CAPÍTULO 5 / TEMA 4 (REVISIÓN)

REPRESENTACIONES GRÁFICAS | ¿QUÉ APRENDIMOS?

PICTOGRAMAS

LOS PICTOGRAMAS SON GRÁFICOS QUE SIRVEN PARA REPRESENTAR A TRAVÉS DE DIBUJOS O SÍMBOLOS SENTIMIENTOS, PERSONAS, ANIMALES, ACCIONES U OBJETOS. EN SITUACIONES DE NUESTRA VIDA COTIDIANA PODEMOS ENCONTRARLOS EN SEÑALES DE TRÁNSITO, CARTELES, HISTORIETAS O EN PRODUCTOS. TAMBIÉN SON ÚTILES CUANDO HACEMOS TABLAS DE DATOS.

LOS PICTOGRAMAS SON USADOS EN LAS HISTORIETAS O CÓMICS PARA EXPRESAR SENTIMIENTOS O ACCIONES DE UN PERSONAJE.

TABLAS

LAS TABLAS DE DATOS SON UN RECURSO MUY ÚTIL PARA MOSTRAR INFORMACIÓN RECOLECTADA DE FORMA RESUMIDA Y CLARA. ESTAS TABLAS SON CUADROS FORMADOS POR COLUMNAS VERTICALES  Y FILAS HORIZONTALES QUE EXPRESAN LOS DATOS. ESTA DEBE SER SENCILLA PARA QUE CUALQUIER LECTOR PUEDA ENTENDERLA. LA UNIÓN DE UNA COLUMNA Y UNA FILA SE DENOMINA CELDA.

PARA LOS CIENTÍFICOS LAS TABLAS SON DE GRAN AYUDA PARA ORGANIZAR MUCHOS DATOS.

FRACCIONES Y SUS GRÁFICAS

LAS FRACCIONES SON NÚMEROS QUE REPRESENTAN UNA PARTE DE UN TODO O ENTERO. EN UN GRÁFICO EL ENTERO SE DIVIDE EN LAS PARTES QUE INDICA EL DENOMINADOR Y SE COLOREAN LAS PARTES QUE INDICA EL NUMERADOR. CUANDO PARTIMOS UN PASTEL EN 8 PARTES IGUALES Y COMEMOS UNA, CUANDO COMPRAMOS MEDIO KILOGRAMO DE PAPAS O CUANDO DECIMOS “SON LAS TRES Y MEDIA” HACEMOS USO DE LAS FRACCIONES.

SI DIVIDIMOS Y CORTAMOS UNA PIZZA EN 2 PARTES IGUALES PARA COMER UNA, LA FRACCIÓN QUE EXPRESA ESA PARTE SERÍA 1/2 Y SE LEE “UN MEDIO”.

CAPÍTULO 5 / TEMA 2

TABLAS

SI TIENES EN LA MESA MUCHOS LÁPICES DE COLORES, ¿PODRÍAS SABER A SIMPLE VISTA CUÁNTOS HAY DE CADA COLOR? ¡ES MUY DIFÍCIL! CUANDO TENEMOS SITUACIONES DE ESTE TIPO PODEMOS USAR UN RECURSO QUE NOS PERMITE ORGANIZAR DATOS DE MANERA SENCILLA Y RESUMIDA: LAS TABLAS DE DATOS. ¡HOY APRENDERÁS A ELABORARLAS!

¿QUÉ ES UNA TABLA DE DATOS?

LAS TABLAS DE DATOS SON ESTRUCTURAS CON COLUMNAS Y FILAS QUE EXPRESAN UNA INFORMACIÓN CLARA.

– EJEMPLO:

EN EL AULA DE 1° GRADO LOS NIÑOS DIJERON EN QUÉ MES CUMPLEN AÑOS Y LOS DATOS LOS COLOCARON EN LA SIGUIENTE TABLA:

CON LOS DATOS ORDENADOS EN UNA TABLA PODEMOS EXTRAER INFORMACIÓN CON PREGUNTAS:

  • ¿EN QUÉ MES DEL AÑO HAY MÁS NIÑOS QUE CUMPLEN AÑOS?

EN EL MES DE MAYO HAY MÁS NIÑOS QUE CUMPLEN AÑOS.

  • ¿CUÁLES SON LOS MESES QUE TIENEN UN SOLO CUMPLEAÑERO?

LOS MESES QUE TIENEN SOLO UN CUMPLEAÑERO SON MARZO, ABRIL, JUNIO, AGOSTO Y DICIEMBRE.

  • ¿EN QUÉ MES CUMPLE AÑOS HUGO?

HUGO CUMPLE AÑOS EN JULIO.

  • ¿EN QUÉ MES DEL AÑO CUMPLE AÑOS PAMELA?

PAMELA CUMPLE AÑOS EN FEBRERO.

¿PARA QUÉ SIRVEN LAS TABLAS?

LAS TABLAS SIRVEN PARA ORGANIZAR DATOS. TAMBIÉN PODEMOS OBSERVAR UNA IMAGEN Y EXTRAER INFORMACIÓN PARA COLOCARLA EN UNA TABLA. ¡VEAMOS!

OBSERVA ESTA IMAGEN, ¿CUÁNTAS PERSONAS HAY? HAY 6 PERSONAS, PERO ¿TODOS SON ADULTOS?, ¿TODOS SON NIÑOS? ¡NO! ASÍ QUE PODEMOS CREAR GRUPOS A PARTIR DE UNA IMAGEN Y ESCRIBIR ESTOS GRUPOS EN UNA TABLA. POR EJEMPLO, UNA TABLA PUEDE MOSTRAR LA CANTIDAD DE PERSONAS ADULTAS Y LA DE NIÑOS; Y OTRA TABLA PUEDE MOSTRAR LA CANTIDAD DE MUJERES Y HOMBRES.

CON ESTA INFORMACIÓN CREAMOS DOS TABLAS CON CATEGORÍAS DIFERENTES:

  • EN ESTA TABLA EXPRESAMOS LA CANTIDAD DE PERSONAS ADULTAS Y NIÑOS.

  • EN ESTA TABLA EXPRESAMOS LA CANTIDAD DE MUJERES Y HOMBRES.

¿SABÍAS QUÉ?
TODAS LAS TABLAS SON CUADROS QUE ORGANIZAN Y RESUMEN UNA INFORMACIÓN RECOLECTADA.

TABLAS: UNA HERRAMIENTA DE CONTEO

LAS TABLAS NOS AYUDAN A ORGANIZAR DATOS QUE YA FUERON CONTADOS. DE ESTE MODO PODEMOS SABER FÁCILMENTE CANTIDADES Y CARACTERÍSTICAS DE UN CONJUNTO. POR EJEMPLO, EN LA IMAGEN HAY MUCHAS FIGURAS, ¿DE CUÁL FIGURA HAY MÁS CANTIDAD? ¿Y DE CUÁL HAY MENOS CANTIDAD? TODA ESTA INFORMACIÓN LA REPRESENTAMOS DE MANERA ORDENADA EN UNA TABLA:

FIGURA ESTRELLA CUADRADO CÍRCULO CORAZÓN TRIÁNGULO
CANTIDAD 6 7 8 5 6

VEMOS QUE LA FIGURA CON MAYOR CANTIDAD ES EL CÍRCULO Y LA DE MENOR CANTIDAD ES EL CORAZÓN. ES MÁS SENCILLO VERLO EN UNA TABLA QUE EN LA IMAGEN.

LAS FILAS Y LAS COLUMNAS

LAS TABLAS DE DATOS ESTÁN COMPUESTAS POR FILAS EN FORMA HORIZONTAL Y COLUMNAS EN FORMA VERTICAL.

– EJEMPLO:

ESTA ES UNA TABLA QUE MUESTRA LA CANTIDAD DE NIÑOS Y NIÑAS DE 1º, 2º Y 3º GRADO QUE NO HICIERON LA TAREA EN UN DÍA.

LA TABLA TIENE 4 FILAS Y 3 COLUMNAS. POR LO GENERAL, LA PRIMERA FILA Y LA PRIMERA COLUMNA SE UTILIZAN PARA ESCRIBIR LAS CATEGORÍAS, POR EJEMPLO, NIÑOS, NIÑAS Y GRADOS.

LA UNIÓN DE UNA FILA Y UNA COLUMNA SE DENOMINA CELDA, LA QUE ESTÁ MARCADA EXPRESA QUE 1 NIÑA DE 2° GRADO NO HIZO LA TAREA ESE DÍA.

UNA UNIÓN DE FILA Y COLUMNA ES IGUAL A UNA INTERSECCIÓN.

¡ES TU TURNO!

OBSERVA DE NUEVO LA TABLA ANTERIOR Y RESPONDE:

  • ¿CUÁNTOS NIÑOS DE 2° GRADO NO HICIERON LA TAREA?
SOLUCIÓN
3
  • ¿CUÁNTOS NIÑAS DE 3° GRADO NO HICIERON LA TAREA?
SOLUCIÓN
6
  • ¿CUÁNTOS NIÑOS Y NIÑAS DE 1° A 3° GRADO NO HICIERON LA TAREA?
SOLUCIÓN
15

TABLAS DE PICTOGRAMAS Y TABLAS DE DATOS

LAS TABLAS DE PICTOGRAMAS EXPRESAN LA MISMA INFORMACIÓN QUE UNA TABLA DE DATOS, LA ÚNICA DIFERENCIA ES QUE USAMOS DIBUJOS O SÍMBOLOS EN LUGAR DE NÚMEROS.

– EJEMPLO:

TABLA DE DATOS:

TABLA DE PICTOGRAMAS:

¡A PRACTICAR!

1. EXPRESAR LA INFORMACIÓN DE ESTAS SITUACIONES EN TABLA DE PICTOGRAMAS Y TABLA DE DATOS.

A) ANTONIA Y JOSÉ FUERON AL PARQUE DE DIVERSIONES. CADA UNO SE SUBIÓ VARIAS VECES A LOS JUEGOS:

  • ANTONIA SUBIÓ 4 VECES A LA RUEDA DE LA FORTUNA Y 3 VECES AL CARRUSEL.
  • JOSÉ SUBIÓ UNA VEZ A LA RUEDA DE LA FORTUNA Y 2 VECES AL CARRUSEL.
SOLUCIÓN

TABLA DE PICTOGRAMA:

RUEDA DE LA FORTUNA CARRUSEL
ANTONIA
JOSÉ

TABLA DE DATOS:

RUEDA DE LA FORTUNA CARRUSEL
ANTONIA 4 3
JOSÉ 1 2

B) OMAR Y DARÍO JUGARON UN PARTIDO DE FÚTBOL. OMAR ANOTÓ 8 GOLES Y DARÍO 5 GOLES.

SOLUCIÓN

TABLA DE PICTOGRAMAS:

GOLES
OMAR
DARÍO

TABLA DE DATOS:

GOLES
OMAR 8
DARÍO 5

C) ANGELINA Y JULIÁN COMPRARON UNA BOLSA DE CARAMELOS. ANGELINA COMIÓ 8 Y JULIÁN COMIÓ 12.

SOLUCIÓN

TABLA DE PICTOGRAMAS:

CARAMELOS
ANGELINA
JULIÁN

TABLA DE DATOS:

CARAMELOS
ANGELINA 8
JULIÁN 12

2. OBSERVA LA SIGUIENTE IMAGEN Y COMPLETA LA TABLA DE DATOS:

SOLUCIÓN
GLOBOS NEGROS GLOBOS DORADOS
9 13
RECURSOS PARA DOCENTES

Artículo “Estadística: tabla de valores”

Con este recurso podrás profundizar sobre el uso de las tablas de datos en la estadística.

VER

CAPÍTULO 5 / TEMA 1

PICTOGRAMAS

HACE MUCHOS AÑOS ATRÁS, LOS HOMBRES UTILIZARON UN SISTEMA PARA COMUNICARSE BASADO EN DIBUJOS. DIBUJABAN TODO LO QUE VEÍAN EN LAS PAREDES DE LAS CAVERNAS. EN LA ACTUALIDAD TAMBIÉN USAMOS DIBUJOS PARA REPRESENTAR ALGUNA INFORMACIÓN, ESTOS SE LLAMAN PICTOGRAMAS.

¿QUÉ ES UN PICTOGRAMA?

EL PICTOGRAMA ES UN GRÁFICO O DIBUJO QUE REPRESENTA DATOS DE LA REALIDAD.

OBSERVA ESTAS IMÁGENES, TODAS TIENEN UN SIGNIFICADO Y TE HACEN PENSAR EN UN SONIDO. LA PRIMERA EN EL SONIDO DE UN MEGÁFONO, LA SEGUNDA EN EL DE UNA BOCA Y SU VOZ, EL TERCERO EN EL TIMBRE DE UNA NOTIFICACIÓN, EL CUARTO EN EL DE UNA BOMBA QUE VA A EXPLOTAR, EL QUINTO EN EL DESPERTADOR DE UN RELOJ Y EL ÚLTIMO EN EL TRUENO QUE VIENE TRAS UN RAYO. ¡TODOS SON PICTOGRAMAS!

¿SBÍAS QUÉ?
LOS PICTOGRAMAS REPRESENTAN OBJETOS, PERSONAS, ANIMALES, SITUACIONES, SENTIMIENTOS O ACCIONES.

USO DEL PICTOGRAMA

LOS PICTOGRAMAS SON UTILIZADOS EN TODO EL MUNDO PARA EXPRESAR UN MENSAJE COMPLETO DE MANERA SENCILLA. LOS DIBUJOS O SÍMBOLOS UTILIZADOS LOS PUEDEN ENTENDER PERSONAS DE TODAS LAS EDADES.

ESTE ES UN PICTOGRAMA EN EL QUE VEMOS UN HOMBRE Y UNA MUJER. POR LO GENERAL, LOS ENCONTRAMOS EN LOS ESPACIOS PÚBLICOS Y EN ZONAS EN LAS QUE SOLO PUEDEN INGRESAR HOMBRES O MUJERES, POR EJEMPLO, EN LOS BAÑOS PÚBLICOS. TAMBIÉN PODEMOS ENCONTRARLOS EN EMPRESAS DONDE LOS HOMBRES TRABAJAN EN UN SECTOR Y LAS MUJERES EN OTRO.

¿DÓNDE PODEMOS ENCONTRAR PICTOGRAMAS?

  • EN LAS SEÑALES DE TRÁNSITO.
  • EN CARTELES DE UN LUGAR PÚBLICO, COMO EN LOS BAÑOS
  • EN HISTORIETAS O CÓMICS.
  • EN PRODUCTOS.
  • EN ESTADÍSTICA, PARA REPRESENTAR DATOS.

PICTOGRAMAS EN LAS VÍAS

LOS PICTOGRAMAS SON MUY UTILIZADOS EN TODOS LOS PAÍSES PARA REPRESENTAR SITUACIONES QUE PODEMOS O NO PODEMOS HACER. LAS SEÑALES DE PROHIBICIÓN SIEMPRE TIENEN UN PICTOGRAMA Y UN CÍRCULO ROJO SOBRE ESTE CON UNA BANDA DEL MISMO COLOR, POR EJEMPLO, EN LA IMAGEN SE NOS INDICA QUE NO PODEMOS BOTAR BASURA.

PICTOGRAMAS COMUNES

ES COMÚN UTILIZAR LOS PICTOGRAMAS EN MATEMÁTICA PARA REPRESENTAR CANTIDAD DE DATOS. VEAMOS:

LOS NIÑOS DE 1° GRADO VAN DE PASEO AL ZOOLÓGICO Y DEBEN LLEVAR FRUTAS PARA COMPARTIR EN SU MERIENDA.

ESTA TABLA EXPRESA LA CANTIDAD DE FRUTAS, CADA FRUTA ES IGUAL A 1. ¿LAS CONTAMOS?

LOS NIÑOS DE 1° GRADO LLEVAN 7 NARANJAS Y 8 BANANAS.

¡A PRACTICAR!

1. LA MAESTRA DE 1° GRADO LES CONSULTÓ A SUS ALUMNOS A QUIENES LES GUSTA PINTAR Y A QUIENES LES GUSTA LEER. LA TABLA MUESTRA LOS RESULTADOS. OBSERVA Y RESPONDE.

  • ¿A CUÁNTOS NIÑOS DE 1° GRADO LES GUSTA PINTAR?
SOLUCIÓN
A 9 NIÑOS DE 1° GRADO LES GUSTA PINTAR.
  • ¿A CUÁNTOS NIÑOS DE 1° GRADO LES GUSTA LEER?
SOLUCIÓN
A 5 NIÑOS DE 1° GRADO LES GUSTA LEER.
  • ¿CUÁNTOS NIÑOS HAY EN TOTAL EN PRIMER GRADO?
SOLUCIÓN
EN 1° GRADO HAY 14 NIÑOS.

2. EL DOCTOR PABLO, REGISTRÓ LA CANTIDAD DE PERSONAS QUE FUERON A SU CONSULTORIO EN UNA SEMANA. OBSERVA LA TABLA Y RESPONDE LAS PREGUNTAS.

  • ¿CUÁNTAS PERSONAS FUERON EL DÍA LUNES?
SOLUCIÓN
EL DÍA LUNES FUERON 4 PERSONAS.
  • ¿CUÁNTOS HOMBRES FUERON EL DÍA MARTES?
SOLUCIÓN
EL DÍA MARTES FUERON 2 HOMBRES.
  • ¿CUÁNTAS MUJERES FUERON EL DÍA VIERNES?
SOLUCIÓN
EL DÍA VIERNES FUERON 2 MUJERES.
  • ¿EN QUÉ DÍA ASISTIERON MÁS PERSONAS?
SOLUCIÓN
EL DÍA VIERNES ASISTIERON MÁS PERSONAS.
  • ¿EN QUÉ DÍA ASISTIERON MENOS PERSONAS?
SOLUCIÓN
EL DÍA JUEVES ASISTIÓ ASISTIERON MENOS PERSONAS.
  • ¿A CUÁNTOS PACIENTES ATENDIÓ EL DOCTOR PABLO TODA LA SEMANA?
SOLUCIÓN
EL DOCTOR PABLO ATENDIÓ A 21 PERSONAS EN TODA LA SEMANA.
RECURSOS PARA DOCENTES

Artículo “Gráficos estadisticos”

Este recurso te brindará más información sobre los gráficos y sus tipos, incluidos los pictogramas.

VER

CAPÍTULO 6 / TEMA 2

TABLAS Y GRÁFICOS

Las tablas y los gráficos son herramientas usadas para representar datos. Se emplean en votaciones electorales, en empresas e incluso en etiquetas de productos. Estos recursos son muy útiles, porque su diseño permite entender un problema de manera más clara y hace que el análisis de los datos sea más rápido.

tablas de frecuencia

Las tablas de frecuencia o estadísticas nos permiten organizar datos con su frecuencia respectiva. La frecuencia es el número de veces que se repite un dato. Están formadas por filas que son hileras de datos horizontales y por columnas que son hileras de datos verticales. Para leer una tabla hay que leer primero la columna del dato de interés y luego desplazarse horizontalmente hasta la frecuencia que existe para ese dato.

Por ejemplo, imaginemos que la maestra realiza esta pregunta a sus estudiantes: ¿qué edad tienes? Luego representa los resultados en la siguiente tabla:Como podrás observar, en la tabla aparecen organizadas las edades y el número de niños que tienen esa edad. De la misma podemos concluir lo siguiente:

  • Hay 14 niños que tienen 8 años.
  • Hay 19 niños que tienen 9 años.
  • hay 1 niño que tiene 10 años.

Las tablas nos suministran información y permiten relacionar los datos que en ellos se encuentran (edad y número de niños).

Las tablas y los gráficos se utilizan en varias áreas de la ciencia como la biología, la química, la geografía, la economía, la medicina, etc. La mayoría de las veces, los datos que son mostrados en tablas o gráficos que se obtienen a partir de encuestas y resultados de experimentos. Se suelen usar para representar la información obtenida de manera más clara.

tablas de frecuencia de doble entrada

Una tabla de frecuencia de doble entrada es una herramienta que ayuda a organizar datos y comparar varios elementos referentes al mismo tema.

Al igual que en las tablas de frecuencia, los datos se ordenan en filas y columnas. Se llaman tablas de doble entrada porque incluyen dos variables diferentes. La primera se sitúa en la parte superior y se ordena de forma horizontal, mientras que la segunda se suele ubicar en la primera columna y se ordena de forma vertical.

¿Sabías qué?
Una variable es toda característica que puede medirse y que puede adoptar diferentes valores.

– Veamos un ejemplo:

Roberto y Camila registraron en una tabla el número de películas que vieron cada día en una semana y estos fueron los resultados que obtuvieron:

xxxxxxxxxx Lunes Martes Miércoles Jueves Viernes Sábado Domingo
Roberto 2 4 2 3 2 4 1
Camila 3 2 4 3 3 1 2

-¿Cuántas películas vio Roberto el lunes?

Para conocer cuántas películas vio Roberto el lunes, debemos ubicar la fila donde aparece el nombre de Roberto y luego ubicar la columna del día lunes. La intersección entre dicha fila y dicha columna será la respuesta:

xxxxxxxxxx Lunes Martes Miércoles Jueves Viernes Sábado Domingo
Roberto 2 4 2 3 2 4 1
Camila 3 2 4 3 3 1 2

Roberto vio 2 películas el día lunes.

-¿Cuántas películas vio Camila el día viernes?

Para responder esta pregunta nos ubicamos en la fila donde aparece el nombre de Camila y luego nos desplazamos hasta la columna del día viernes, la respuesta será la intersección entre dicha fila y dicha columna.

xxxxxxxxxx Lunes Martes Miércoles Jueves Viernes Sábado Domingo
Roberto 2 4 2 3 2 4 1
Camila 3 2 4 3 3 1 2

Camila vio 3 películas el día viernes.

gráficos de barra

Un gráfico de barra es una forma de representar un conjunto de datos a través de barras del mismo ancho, es uno de los gráficos más sencillos y uno de los más utilizados, seguramente lo has visto en el periódico o en la televisión cuando se habla de la variación de un fenómeno.

Los gráficos de barras están formados por columnas o barras que contienen el mismo ancho y su altura indica un valor que se encuentra asociado a una escala de frecuencia. Los elementos principales, además de la escala, son el nombre del gráfico, el nombre de las variables y las unidades de medida. Estos gráficos son muy usados en los análisis de resultados de investigaciones.

Este tipo de gráficos está formado por barras rectangulares de longitudes proporcionales a los valores que se indican en la escala. Sirven para comparar dos o más valores y están compuestos por dos ejes:

  • El eje horizontal: en este eje se coloca la variable, es decir; una característica o cualidad del elemento que se estudia y puede medirse. Por ejemplo, la edad de una persona, su peso, el lugar de nacimiento, su estatura, etc.
  • El eje vertical: en este eje se coloca la frecuencia del dato.

– Por ejemplo:

Se realizó una encuesta a 20 niños sobre su asignatura preferida, 7 respondieron Ciencias Naturales, 8 eligieron Lengua y 5 escogieron Matemáticas. De esta forma, sabemos que la frecuencia de la asignatura Ciencias Naturales es 7, la de la Lengua es 8 y la variable Matemáticas es 5. La representación gráfica es la siguiente:

Si invertimos los ejes y colocamos la variable en el eje vertical y la frecuencia en el eje horizontal, tendremos un diagrama de barras horizontal, es decir; las barras estarían en posición horizontal.

¿Sabías qué?
Los gráficos son herramientas necesarias para la comprensión de diferentes disciplinas como la demografía.

¿Cómo se elabora un gráfico de barra?

Para elaborar gráficos de barra podemos utilizar la información que nos suministra la tabla de frecuencia. Una vez analizada:

  1. Une dos líneas, una vertical y otra horizontal, hazlas coincidir en un punto en forma de L que será el origen de ambas. Estas serán los ejes. La línea vertical representará la escala o el eje de la frecuencia. La línea horizontal se empleará para describir a las variables estudiadas.
  2. Dibuja las barras en su variable correspondiente de forma tal que cada barra tenga la misma longitud de su frecuencia.
  3. Escribe el nombre del gráfico, las variables y las unidades de medida.

Tipos de gráficos de barra

Existen dos tipos principales:

  • Gráfico de barra sencillo: representa los datos de una única serie o conjunto de datos. El ejemplo que vimos anteriormente es de este tipo.
  • Gráfico de barra agrupado: compara los datos de dos o más series o conjuntos de datos, con este gráfico se pueden representar las tablas de frecuencia de doble entrada. Veamos un ejemplo de este tipo:

Supongamos que la encuesta del ejemplo anterior sobre las asignaturas favoritas se realizó en dos clases diferentes de primaria (3º y 4º grado). Vamos a representar cada grado con un color diferente. Sobre una misma variable se representan las frecuencia que obtuvo en cada grado. Para facilitar la lectura se suelen usar colores diferentes para cada conjunto de datos. En este caso el diagrama sería así:

pictogramas con escala

Un pictograma es un tipo de gráfico donde la información se grafica a través de dibujos o figuras, al igual que el gráfico de barra su propósito es representar datos.

Este tipo de gráficos está formado por dibujos o figuras que son proporcionales a los valores que representan. Está compuesto por dos ejes:

  • El eje horizontal: en este eje se coloca la variable, es decir, una característica o cualidad de un individuo o elemento.
  • El eje vertical: en este eje se coloca la frecuencia del dato.

¿Cómo se elaboran los pictogramas con escala?

Para elaborar pictogramas podemos utilizar la información que nos suministra la tabla de frecuencia. Y debemos realizar los siguientes pasos:

  1. Une dos líneas: dibuja los ejes horizontales y verticales en forma de L.
  2. Registra en la línea vertical una escala numérica a partir de cero (0) que servirá para representar la frecuencia.
  3. Debajo de la línea horizontal escribe los nombres de las variables.
  4. Haz que coincidan los datos en estudio con su frecuencia, a través de dibujos. Se suelen usar dibujos asociados al problema de estudio.
  5. Escribe el título del gráfico, escala y el nombre de las variables.

Veamos un ejemplo:

Se hizo una encuesta a 12 niños sobre su preferencia de animales domésticos, 6 niños eligieron a los perros, 2 eligieron a los conejos y 4 eligieron a los gatos. El pictograma que se obtuvo fue el siguiente:

Cada dibujo o figura representa un niño que eligió esa opción.

VER INFOGRAFÍA

¿cómo graficar los resultados de una encuesta

Los resultados de una encuesta se ordenan en una tabla de frecuencia, que según el caso, puede ser simple o de doble entradas. Los resultados se pueden graficar mediante gráficos de barra o pictogramas. El tipo de gráfico depende de la investigación. Por ejemplo, una empresa o laboratorio se suelen usar gráficos de barra porque las escalas son más precisas y son más formales. Los pictogramas se suelen usar en la prensa escrita porque permiten que el contenido sea captado de manera más simple y su diseño es más amigable.

¡A practicar!

1. Se encuestó a un grupo de 20 niños y 20 niñas para determinar qué tipo de publicaciones eran sus favoritas y se obtuvieron los siguientes resultados:

Los niños:

  • 9 niños eligieron los cuentos.
  • 7 niños eligieron las historietas.
  • 4 niños eligieron las revistas.

Las niñas:

  • 8 niñas eligieron los cuentos.
  • 5 niñas eligieron las historietas.
  • 7 niñas eligieron las revistas.

Representa los datos en una tabla de frecuencia y en un gráfico de barras.

Solución

2. Se encuestaron a un grupo de 15 personas sobre sus actividades preferidas y se obtuvieron los siguientes resultados:

  • 7 personas seleccionaron el baile.
  • 5 personas seleccionaron el canto.
  • 3 personas seleccionaron la actuación.

Ordena los datos en una tabla de frecuencia y represéntalos en un pictograma.

Solución

RECURSOS PARA DOCENTES

Artículo “Gráficos estadísticos”

El siguiente material explica qué son los gráficos estadísticos y sus diferentes tipos.

VER

Artículo “Estadística: tabla de valores”

El artículo explica qué son las variables y se enfoca en cómo construir una tabla de valores. También propone una serie de ejercicio con respuestas para practicar.

VER

CAPÍTULO 6 / TEMA 4 (REVISIÓN)

ESTADÍSTICA Y PROBABILIDAD | ¿qué aprendimos?

REPRESENTACIÓN DE DATOS

Podemos representar datos en gráficos y tablas. Los gráfico de barras se utilizan para representar información numérica en un sistema de ejes coordenados: en el eje horizontal ubicamos las categorías y en el eje vertical los datos numéricos. Otro tipo de gráfico es el lineal, el cual sirve para comparar datos, representar la frecuencia de ciertas variables y mostrar la evolución o cambios que le ocurren a un fenómeno. También están los gráficos circulares que representan variables cualitativas por medio de porcentajes y porciones. Por otro lado están los pictogramas que se construyen igual que el diagrama de barras pero se sustituyen los rectángulos por dibujos.

Múltiples gráficos estadísticos muestran el crecimiento de la población mundial gracias a los avances en la ciencia, la higiene y la medicina.

cOMBINACIONES

Las combinaciones son una forma de agrupar elementos de un conjunto sin importar el orden. Por ejemplo, cada vez que nos vestimos hacemos combinaciones de camisas, pantalones y zapatos. Las tablas de doble entrada permiten analizar los datos y combinarlos de todas las maneras posibles. Para resolver algunos problemas combinatorios también es posible utilizar los diagramas de árbol que permiten visualizar todas las formas posibles de combinar todos los elementos.

El cubo de Rubik posee millones de combinaciones posibles.

probabilidad

La probabilidad sirve para predecir de la mejor manera si un suceso puede ocurrir o no. A los fenómenos predecibles se los llama determinísticos; a los que no se pueden predecir, se los denomina aleatorios. Algunos fenómenos aleatorios pueden ser mas probables que otros, y esta probabilidad puede ser calculada matemáticamente. Por otra parte, si deseamos saber el valor característico de un conjunto, podemos calcular su media aritmética o promedio, que se obtiene al sumar los elementos de una muestra y dividir el resultado por el total de elementos.

El juego de ruleta posee 38 números para jugar: la probabilidad que salga el número al que se jugó es de 1/38.

CAPÍTULO 6 / TEMA 1

REPRESENTACIÓN DE DATOS

Representamos datos en tablas y gráficos para interpretar la información de manera clara, precisa y ordenada. Esta tarea nos permite comparar y relacionar cantidades entre sí. Existe una variedad de gráficos: lineales, de barras, circulares o pictogramas. Todos tienen características particulares que los diferencian entre sí.

Los gráficos estadísticos son un conjunto de herramientas visuales que nos permiten organizar y presentar de manera más clara y atractiva datos que han sido tomados previamente. Su campo de aplicación no se limita solo al numérico, de hecho, se puede utilizar en casi cualquier estudio de investigación.

¿qué son los Gráficos?

Los gráficos son representaciones que nos permiten comprender distintas situaciones de la realidad. En matemática, particularmente en la estadística, brindan información a simple vista de los datos recopilados.

Los gráficos permiten el análisis de datos obtenidos y los presenta en forma tal que permita comparar, predecir y comprender las características del objeto de estudio.

Existen distintos tipos de gráficos, y la elección de uno en particular depende de la naturaleza de los datos y de lo que se quiera analizar. No obstante, los objetivos generales en todos ellos son los mismos:

  • Registrar datos de manera clara y concreta.
  • Comunicar la información en forma sencilla.
  • Comprender la estructura del conjunto de datos.

¿Sabías qué?
Los gráficos pueden funcionar como complementos explicativos de un texto para facilitar la transmisión de ideas.

gráfico de barras

En este tipo de gráficos, como su nombre lo indica, se emplean barras que pueden tener sus bases en el eje y o en el eje x. Las categorías se ubican en el eje horizontal y los datos numéricos en el eje vertical. La altura de cada barra muestra la cantidad de veces que se eligió una categoría. Para hacer el diagrama, generalmente la información se obtiene de una tabla de frecuencias en la que fueron volcados los datos recopilados.

– Ejemplo:

En una escuela iniciaron las inscripciones para los juegos olímpicos intercolegiales. La siguiente tabla muestra el deporte que eligió cada alumno:

Deporte Alumnos inscritos
Atletismo 20
Fútbol 30
Baloncesto 16
Béisbol 24
Voleibol 10

Con los datos que aporta la tabla se representa el gráfico de barras. Las categorías son los deportes y se grafican en el eje horizontal, y los alumnos inscritos van en el eje vertical.

Por medio del gráfico de barras podemos ver rápidamente que el deporte más elegido por los estudiantes fue el fútbol, seguido del béisbol y del atletismo. Por otro lado, el deporte menos elegido fue el voleibol.

gráficos lineales

Los gráficos lineales se representan en un plano (dos dimensiones) mediante el uso de un sistema de coordenadas. Se grafica sobre un plano cartesiano donde dos variables son relacionadas y los puntos son unidos por una línea continua e irregular.

Estos gráficos se utilizan para mostrar la evolución o los cambios que le ocurren a un fenómeno durante algún período de tiempo, como por ejemplo la estatura de un niño, la variación del precio de un producto y otros fenómenos.

– Ejemplo:

Se registró el clima de la ciudad de Buenos Aires durante una semana y las temperaturas promedio del día fueron las siguientes:

Día Temperatura (°C)
Lunes 17
Martes 19
Miércoles 12
Jueves 10
Viernes 14
Sábado 16
Domingo 16

A partir de estos datos podemos representar un gráfico lineal. Los días van en el eje horizontal y las temperaturas en el eje vertical.

Este tipo de gráfico permite distinguir de manera clara el desarrollo de la temperatura con el paso de los días. Notamos que el día con mayor temperatura fue el martes y el día con menor temperatura fue el jueves.

La estadística en otras ciencias

No solo en las matemáticas se utilizan gráficos estadísticos, sino también las ciencias sociales. La demografía y la sociología usan estas herramientas para comprender múltiples y diferentes fenómenos, como el crecimiento de la población mundial y la influencia de los los avances en ciencia, higiene y medicina en el proceso.

gráficos circulares

Los gráficos circulares muestran porciones y porcentajes. También son conocidos como gráficos de torta o pastel y se usan para comparar porcentajes con respecto a un total de datos. Para hallar los porcentajes parciales, se dividen los 360° del círculo de acuerdo a los valores dados.

– Ejemplo:

En un zoológico contaron la cantidad de animales que tienen por grupos de especie. Los datos fueron los siguientes:

Especie Cantidad de animales Porcentaje
Mamíferos 250 25 %
Reptiles 200 20 %
Anfibios 150 15 %
Aves 400 40 %

Como se puede observar, cada porción representa a una especie y el porcentaje que hay de ella en el zoológico con respecto al total.

¿Cómo obtener el porcentaje?

Una manera de hacerlo es por medio de una regla de tres. Para el ejemplo anterior seguimos los siguientes pasos:

1. Calculamos la cantidad total de animales por medio de una suma de cada grupo de especie.

Especie Cantidad de animales
Mamíferos 250
Reptiles 200
Anfibios 150
Aves 400
1.000

 

2. Empleamos una regla de tres simple en la que el total de animales es igual al 100 %. Luego hacemos el cálculo con cada grupo, por ejemplo, con los mamíferos sería así:

1.000 → 100 %

250 → x

x = (250 × 100 %) : 1.000 = 25 %

Y con las aves sería así:

1.000 → 100 %

400 → x

x = (400 × 100 %) : 1.000 = 40 %

pictogramas

Un pictograma es un tipo de gráfico que incluye figuras o dibujos relacionados con los datos que se van a analizar. El pictograma se elabora del mismo modo que el gráfico de barras pero se sustituyen los rectángulos por dibujos.

– Ejemplo:

Sofía registró todas las llamadas que hizo durante la semana.

Día Cantidad de llamadas
Lunes 3
Martes 2
Miércoles 1
Jueves 3
Viernes 4
Sábado 7
Domingo 2

 

Cada dibujo representa una llamada, es decir que el día que más llamadas hizo fue el sábado y el día que hizo menos llamadas fue el miércoles.

Existen muchos más gráficos, como los de dispersión, de burbujas, radiales o mapas estadísticos, también conocidos como cartograma. Los cartogramas presentan datos por regiones o zonas. Al igual que en un mapa topográfico, los colores y las tramas indican áreas que están en el mismo rango de valores.

¡A practicar!

1. Observa el gráfico de barras y responde:

En un curso se ha decidido recolectar botellas de plástico para reciclar. El gráfico muestra la cantidad de botellas recolectadas en una semana.

 

a) ¿Cuántos botellas se recolectaron esa semana?

Solución
1.150

b) ¿Cuál día se recolectó mayor cantidad de botellas plásticas?

Solución
El día martes.

c) ¿El día jueves se recolectaron 250 botellas plásticas?

Solución
No. El jueves se recolectaron 150 botellas plásticas.

d) ¿Cuál día recolectaron menos cantidad de botellas?

Solución
El día miércoles.

 

2. Este gráfico lineal representa la asistencia de los estudiantes al taller de carpintería. Responde las preguntas.

a) ¿Cuántos estudiantes asistieron al taller de carpintería la semana 4?

Solución
5 estudiantes.

b) ¿En cuál semana asistieron más estudiantes al taller de carpintería?

Solución
En la semana 1.

c) ¿En cuál semana asistieron menos estudiantes al taller de carpintería?

Solución
En la semana 4.

 

3. El siguiente gráfico muestra la cantidad de población mundial por continente para 2006. Responde las preguntas.

 

a) ¿Cuál continente tiene más población? ¿Y qué porcentaje representa?

Solución
Asia tiene más población y representa el 60 %.

b) ¿Cuál continente tiene menos población?

Solución
Oceanía.

c) ¿Qué lugar, ordenado de mayor a menor, ocupa la población de Europa?

Solución
Europa ocupa el cuarto lugar. 

d) ¿Qué continente tiene mayor población después de Asia?

Solución
América y África.
RECURSOS PARA DOCENTES

Artículo “Gráficos estadísticos”

El siguiente recurso te permitirá complementar la información sobre los diferentes tipos de gráficos estadísticos.

VER

CAPÍTULO 6 / TEMA 4 (REVISIÓN)

Estadística y probabilidad | ¿Qué aprendimos?

Recursos para representar datos

Existen diversas formas de representar los datos con la finalidad de que su análisis y comprensión sea más fácil. Los gráficos y tablas son usados en diversas áreas y como recurso visual son de gran importancia. Los pictogramas permiten una comprensión más rápida de los datos porque emplean imágenes y símbolos. Las tablas son otro recurso que agrupa y ordena los datos en filas y columnas, y generalmente los ordena en función de los datos cualitativos y cuantitativos que se estudien. Finalmente, los gráficos de barra asocian el valor de los datos a columnas que se encuentran, a su vez, relacionadas a una escala.

Los gráficos como recurso visual permiten interpretar de forma rápida un conjunto de datos.

Interpretación de datos

Los datos por sí solos no tienen ningún valor si no se interpretan, pero antes de hacerlo hay que recopilarlos. La encuesta es una manera de obtener datos a través de un cuestionario prediseñado que es aplicado a un grupo de personas. El promedio aritmético o media aritmética corresponde al valor promedio de un conjunto de datos, y se obtiene al dividir la suma de todos los datos entre el número de datos. La moda, por su parte, es el dato que más se repite. Las tablas de doble entrada son una herramienta útil para entender las combinaciones posibles de un problema.

Los datos obtenidos en una encuesta se suelen representar en gráficos y tablas para su análisis.

Probabilidad

A los eventos que se pueden predecir y cuyo resultado se conoce con anterioridad se los conoce como sucesos deterministas o seguros. También hay eventos en los que el resultado no se conoce con certeza porque ocurre al azar. Es en este tipo de experimentos aleatorios donde más se concentra la probabilidad, la cual estudia la posibilidad de que un evento ocurra o no. Estos eventos pueden ser de varios tipos: mutuamente excluyentes cuando es imposible que ocurran de manera simultánea con otros; independientes cuando no se ven influenciados por la ocurrencia de otros eventos; y dependientes si se ven afectados por la ocurrencia de otros.

Los eventos aleatorios se caracterizan porque su resultado no se puede predecir.

CAPÍTULO 6 / TEMA 1

Recursos para representar datos

Hay veces en las que los datos por sí solos no nos proporcionan ninguna información, pero al representarlos de manera gráfica podemos comprender mejor lo que significan. Por esta razón, en matemática y en estadística se suelen usar gráficos, diagramas y tablas para mostrar los valores. 

Pictogramas

Son gráficos que emplean dibujos para representar los datos. Estos recursos visuales permiten una rápida comprensión de los datos porque usan símbolos o imágenes.

En matemática se pueden representar en varias formas:

Gráfico de barras con pictogramas

Gráfico de tablas con pictogramas

En ambos ejemplos se representa el número de goles que han hecho Juan, David, Tobías y Mario. Cada imagen de referencia representa los goles de cada uno. De esta forma, Juan metió 5 goles, David 3 goles, Tobías 4 goles y Mario 1 gol.

En este caso es fácil observar que la persona que hizo más goles fue Juan y quien hizo menos fue Mario. No hacen faltan los números ni contar porque los datos se ven fácilmente a través del gráfico.

¿Sabías qué?
A los pictogramas también se los denomina gráficos de imágenes.

VER INFOGRAFÍA

Tablas

Las tablas son otro recurso usado para representar datos. Por lo general, en las tablas se usan datos cualitativos y datos cuantitativos. Los datos cualitativos indican las características de algo, como nombre, tamaño o color. Los datos cuantitativos expresan la cantidad.

En el caso del ejemplo anterior del número de goles, podemos representarlo en formato de tabla de la siguiente manera:

Nombre Número de goles
Juan 5
David 3
Tobías 4
Mario 1

Los datos cualitativos son los nombres y los datos cuantitativos son el número de goles.

Observa que en una tabla los datos se organizan en filas y columnas, las filas son las hileras horizontales y las columnas son las hileras de datos verticales de una tabla.

Por ejemplo, si queremos saber el número de goles que hizo Tobías debemos ubicar su nombre y luego movernos en esa fila hasta la columna de número de goles, de esa manera sabemos que Tobías hizo 4 goles.

La estadística y los gráficos

La estadística es una rama de la matemática que estudia la recolección, análisis e interpretación de datos con el propósito de establecer comparaciones que permitan entender el problema que se estudia. Los gráficos y tablas son tan importantes para la estadística como lo son el plano, la recta y el punto para la geometría.

Gráficos de barra

Son un tipo de diagrama que permite la representación de datos a través de columnas, por eso también se los conocen como gráficos de columnas. La longitud de cada barra o columna es completamente proporcional al valor que representan. Es por ello que se suelen representar con una escala numérica como referencia.

Seguimos con el mismo ejemplo del número de goles, pero esta vez representado en un gráfico de barras:

Observa que los tamaños de las barras son proporcionales a la cantidad que representa. La barra más grande es la del valor más grande y la más chica corresponde al valor más pequeño. Si queremos saber cuál es el valor representado por la gráfica solo tenemos que fijarnos en el tope de la barra y leer el número que indica la escala.

Los gráficos estadísticos además de proporcionar una rápida y fácil comprensión de los datos, también permiten realizar un mejor análisis. Muchas empresas emplean gráficos con el propósito de realizar proyecciones o estimaciones. En los medios de comunicación es frecuente observar gráficos para representar encuestas o resultados electorales.

¿Qué importancia tiene representar los datos gráficamente?

Imagina que se obtienen los datos de todos los vuelos internacionales que se hicieron en un país en los últimos veinte años, en efecto, serían demasiados números para interpretar, y si se quisieran comparar esos datos a simple vista no sería nada sencillo. Es por ello que se emplean gráficos, no solo para facilitar la comprensión sino también para organizar los datos de una manera más clara.

Las computadoras y muchos otros equipos como las calculadoras modernas, permiten realizar gráficos de manera sencilla. Gracias a los gráficos es posible realizar promedios, proyecciones y análisis. Por esto y más, son una herramienta muy útil en la actualidad.

Las economías de los países, el valor de las acciones en la bolsa y el precio del petróleo son algunos parámetros que suelen ser representados en gráficos para una rápida comprensión. Los gráficos son herramientas visuales que permiten organizar los datos de una manera más clara. Es común que el tipo de gráfico dependa del tipo de datos que se deseen representar.

¡A practicar!

1. Observa la siguiente imagen que muestra los trofeos que ganó una escuela y responde las siguientes preguntas.

a) ¿Qué tipo de gráfico es?

Solución
Pictograma.

b) ¿Cuántos trofeos obtuvo la escuela en el año 2020?

Solución
2

c) ¿En qué año la escuela obtuvo el mayor número de trofeos ?

Solución
2019

d) ¿En qué año la escuela obtuvo únicamente un trofeo?

Solución
2018

 

2. El siguiente gráfico muestra los libros prestados en una biblioteca durante una semana. Observa el gráfico y responde las preguntas.

a) ¿Qué tipo de libro se prestó más en esa semana?

Solución
Biología.

b) ¿Cuántas novelas se prestaron?

Solución
2

c) ¿Cuántos libros de arte se prestaron?

Solución
4

d) ¿De qué tipo de libro la biblioteca prestó solo 3 libros?

Solución
Idiomas.

 

3. Observa la siguiente tabla que muestra los animales en una granja y responde las preguntas.

Animales Cantidad en una granja
Vaca 5
Perro 2
Gato 1
Caballo 3
Gallina 10
Oveja 15

a) ¿De cuál animal hay más cantidad en la granja?

Solución
Oveja.

b) ¿Cuántas gallinas hay?

Solución
10

c) ¿Cuántos perros hay?

Solución
2

d) ¿De cuál animal hay menos cantidad en la granja?

Solución
Gato.

 

RECURSOS PARA DOCENTES

Artículo “Gráficos estadísticos”

Este artículo describe los principales gráficos usados en la estadística para representar datos. También explica las principales características de cada uno.

VER

Artículo “Estadística”

Este artículo expone una breve reseña del objeto de estudio de la estadística como rama de la matemática, y de igual forma explica cómo es el proceso de recolección y análisis de datos.

VER

Artículo “Estadística: tabla de valores”

Este artículo explica las características de una tabla de valores y sus aplicaciones en la estadística, y proporciona unos ejemplos para comprender el texto.

VER

CAPÍTULO 5 / TEMA 5 (REVISIÓN)

ESTADÍSTICA Y PROBABILIDAD | ¿QUÉ APRENDIMOS?

LOS PICTOGRAMAS

EL SER HUMANO SIEMPRE HA INTENTADO COMUNICARSE A TRAVÉS DE PINTURAS EN CAVERNAS O CON TALLADOS EN METALES Y MADERA. HOY DÍA TAMBIÉN LO HACEMOS Y EXPRESAMOS NUESTROS SENTIMIENTOS O DESEOS POR MEDIO DE IMÁGENES, COSA QUE LLAMAMOS “PICTOGRAMAS“. ESTOS PICTOGRAMAS SON USADOS EN SEÑALES DE TRÁNSITO, CARTELES PUBLICITARIOS, HISTORIETAS, AVISOS Y GRÁFICOS DE DE INFORMACIÓN QUE PUEDEN SER ENTENDIDOS POR TODAS LAS PERSONAS DEL MUNDO DE FORMA CLARA.

LOS PICTOGRAMAS SON UTILIZADOS EN LAS SEÑALES DE TRÁNSITO COMO ESTE.

TABLAS

LOS DATOS RECOLECTADOS TRAS UNA ENCUESTA PUEDEN ORGANIZARSE EN UNA TABLA. UNA TABLA ES UN CUADRO FORMADO POR FILAS, COLUMNAS Y CELDAS. LAS COLUMNAS SON LAS HILERAS VERTICALES, LAS FILAS SON LAS HILERAS HORIZONTALES Y LAS CELDAS RESULTAN DE LA UNIÓN ENTRE UNA FILA Y UNA COLUMNA. PUEDEN HACERSE CON NÚMEROS, CON PICTOGRAMAS Y CON MÁS DE DOS DATOS.

LAS TABLAS SON DE GRAN AYUDA PARA CONTROLAR EL DINERO QUE TENEMOS Y EL QUE GASTAMOS.

GRÁFICO DE BARRAS

LOS GRÁFICOS DE BARRAS MUESTRAN CON RECTÁNGULOS UNA INFORMACIÓN. ESTOS GRÁFICOS EXPRESAN A TRAVÉS DE BARRAS EL VALOR DE UNA CATEGORÍA Y SON MUY ÚTILES PARA VER DE FORMA RÁPIDA CUÁL TIENE UN MAYOR VALOR O UN MENOR VALOR. PARA REALIZARLO EN NECESARIO QUE PRIMERO ORGANICEMOS LOS DATOS EN UNA TABLA.

LOS GRÁFICOS DE BARRAS PUEDEN SER VERTICALES, HORIZONTALES O APILADOS.

PROBABILIDAD

LA PROBABILIDAD ESTUDIA LA POSIBILIDAD DE QUE UN EVENTO OCURRA O NO. POR EJEMPLO, SI LANZAMOS UN PAR DE DADOS NO SABEMOS CON SEGURIDAD QUÉ NÚMERO SALDRÁ, PERO SÍ SABEMOS QUE SALDRÁ EN CADA UNO UN NÚMERO MENOR A 7. ESTOS SON SUCESOS ALEATORIOS EN LOS QUE INTERVIENE EL AZAR, ES DECIR, QUE NO PODEMOS PREDECIR.

LOS JUEGOS DE CARTAS Y DADOS SON JUEGOS DE AZAR. HAY PROBABILIDAD DE QUE SALGA CUALQUIER CARTA DEL MAZO, ASÍ COMO CUALQUIER NÚMERO MENOR A 7 EN CADA DADO.

CAPÍTULO 5 / TEMA 4

PROBABILIDAD

¿ALGUNA VEZ HAS LANZADO UN DADO? ¿SIEMPRE SABES QUE NÚMERO SALDRÁ? ¡NO! ¿VERDAD? AUNQUE SABES QUE PUEDE SALIR UN NÚMERO DEL 1 AL 6 NO TIENES SEGURIDAD DE CUÁL DE ESOS NÚMEROS SERÁ. GRACIAS A LA PROBABILIDAD PODEMOS CALCULAR LA CANTIDAD DE VECES QUE UN EVENTO ALEATORIO COMO ESTE PUEDE OCURRIR O NO.

evento ALEATORIO

UN EVENTO ALEATORIO ES AQUEL QUE PUEDE OCURRIR O NO PUEDE OCURRIR Y EN EL QUE INTERVIENE EL AZAR. ES DECIR, QUE SI REPETIMOS EL MISMO EL EVENTO PODEMOS TENER SIEMPRE DISTINTOS RESULTADOS.

– EJEMPLOS:

  • LANZAR UNA MONEDA.
  • LANZAR UN DADO.
  • ELEGIR UNA CARTA DE UN MAZO.
  • SACAR UN CARAMELO ROJO DE UNA BOLSA CON CARAMELOS DE MÚLTIPLES COLORES.

COMO VES, NO PODEMOS PREDECIR EL RESULTADO DE ESTOS EVENTOS.

LOS DADOS SON OBJETOS CON FORMA DE CUBO Y TIENEN SEIS CARAS. CADA CARA REPRESENTA UN NÚMERO DEL 1 AL 6. ES NORMAL QUE LOS VEAS EN JUEGOS DE MESA COMO EL LUDO, EL MONOPOLIO Y EL PASE INGLÉS. CUANDO LANZAMOS UN DADO ESTAMOS SEGUROS QUE SALDRÁ UNO DE ESOS NÚMEROS, PERO NO SABEMOS CON SEGURIDAD CUÁL, ES DECIR, NO PODEMOS PREDECIR EL RESULTADO. ESO ES LO QUE CONOCEMOS COMO AZAR.

sucesos posibles

OBSERVA ESTAS BOLSAS CON BOLAS DE COLORES. SI SACAMOS UNA BOLA CON LOS OJOS CERRADOS NO SABRÍAMOS DE QUÉ COLOR SALDRÍA LA BOLA. SIN EMBARGO, PODEMOS PREDECIR QUÉ TAN PROBABLE ES QUE SAQUEMOS UN COLOR U OTRO.

– EJEMPLO:

NOTA QUE:

  • HAY 2 BOLAS ROJAS.
  • HAY 10 BOLAS AMARILLAS.

HAY MÁS BOLAS DE COLOR AMARILLO, ASÍ QUE:

 

ES MÁS PROBABLE QUE SAQUEMOS UNA BOLA DE COLOR AMARILLO.

 

NOTA QUE:

  • HAY 6 BOLAS ROJAS.
  • HAY 6 BOLAS AMARILLAS.

HAY IGUAL CANTIDAD DE BOLAS DE COLOR ROJO Y AMARILLO, ASÍ QUE:

 

ES IGUAL DE PROBABLE QUE SAQUEMOS UNA BOLA DE COLOR AMARILLO O DE COLOR ROJO.

 


NOTA QUE:

  • HAY 10 BOLAS ROJAS.
  • HAY 2 BOLAS AMARILLAS.

HAY MENOS BOLAS DE COLOR AMARILLO, ASÍ QUE:

 

ES MENOS PROBABLE QUE SAQUEMOS UNA BOLA DE COLOR AMARILLO.

SEGURO, PROBABLE O IMPOSIBLE

LOS SUCESOS SON CADA UNO DE LOS RESULTADOS POSIBLES DE UN EVENTO ALEATORIO. ESTOS PUEDEN SER SEGUROS, PROBABLES O IMPOSIBLES.

  • LOS SUCESOS SEGUROS OCURREN SIEMPRE.
  • LOS SUCESOS PROBABLES OCURREN A VECES.
  • LOS SUCESOS IMPOSIBLES NO OCURREN NUNCA.

– EJEMPLO:

 ES SEGURO SACAR UNA BOLA AMARILLA.

 ES PROBABLE SACAR UNA BOLA VERDE.

 ES IMPOSIBLE SACAR UNA BOLA AZUL.

¿SABÍAS QUÉ?
LOS SUCESOS QUE OCURREN CON SEGURIDAD SE LLAMAN “SUCESOS DETERMINISTAS”, POR EJEMPLO, LA HORA EN LA QUE ABRE UN BANCO SIEMPRE ES LA MISMA. 
ALFONSO TIENE BLOQUES DE COLOR AMARILLO, AZUL, ROJO, VERDE, BLANCO Y NEGRO PARA JUGAR. SI ESTÁN TODOS EN UNA CAJA Y SACA DE A UNO SIN VER ES SEGURO QUE ALFONSO ELEGIRÁ UN BLOQUE DE CUALQUIERA DE ESOS COLORES, ES PROBABLE QUE ELIJA UN BLOQUE AMARILLO, PERO ES IMPOSIBLE QUE ELIJA UN BLOQUE DE COLOR ANARANJADO O GRIS.

RECOPILACIÓN DE DATOS

TODOS LOS DATOS PUEDEN ORGANIZARSE EN UNA TABLA, EN UNA TABLA DE PICTOGRAMAS O EN UN GRÁFICO DE BARRAS. POR EJEMPLO, SI QUEREMOS ORGANIZAR LOS BLOQUES PARA JUGAR POR COLOR TENEMOS QUE CONTAR UNO POR UNO Y HACER GRUPOS DE COLORES. LUEGO LOS REPRESENTAMOS. POR EJEMPLO:

  • TABLA
COLOR DEL BLOQUE CANTIDAD DE BLOQUES
AMARILLO 16
AZUL 28
ROJO 32
VERDE 20

 

  • TABLA DE PICTOGRAMA
COLOR DEL BLOQUE CANTIDAD DE BLOQUES
AMARILLO
AZUL
ROJO
VERDE
CLAVE

= 4 BLOQUES

 

  • GRÁFICO DE BARRAS

NOTA QUE TANTO LA TABLA, COMO LA TABLA DE PICTOGRAMAS Y EL GRÁFICO DE BARRAS REPRESENTAN LOS MISMOS DATOS.

¡A PRACTICAR!

  1. COMPLETA CON “SEGURO”, “PROBABLE” O “IMPOSIBLE” LAS SIGUIENTES ORACIONES.
  • ES ____ LANZAR UN DADO Y QUE SALGA EL NÚMERO 7.
SOLUCIÓN
IMPOSIBLE
  • ES ____ LANZAR UNA MONEDA Y QUE SALGA CARA.
SOLUCIÓN
PROBABLE
  • ES ____ LANZAR UN DADO Y QUE SALGA UN NÚMERO MENOR A 7.
SOLUCIÓN
SEGURO

 

2. OBSERVA ESTA RULETA. LUEGO RESPONDE LAS PREGUNTAS.

  • ¿CUÁNTAS ZONAS ROJAS HAY?
    SOLUCIÓN
    3
  • ¿CUÁNTAS ZONAS VERDES HAY?
    SOLUCIÓN
    2
  • ¿CUÁNTAS ZONAS MORADAS HAY?
    SOLUCIÓN
    2
  • ¿CUÁNTAS ZONAS AMARILLAS HAY?
    SOLUCIÓN
    1
  • ¿CUÁL COLOR ES MÁS PROBABLE QUE SALGA LUEGO DE GIRAR LA RULETA?
    SOLUCIÓN
    EL ROJO.
  • ¿CUÁL COLOR ES MENOS PROBABLE QUE SALGA LUEGO DE GIRAR LA RULETA?
    SOLUCIÓN
    EL AMARILLO.
  • ¿CUÁLES COLORES TIENEN IGUAL PROBABILIDAD DE SALIR LUEGO DE GIRAR LA RULETA?
    SOLUCIÓN
    EL VERDE Y EL MORADO.
RECURSOS PARA DOCENTES

Artículo “Probabilidad”

Este artículo servirá de ayuda para profundizar sobre los conceptos básicos de la probabilidad.

VER