dar los diferentes tipos de eventos a continuación:

  • Un evento seguro es agarrar una manzana.
  • Un evento posible es agarrar una manzana roja.
  • Un evento imposible es agarrar una fresa.

Probabilidades de los eventos

Dentro de los posibles eventos podemos distinguir:

  • Evento igual de probable: es aquel resultado que tiene la misma probabilidad que los demás. Por ejemplo, cuando lanzamos una moneda, el evento “cara” tiene las mismas probabilidades que el evento “cruz”.
  • Evento muy probable: es aquel resultado que tiene muchas probabilidades de darse. Por ejemplo, en una caja con 10 tarjetas, 9 de color amarillo y 1 de color rojo, el evento “sacar una tarjeta amarilla” tiene muchas probabilidades de ocurrir.
  • Evento poco probable: es aquel resultado que tiene muy pocas probabilidades de darse. Por ejemplo, en una caja con 10 tarjetas, 9 de color azul y 1 de color verde, el suceso “sacar una tarjeta verde” tiene pocas probabilidades de ocurrir.

¿Sabías qué?
Si reúnes 23 personas al azar es muy probable que una ellas cumpla el mismo día que tú.

juegos aleatorios

Los juegos aleatorios populares en los casinos, como la ruleta y las cartas, son juegos en donde las posibilidades de ganar o perder no solo dependen de la habilidad que tenga el jugador, sino que además interviene el azar, esto se debe a que la probabilidad de ganar o perder es algo que no se puede predecir pero sí calcular de acuerdo a las probabilidades.

Juego de los dados

En este juego participan dos personas, las reglas son muy sencillas: cada jugador tira un dado y el jugador con la puntuación más alta gana.

La probabilidad de victoria es la misma para cada uno de los jugadores.

Para visualizarlo, imaginemos que el dado de un jugador es de color azul y el del oponente verde. Esto nos permite representar de un modo muy visual los 36 posibles desenlaces de una mano. Representamos en azul las victorias del dado azul y en verde las victorias del dado verde, y en blanco los empates. Observa:

Observamos que de los 36 posibles desenlaces 15 son victorias azules y 15 victorias verdes. Es decir, la probabilidad de que gane cada uno de los jugadores es la misma (15/36) y por lo tanto, ninguno tiene ventaja.

Pares o nones

Este es un juego que se utiliza para elegir entre dos personas a una de las dos, mediante un evento aleatorio: uno de los jugadores escoge “pares” y el otro “nones”, cada uno representa un número del 1 al 5 con una mano en la espalda, cuentan hasta tres y la sacan con cualquier número de dedos extendidos

CAPÍTULO 6 / TEMA 4 (REVISIÓN)

ESTADÍSTICA Y PROBABILIDAD | ¿qué aprendimos?

REPRESENTACIÓN DE DATOS

Podemos representar datos en gráficos y tablas. Los gráfico de barras se utilizan para representar información numérica en un sistema de ejes coordenados: en el eje horizontal ubicamos las categorías y en el eje vertical los datos numéricos. Otro tipo de gráfico es el lineal, el cual sirve para comparar datos, representar la frecuencia de ciertas variables y mostrar la evolución o cambios que le ocurren a un fenómeno. También están los gráficos circulares que representan variables cualitativas por medio de porcentajes y porciones. Por otro lado están los pictogramas que se construyen igual que el diagrama de barras pero se sustituyen los rectángulos por dibujos.

Múltiples gráficos estadísticos muestran el crecimiento de la población mundial gracias a los avances en la ciencia, la higiene y la medicina.

cOMBINACIONES

Las combinaciones son una forma de agrupar elementos de un conjunto sin importar el orden. Por ejemplo, cada vez que nos vestimos hacemos combinaciones de camisas, pantalones y zapatos. Las tablas de doble entrada permiten analizar los datos y combinarlos de todas las maneras posibles. Para resolver algunos problemas combinatorios también es posible utilizar los diagramas de árbol que permiten visualizar todas las formas posibles de combinar todos los elementos.

El cubo de Rubik posee millones de combinaciones posibles.

probabilidad

La probabilidad sirve para predecir de la mejor manera si un suceso puede ocurrir o no. A los fenómenos predecibles se los llama determinísticos; a los que no se pueden predecir, se los denomina aleatorios. Algunos fenómenos aleatorios pueden ser mas probables que otros, y esta probabilidad puede ser calculada matemáticamente. Por otra parte, si deseamos saber el valor característico de un conjunto, podemos calcular su media aritmética o promedio, que se obtiene al sumar los elementos de una muestra y dividir el resultado por el total de elementos.

El juego de ruleta posee 38 números para jugar: la probabilidad que salga el número al que se jugó es de 1/38.

CAPÍTULO 6 / TEMA 1

LA ENCUESTA

Cuando queremos saber la opinión o las preferencias de un grupo de personas, la encuesta es la técnica más práctica de aplicar. Esta consiste en hacer preguntas a una población determinada con el fin de recaudar datos precisos sobre una situación. ¿Te gustaría hacer una encuesta en clase? Con este artículo sabrás cómo hacerlo.

¿QUÉ ES LA ENCUESTA?

Una encuesta es una técnica de investigación que consiste en aplicar el mismo conjunto de preguntas a un grupo de personas con un instrumento llamado cuestionario. Este se utiliza para obtener resultados sobre un tema y saber sus preferencias.

Las preguntas pueden aplicarse en forma de entrevista personal, entrevista en línea, mediante páginas web, aplicaciones, correo electrónico, vía telefónica o de forma escrita. Las preguntas deben ser pensadas para obtener información específica que nos ayude en la investigación.

La encuesta es una recopilación de datos obtenidos mediante consulta o interrogatorio a varias personas sobre un tema determinado. Se pueden hacer en persona, por teléfono, por correo o a través de aplicaciones para dispositivos móviles. Las encuestas permiten conocer la opinión de las personas sobre un tema o recabar datos sobre la población.

Los datos que arroje la encuesta se representan mediante tablas de frecuencia y gráficos para resumir la información obtenida y observar de manera más clara el fenómeno de estudio.

¿Qué es un cuestionario?

Los cuestionarios se componen de preguntas que se escriben con signos de interrogación al principio y al final como ¿qué?, ¿quién?, ¿cómo?, ¿dónde?, ¿cuál?, ¿cuándo? Por ejemplo, ¿cuál es tu deporte favorito?

La formulación de las respuestas correctas te permitirá obtener los resultados que necesitas.

Tipos de preguntas en un cuestionario

  • Preguntas abiertas: dan la libertad de dar cualquier respuesta.
  • Preguntas cerradas: se contestan a partir de varias opciones.

– Ejemplo:

Pregunta abierta

¿Cuál es tu fruta favorita?

 

________________________

Pregunta cerrada

¿Te gustan las fresas?

  • No

 

Elementos de un cuestionario

Las encuestas tienen cinco elementos principales:

  • Introducción: corta pero precisa, allí se explica para qué se hace la encuesta.
  • Presentación: debe especificarse a quién va dirigida la encuesta y el método empleado para la aplicación del cuestionario, ya sea de forma personal, telefónica o por correo.
  • Instrucciones para responder: indica la forma en la que se responderán las preguntas que pueden ser abiertas o cerradas.
  • Secciones de preguntas y respuestas: si son abiertas se debe responder con sus propias palabras, si son cerradas el encuestado deben elegir las opciones. También puede ser mixta.
  • Datos del encuestado: proporciona información de la persona que participó en la encuesta.

– Ejemplo:

María quiere vender helados y pasteles, pero desea conocer cuáles son los sabores preferidos de los niños, para ello ha decidido hacer una encuesta y su cuestionario consta de los siguientes elementos:

Cuestionario
Introducción La encuesta tiene como objetivo determinar cuáles son los pasteles y sabores de helado preferidos por los niños.
Presentación Está dirigida a niños entre 4 y 11 años de edad. El cuestionario se aplicará en forma presencial.
Instrucciones para responder Instrucciones: marca con una equis (x) tu opción preferida.
Preguntas y respuestas 1. ¿Cuál pastel es tu preferido?

a) Vainilla (  )

b) Chocolate (  )

c) Limón (  )

 

2. ¿Cuál es tu sabor de helado preferido?

a) Vainilla (  )

b) Chocolate (  )

c) Fresa (  )

d) Naranja (  )

e) Limón (  )

 

3. ¿Cuál preferirías para cubrir tu helado?

a) Chocolate (  )

b) Dulce de leche (  )

c) Maní (  )

Datos del encuestado Nombre: _________________________________

Edad: _________________

María en su encuesta solo formuló preguntas cerradas.

pasos para realizar una encuesta

Hay cinco pasos a seguir para realizar una encuesta:

  1. Escoger el tema.
  2. Elegir la población encuestada.
  3. Elaborar las preguntas del cuestionario. Estas pueden ser abiertas o cerradas, el cuestionario también puede ser mixto, es decir; puede contener tanto preguntas abiertas como cerradas.
  4. Recopilar la información, esto se refiere a la aplicación del cuestionario.
  5. Llegar a las conclusiones. Es la parte final y en la que se conocen cuáles fueron los resultados de la encuesta.

 

– Ejemplo:

Jorge es un granjero que desea sembrar frutas pero en su huerto pero solo tiene espacio para sembrar de tres tipos. El granjero debe escoger entre plantar sandía, fresa, banana, uva, manzana o pera. Para decidir, el granjero realizará una encuesta que le permitirá saber cuáles de las seis frutas son las preferidas por sus vecinos.

Los pasos a seguir son:

1. Elegir el tema.

En este caso, el tema es determinar cuáles son las frutas preferidas de los vecinos de la granja.

2. Elegir a quién se aplicará la encuesta.

El granjero aplicará un cuestionario a los niños y adultos de la granja.

3. Elaborar las preguntas.

El granjero debe decidir si hacer su cuestionario con preguntas abiertas o cerradas. Si hace un pregunta abierta, como por ejemplo “¿cuál es su fruta favorita?”, los encuestados pueden responder cualquier tipo de fruta de todas las que existen en el planeta; en cambio, si el granjero hace una pregunta cerrada, él puede brindar solo las opciones que le interesan para cultivar. Por lo tanto, este es el tipo de pregunta que debe emplearse en el cuestionario.

Entonces, la pregunta que el granjero realizará en su encuesta es la siguiente:

¿Cuál de las siguientes frutas es su favorita?

  1. Sandía (  )
  2. Fresa (  )
  3. Banana (  )
  4. Uva (  )
  5. Manzana (  )
  6. Pera (  )

4. Recopilar los datos.

Una vez formulada la pregunta, el granjero debe aplicar el cuestionario.


5. Llegar a las conclusiones.

Tras su aplicación los resultados fueron los siguientes:

Fruta Personas que la seleccionaron
Sandía 3
Fresa 6
Banana 2
Uva 2
Manzana 8
Pera 4

El granjero debe contar los resultados de la encuesta, para determinar cuáles son las tres frutas preferidas por sus vecinos y así poder sembrarlas en su huerto. Para el análisis de los resultados se utilizan las tablas de frecuencia y los gráficos.

Al observar la tabla anterior, podemos concluir que la mayoría de las personas prefirieron la manzana, la fresa y la pera. De esta manera, el granjero pudo determinar cuáles frutas cultivar de acuerdo a lo que prefiere la mayoría.

¿Sabías qué?
La frecuencia es el número de veces que se repite un dato.

Tablas de frecuencia

La tabla de frecuencias es una herramienta que permite ordenar los datos de manera que se presentan numéricamente.

Las tablas representan e interpretan información procedente de diferentes fuentes de forma clara, precisa y ordenada. Casi todo tipo de información puede organizarse en una tabla de datos y ser representada en algún tipo de gráfico.

En la tabla puedes observar pequeñas líneas que representan el conteo de las personas que eligieron esa fruta. Los números en la tabla representan el total de personas que eligieron cada fruta, esto es lo que se denomina frecuencia; en este caso, la fruta preferida es la manzana, ya que fue elegida por 8 personas.

usos de la encuesta

Usamos la encuesta para:

  • Medir las preferencias políticas de los ciudadanos.
  • Medir los efectos de ciertas medicinas.
  • Saber la opinión de las personas sobre un tema.
  • Conocer los niveles educativos de la población.
  • Calcular la preferencia de un producto sobre otro.
  • Saber a qué tipo de persona irá destinado un producto o servicio.
  • Saber si al público le ha gustado un servicio o producto.
  • Calcular a qué grupo de la población le afecta más un fenómeno.
  • Conocer cómo se encuentra compuesta la población de un país.
  • Saber los resultados de un programa.
  • Predecir la reacción de las personas ante algún cambio.
Las encuestas son herramientas usadas para recolectar información durante una investigación. Por esta razón, son usadas en diferentes contextos. Por ejemplo, antes de lanzar nuevo producto a la venta, las compañías realizan encuestas entre los consumidores para predecir si ese producto será aceptado o no por los compradores y evitar así posibles pérdidas.

¡A practicar!

1. Determina si las siguientes preguntas son abiertas o cerradas.

a) ¿Cuál es tu color favorito?

Solución
Pregunta abierta.
b) ¿Le tienes miedo a las alturas? Sí (  ) No (   )
Solución
Pregunta cerrada.
c) ¿Quién es tu personaje histórico favorito?
Solución
Pregunta abierta.
d) ¿Alguna vez has volado en avión? Sí(   ) No (   )
Solución
Pregunta cerrada.

 

2. María hizo una encuesta a sus compañeros de clases sobre a qué lugares preferían ir de vacaciones y obtuvo la siguiente tabla de frecuencia:

Lugar preferido Personas que lo eligieron
Montaña 7
Playa 9
Selva 2
Desierto 1

De acuerdo a la tabla responde las siguientes preguntas:

a) ¿Cuál fue el destino de vacaciones más elegido?

Solución
La playa.
b) ¿Cuál fue el destino menos elegido?
Solución
El desierto.

 

RECURSOS PARA DOCENTES

Artículo “Instrumentos de medición”

El siguiente material le brindará información más detallada sobre las encuestas y su aplicación. También explica las ventajas y desventajas de este método de recolección de datos.

VER

Artículo “Estadística: tabla de valores”

El artículo explica las características de la tabla de valores y su importante papel en la estadística. También se explican otros conceptos relacionados y se proponen algunos ejercicios.

VER