Desarrollo histórico de la química

La química es una ciencia que estudia la materia y los cambios que ocurren en ella. Aunque su origen es antiguo, se la considera una ciencia moderna, activa y en evolución. Su desarrollo histórico ha estado asociado al descubrimiento, manejo y transformación de los recursos naturales que el hombre disponía.

raíces prehistóricas

Desde su inicio, el ser humano aprendió a modificar los materiales de la naturaleza, lo que constituye el principio de la química. El descubrimiento del fuego fue, sin lugar a dudas, el más importante de la época; gracias a este el hombre primitivo logró cocinar sus alimentos, mantenerse caliente, elaborar moldes de arcilla y modelar algunos metales como el cobre y el estaño.

Con el descubrimiento del fuego, nuestros ancestros hicieron un importante progreso en la transformación de materiales.

Primeras civilizaciones

En la Edad Antigua, el conocimiento que tenía el ser humano sobre los materiales logró el desarrollo de grandes civilizaciones como la persa, la mesopotámica, la griega, la egipcia y la romana. Algunas técnicas dominadas para entonces eran el manejo del vidrio y de metales como el oro, la plata y el hierro; también hacían perfumes, barnices, jabones, medicamentos, vino y muchos otros productos.

¿Cómo se compone la materia?

En el siglo VI a. C. los griegos intentaron dar una explicación a cómo se componía la materia. Las primeras teorías propuestas por los filósofos fueron las siguientes:

  • Para Aristóteles (384-322 a C.) la materia estaba formada por cuatro elementos: agua, tierra, fuego y aire.
  • Según Tales de Mileto (624-546 a. C.) la sustancia básica era el agua, pues sin agua no hay vida.
  • Leucipo (siglo V a. C.) y su discípulo Demócrito (siglo IV a. C.) expusieron que la materia se dividía hasta llegar a una partícula indivisible que denominaron “átomo“.

¿Sabías qué?
La palabra “átomo” proviene del griego átomon: a que significa “sin” y tomon que significa “división”.
Estatua de bronce de Aristóteles en Alemania. Su teoría de los cuatro elementos (más tarde llamada cinco elementos al añadir el éter) fue aceptada por más de un milenio en Occidente.

La alquimia

El dominio técnico de la civilización egipcia combinado con las teorías filosóficas de los griegos dio paso a la alquimia: práctica que buscaba comprender la naturaleza y encontrar la perfección, lo cual se materializaba en el oro. Por dicha razón, los alquimistas se dedicaron a manipular metales y sustancias con el fin de hallar la piedra filosofal, la cual se creía era un compuesto mágico que convertía metales en oro y concedía la eterna juventud.

La alquimia fusionó la técnica, el misticismo, la astrología, la filosofía, la superstición y la magia. Por este camino se desarrollaron y perfeccionaron métodos como el baño de María, la destilación, la sublimación, la calcinación y la metalurgia; e instrumentos como el alambique y la balanza.

El oro era el material perfecto para los alquimistas.

Jabir ibn Hayyan

El árabe Jabir ibn Hayyan tuvo importantes avances en el alquimia, al punto de ser considerado por algunos expertos como el padre de la alquimia y fundador de la química. Él clasificó las sustancias en espíritus, metales y cuerpo sólidos. Los espíritus eran sustancias volátiles como el alcohol, mientras que los cuerpos sólidos eran no volátiles.

La química moderna

Ya para el siglo XVIII, la teoría de los cuatro elementos de Aristóteles no era suficiente para comprender cómo se componía la materia, pues los avances en el estudio de los gases certificaron que el aire no era un elemento, sino un conjunto de diferente sustancias. En la Edad Moderna inició la química propiamente dichas y los hitos que marcaron este período fueron los siguientes:

George Ernst Stahl

1659-1734

 

Propuso la teoría del flogisto, esta aseguraba que lo cuerpos combustibles tenían una sustancia denominada flogisto que se perdía en el aire al arder el material.

Robert Boyle

1627-1691

 

Realizó importantes avances en el estudio de los gases. Sus teorías y planteamientos lograron comprobarse de forma experimental, razón por la que se le atribuye el método cualitativo.

Joseph Priestley

1733-1804

 

Estudió diversos gases y descubrió que la combustión era posible gracias al oxígeno. Fue el primero en aislar el oxígeno en forma gaseosa y reconocer su importancia para la vida.

Antoine Lavoisier

1743-1794

 

Conocido como el padre de la química moderna gracias a sus estudio sobre la fotosíntesis, la oxidación de los cuerpos, la combustión, el aire, la respiración animal y su ley de la conservación de la masa.

química en la edad contemporánea

A partir del siglo XIX la química se desarrolló con más fuerza. El descubrimiento y síntesis de nuevas sustancias caracterizó esta etapa. Los acontecimientos más relevantes se señalan a continuación:

John Dalton

1766-1844

 

Propuso la primera teoría atómica. Según Dalton la materia estaba formada por átomos indivisibles, indestructibles, de forma esférica e iguales entre sí para un mismo elemento.

Ernest Rutherford

1871-1937

 

Estableció una estructura atómica con partículas más pequeñas, por lo que el átomo dejó de ser indivisible. Este modelo consta de un núcleo cargado positivamente y una zona de partículas con cargas negativas.

Niel Bohr

1885-1962

 

Expuso que el átomo tiene electrones ubicados en órbitas estables alrededor del núcleo. Estos electrones emiten o absorben energía cuando saltan de una órbita a otra.

Dimitri Mendeleiev

1834-1907

 

Organizó los elementos existentes hasta ese momento de acuerdo a sus pesos atómicos en una tabla conocida como “la tabla periódica de los elementos”.

Marie y Pierre Curie

1867-1934, 1859-1906

 

Estudiaron el fenómeno de la radiactividad y descubrieron dos elementos llamados radio y polonio.

James Chadwick

1891-1972

 

Este físico británico logró demostrar la existencia de los neutrones: partículas eléctricamente neutras con una masa similar a la de los protones y ubicadas en el núcleo del átomo.

Francis Crick y James Watson

1916-2004, 1928-actualidad

 

Juntos hicieron uno de los avances más importantes de la bioquímica: resolvieron la estructura tridimensional de la molécula de ADN.

CAPÍTULO 4 / TEMA 1

¿Qué es la energía?

Todos los objetos a nuestro alrededor tienen la capacidad de producir cambios. Por ello, convivimos con movimientos y transformaciones constantes, algunos más perceptibles que otros, pero que tienen su origen en un único concepto: la energía.

ENERGÍA: CAPACIDAD DE PRODUCIR TRABAJO

Ley de conservación de la energía

La energía no puede ser creada ni destruida, sino que puede ser transformada, por lo que la cantidad total de energía es siempre la misma. Por ejemplo, la energía lumínica del Sol se transforma en energía eléctrica mediante el uso de paneles solares.

La energía es la capacidad de un sistema físico para hacer el trabajo o mover algo contra una fuerza, como la gravedad. Si bien no se tiene una definición concreta de energía, los físicos han logrado determinar una ley universal: si la energía de un cuerpo aumenta en determinada cantidad, la de otro disminuye de manera proporcional.

La energía que la humanidad necesita en un año es irradiada por el Sol en 15 minutos.
¿Sabías qué?
El término “energía” proviene del griego enérgeia, que significa “actividad”. Pero esta idea no debe confundirse: no es necesario un movimiento abrupto para reconocer la presencia de energía ya que, en realidad, se encuentra en todos lados aunque no sea posible observarla.

TIPOS DE ENERGÍA

La energía es la capacidad de realizar cambios en los sistemas y los cuerpos. Hay diferentes tipos de energía en el universo y en muchas formas.

Energía primaria

La producción de energía primaria se relaciona con las formas de energía disponibles en la naturaleza antes de ser transformadas, como el petróleo, el gas natural, los combustibles sólidos, los combustibles renovables y la electricidad primaria.

 

VER INFOGRAFÍA

Energía mecánica

Es la energía almacenada en objetos y es la suma de otras dos fuentes de energía: cinética y potencial. Por ejemplo, justo en el punto más elevado de una montaña rusa, toda la energía del vagón es energía potencial y al comenzar a descender la energía potencial se transforma en energía cinética.

¿Qué es la energía hidráulica?

Es la energía producida por el aprovechamiento de la energía cinética y potencial gravitatoria de los saltos de agua natural. Se aplica en la generación de energía eléctrica para ciudades, pueblos e industrias.

Energía potencial

Es cualquier forma de energía que tiene un potencial almacenado que puede ser usado en el futuro, y que solamente se manifiesta al convertirse en energía cinética. Por ejemplo, si una pelota se levanta, adquiere energía potencial de la gravedad que se vuelve aparente al caer.

Tipos de energía potencial

 

 

Energía potencial elástica

Resulta de estirar y comprimir objetos elásticos, como las ligas.

 

Energía potencial gravitacional

Resulta del almacenamiento de energía por la fuerza de gravedad, como un fruto que cuelga de un árbol.

 

 

Energía potencial química

Resulta de la transformación de energía química a través de una reacción química, como el cambio de energía eléctrica a química en una pila.

Energía cinética

Significa “movimiento”. Cuanto más rápido se mueve un objeto, mayor es su energía cinética. La energía de los ríos y la del viento son formas de energía cinética. Ésta se puede convertir en energía mecánica mediante molinos de agua, molinos de viento o bombas conectadas a turbinas o a electricidad.

Al lanzar una pelota se transfiere energía cinética para que pase del estado de reposo al estado en movimiento.
Ventajas de la energía cinética

– No genera residuos tóxicos.

– Los parques generadores de energía cinética pueden construirse en terrenos no aptos para otras actividades.

– Los parques generadores son de rápida instalación.

Energía térmica

Todos los materiales están compuestos por moléculas en constante movimiento. La energía térmica es producto del movimiento de esas moléculas, es decir, la energía cinética que poseen. Cuanto más se muevan y choquen entre sí, mayor será el calor que generen y, por lo tanto, aumentará su temperatura y su energía térmica.

¿El calor es igual a la temperatura?

No. El calor es una forma de energía que se transfiere entre diferentes cuerpos o distintas partes de un cuerpo, las cuales presentan distintas temperaturas. Por su parte, la temperatura es una magnitud que da cuenta de nociones como frío, caliente o tibio. La misma se mide a través de un termómetro.

 

VER INFOGRAFÍA

 

Energía química

Es aquella que es liberada durante las reacciones químicas. Podemos encontrar este tipo de energía siempre en la materia, pero sólo se manifiesta cuando ocurre un cambio en ella. Algunos ejemplos de energía química son la combustión y la energía nuclear.

Energía eléctrica

VER INFOGRAFÍA

Es la energía transferida de un sistema a otro mediante el uso de electricidad, que es el movimiento de partículas cargadas. En otras palabras, este tipo de energía es causada por el movimiento de los electrones a través de materiales conductores de la electricidad.

Puede generarse a partir de otras energías y a su vez puede ser transformada y producir varios efectos: luminosos, térmicos y magnéticos.

La mantarraya puede generar corrientes eléctricas de hasta 200 voltios.
¿Qué es una represa hidroeléctrica?

Es un sistema diseñado y construido para producir energía eléctrica mediante el aprovechamiento del caudal de los cursos de agua.

 

VER INFOGRAFÍA

Energía radiante

Es energía transportada por la radiación. Tanto la luz visible como la radiación infrarroja son formas de energía radiante, ambas son emitidas por el Sol.

La energía de los rayos solares puede recuperarse y convertirse en electricidad o calor.

La energía radiante está en constante movimiento y a velocidades altísimas, lo que forma ondas que poseen distintas longitudes y frecuencias. La mayoría de estas ondas pueden propagarse por el vacío, por eso los rayos del Sol o las ondas de los satélites pueden alcanzar la superficie de la Tierra.

¿Sabías qué?
La energía radiante es aplicada en radiografías, medicina nuclear, radios y algunos aparatos electrónicos.

Energía nuclear

Es la energía contenida en el núcleo de un átomo. Se puede obtener a través de reacciones de fisión y fusión de un núcleo atómico. Dentro de los núcleos atómicos, las fuerzas entre los protones y neutrones del núcleo atómico son muy intensas, por lo que los procesos de transformación nuclear generan gran cantidad de energía.

Las reacciones en el núcleo pueden ser de fusión o de fisión.
¿Sabías qué?
En estrellas como el Sol, la energía atómica se libera cuando los núcleos se combinan en un proceso conocido como fusión.
¿Qué es un reactor nuclear?

Es una instalación física donde se produce, mantiene y controla una reacción nuclear en cadena. Se puede utilizar para la obtención de energía, para la producción de materiales fisionables como el plutonio, como armamento nuclear, o para la propulsión de buques o de satélites artificiales.

 

VER INFOGRAFÍA

Energía magnética

Es la capacidad de atraer o repeler que poseen algunos materiales sobre otros y que originan campos magnéticos permanentes que producen energía magnética. Existen diversos materiales con propiedades magnéticas, entre ellos podemos encontrar el níquel, el cobalto, el hierro y sus aleaciones. Sin embargo, la presencia de campos magnéticos influye, en mayor o menor medida, en todos los materiales.

UNIDADES DE MEDIDA DE ENERGÍA

Una de las propiedades de la energía es que puede ser medida. Para ello, según el Sistema Internacional, la unidad más utilizada es el “Joule” o “Julio”, y es simbolizada con la letra jota mayúscula (J). Esta unidad es nombrada así en honor al físico James Prescott Joule, quien fue uno de los científicos más importantes de su época. Estudió, entre otras cosas, el magnetismo y su relación con el trabajo mecánico, lo que lo condujo a la teoría de la energía. El Joule equivale a:

Donde

N = Newton

m = metros

kg = kilogramos

s = segundos

Otras equivalencias

Nombre Equivalencia en julios
Caloría (cal) 4,1855
Kilovatio hora (kWh) 3.600.000
Electronvoltio (eV) 1,6023 x 10-19
British Thermal Unit (BTU) 1.005,05585
Ergio (erg) 1 x10-7
Energía en los alimentos

Cada célula de nuestro cuerpo requiere energía para funcionar adecuadamente. Ésta es proporcionada por las calorías y por ello resulta importante conocer la cantidad que aportan los nutrientes que ingerimos y así evitar consecuencias negativas para nuestro organismo.

 

VER INFOGRAFÍA

 

RECURSOS PARA DOCENTES

Video “Intercambio de calor”

Recurso audiovisual que le permitirá profundizar sobre el proceso de transferencia de energía en forma de calor de un cuerpo a otro.

VER

Aplicaciones del magnetismo: la brújula, el campo electromagnético

Este video describe a detalle el funcionamiento magnético de una brújula.

VER

 

 

Energía eólica, nuclear y solar

Las energías renovables se obtienen de fuentes naturales que virtualmente no deberían agotarse, como la radiación solar y el viento; mientras que las energías no renovables se obtienen de fuentes naturales en cantidades limitadas, como los combustibles fósiles. Tres tipos de energía se comparan a continuación.

 

Energía eólica Energía nuclear Energía solar
Obtención Se obtiene gracias a la capacidad de los aerogeneradores de transformar la energía cinética del viento en electricidad. Se obtiene a través de reacciones de fisión y fusión de un núcleo atómico. Es la energía que contiene el núcleo de un átomo. Se obtiene de la radiación electromagnética proveniente del Sol. Se aprovecha por los paneles solares.
Tipo Renovable. No renovable. Renovable.
Fuente El viento. El átomo. El Sol.
Mayor productor (2019) China. Estados Unidos. China.
Ventajas
  • Fuente de energía limpia con bajo impacto ambiental.
  • Fuente válida de energía renovable.
  • Los costos y el mantenimiento de turbinas eólicas son bajos.
  • Las centrales nucleares emiten sólo agua caliente.
  • Con la energía nuclear muchos países pueden alcanzar la independencia energética.
  • Puede mantenerse la producción por muchos años.
  • El Sol ofrece una fuente ilimitada de energía.
  • Es un recurso limpio que no causa graves daños en el medio ambiente.
  • Puede proporcionar electricidad a comunidades aisladas.
Desventajas
  • Afecta a la avifauna local.
  • Debido a las condiciones climáticas, el viento no está garantizado.
  • La construcción de una planta eólica modifica el paisaje.
  • Las partículas sobrantes de la separación de los átomos pueden causar daños biológicos.
  • Pueden producir accidentes graves.
  • Las plantas nucleares son más grandes y complejas que otras plantas de energía.
  • Varía de acuerdo a las estaciones.
  • Se necesita una gran inversión inicial.
  • Sus costos asociados son más altos comparados con otras tecnologías.
Aplicaciones Principalmente para producir energía eléctrica. Principalmente para producir energía eléctrica. Principalmente para producir energía eléctrica, también para cocinar y como sistema de calefacción.
Ejemplos Aerogeneradores, molinos de viento, molinos de bombeo y veleros.

 

Molino de viento en Güeldres, Países Bajos
Centrales nucleares, colisionador de hadrones, pila atómica y automóviles nucleares.

 

Central nuclear de Tihange, Bélgica.

 

Proyecto solar, energía solar térmica, energía fotovoltaica e invernaderos.

 

Plantas de energía solar en Texas, Estados Unidos