Desarrollo histórico de la química

La química es una ciencia que estudia la materia y los cambios que ocurren en ella. Aunque su origen es antiguo, se la considera una ciencia moderna, activa y en evolución. Su desarrollo histórico ha estado asociado al descubrimiento, manejo y transformación de los recursos naturales que el hombre disponía.

raíces prehistóricas

Desde su inicio, el ser humano aprendió a modificar los materiales de la naturaleza, lo que constituye el principio de la química. El descubrimiento del fuego fue, sin lugar a dudas, el más importante de la época; gracias a este el hombre primitivo logró cocinar sus alimentos, mantenerse caliente, elaborar moldes de arcilla y modelar algunos metales como el cobre y el estaño.

Con el descubrimiento del fuego, nuestros ancestros hicieron un importante progreso en la transformación de materiales.

Primeras civilizaciones

En la Edad Antigua, el conocimiento que tenía el ser humano sobre los materiales logró el desarrollo de grandes civilizaciones como la persa, la mesopotámica, la griega, la egipcia y la romana. Algunas técnicas dominadas para entonces eran el manejo del vidrio y de metales como el oro, la plata y el hierro; también hacían perfumes, barnices, jabones, medicamentos, vino y muchos otros productos.

¿Cómo se compone la materia?

En el siglo VI a. C. los griegos intentaron dar una explicación a cómo se componía la materia. Las primeras teorías propuestas por los filósofos fueron las siguientes:

  • Para Aristóteles (384-322 a C.) la materia estaba formada por cuatro elementos: agua, tierra, fuego y aire.
  • Según Tales de Mileto (624-546 a. C.) la sustancia básica era el agua, pues sin agua no hay vida.
  • Leucipo (siglo V a. C.) y su discípulo Demócrito (siglo IV a. C.) expusieron que la materia se dividía hasta llegar a una partícula indivisible que denominaron “átomo“.

¿Sabías qué?
La palabra “átomo” proviene del griego átomon: a que significa “sin” y tomon que significa “división”.
Estatua de bronce de Aristóteles en Alemania. Su teoría de los cuatro elementos (más tarde llamada cinco elementos al añadir el éter) fue aceptada por más de un milenio en Occidente.

La alquimia

El dominio técnico de la civilización egipcia combinado con las teorías filosóficas de los griegos dio paso a la alquimia: práctica que buscaba comprender la naturaleza y encontrar la perfección, lo cual se materializaba en el oro. Por dicha razón, los alquimistas se dedicaron a manipular metales y sustancias con el fin de hallar la piedra filosofal, la cual se creía era un compuesto mágico que convertía metales en oro y concedía la eterna juventud.

La alquimia fusionó la técnica, el misticismo, la astrología, la filosofía, la superstición y la magia. Por este camino se desarrollaron y perfeccionaron métodos como el baño de María, la destilación, la sublimación, la calcinación y la metalurgia; e instrumentos como el alambique y la balanza.

El oro era el material perfecto para los alquimistas.

Jabir ibn Hayyan

El árabe Jabir ibn Hayyan tuvo importantes avances en el alquimia, al punto de ser considerado por algunos expertos como el padre de la alquimia y fundador de la química. Él clasificó las sustancias en espíritus, metales y cuerpo sólidos. Los espíritus eran sustancias volátiles como el alcohol, mientras que los cuerpos sólidos eran no volátiles.

La química moderna

Ya para el siglo XVIII, la teoría de los cuatro elementos de Aristóteles no era suficiente para comprender cómo se componía la materia, pues los avances en el estudio de los gases certificaron que el aire no era un elemento, sino un conjunto de diferente sustancias. En la Edad Moderna inició la química propiamente dichas y los hitos que marcaron este período fueron los siguientes:

George Ernst Stahl

1659-1734

 

Propuso la teoría del flogisto, esta aseguraba que lo cuerpos combustibles tenían una sustancia denominada flogisto que se perdía en el aire al arder el material.

Robert Boyle

1627-1691

 

Realizó importantes avances en el estudio de los gases. Sus teorías y planteamientos lograron comprobarse de forma experimental, razón por la que se le atribuye el método cualitativo.

Joseph Priestley

1733-1804

 

Estudió diversos gases y descubrió que la combustión era posible gracias al oxígeno. Fue el primero en aislar el oxígeno en forma gaseosa y reconocer su importancia para la vida.

Antoine Lavoisier

1743-1794

 

Conocido como el padre de la química moderna gracias a sus estudio sobre la fotosíntesis, la oxidación de los cuerpos, la combustión, el aire, la respiración animal y su ley de la conservación de la masa.

química en la edad contemporánea

A partir del siglo XIX la química se desarrolló con más fuerza. El descubrimiento y síntesis de nuevas sustancias caracterizó esta etapa. Los acontecimientos más relevantes se señalan a continuación:

John Dalton

1766-1844

 

Propuso la primera teoría atómica. Según Dalton la materia estaba formada por átomos indivisibles, indestructibles, de forma esférica e iguales entre sí para un mismo elemento.

Ernest Rutherford

1871-1937

 

Estableció una estructura atómica con partículas más pequeñas, por lo que el átomo dejó de ser indivisible. Este modelo consta de un núcleo cargado positivamente y una zona de partículas con cargas negativas.

Niel Bohr

1885-1962

 

Expuso que el átomo tiene electrones ubicados en órbitas estables alrededor del núcleo. Estos electrones emiten o absorben energía cuando saltan de una órbita a otra.

Dimitri Mendeleiev

1834-1907

 

Organizó los elementos existentes hasta ese momento de acuerdo a sus pesos atómicos en una tabla conocida como “la tabla periódica de los elementos”.

Marie y Pierre Curie

1867-1934, 1859-1906

 

Estudiaron el fenómeno de la radiactividad y descubrieron dos elementos llamados radio y polonio.

James Chadwick

1891-1972

 

Este físico británico logró demostrar la existencia de los neutrones: partículas eléctricamente neutras con una masa similar a la de los protones y ubicadas en el núcleo del átomo.

Francis Crick y James Watson

1916-2004, 1928-actualidad

 

Juntos hicieron uno de los avances más importantes de la bioquímica: resolvieron la estructura tridimensional de la molécula de ADN.

CAPÍTULO 2 / EJERCICIOS

LA MATERIA Y SUS PROPIEDADES

LA MATERIA

1. A continuación se presenta una imagen de cómo está compuesta la materia. Describe y define cada una de sus partes.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. Investiga, dibuja y describe brevemente cada uno los modelos atómicos propuestos a lo largo de la historia.

Modelo atómico Descripción
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tabla PERIÓDICA de los elementos

1. Contesta las siguientes preguntas:

  • ¿Qué es un elemento químico?

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • ¿Qué es la tabla periódica? ¿Para qué se emplea?

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. Define brevemente cada uno de los siguientes términos referentes a la tabla periódica.

Número másico: ________________________________________________________________________________________

Nivel de energía: _______________________________________________________________________________________

Símbolo químico: _______________________________________________________________________________________

Subnivel de energía: ____________________________________________________________________________________

Orbital: _______________________________________________________________________________________________

Número atómico: _______________________________________________________________________________________

moléculas más conocidas

1. Observa la siguiente imagen referente al ciclo del nitrógeno. Completa los espacios en blanco.

2. Menciona algunas de las características más importantes de las siguientes moléculas.

Moléculas Características
Agua
Oxígeno
Nitrógeno
Dióxido de carbono

propiedades de la materia

1. Menciona y explica tres propiedades intensivas y tres propiedades extensivas de los materiales.

Intensivas Extensivas
 

 

 

 

 

 

2. De acuerdo con la descripción que se presenta, indica el nombre de cada propiedad:

  • ____________________ : es la capacidad de los materiales que permite que pase o no la luz a través de ellos.
  • ____________________ : esta característica se observa cuando golpeamos un material y éste se rompe fácilmente.
  • ____________________ : es una característica de aquellos materiales que son afectados por el oxígeno y la humedad de la atmósfera, como los metales.
  • ____________________ : es la capacidad que tiene un material de soportar fuerzas sin romperse, desgarrarse, doblarse o deformarse.
  • ____________________ : es la capacidad que tiene un material de transportar electricidad. Los materiales que son buenos conductores de la electricidad se llaman conductores, y los malos, aislantes.
  • ____________________ : esta característica se observa cuando se rayan dos materiales, aquel material más duro dejará una marca en el que no lo es.

estados de LA MATERIa

1. Relaciona cada término de la columna A con las definiciones de la columna B.

A – Cambio de estado B – Definición
1 Evaporación Consiste en el paso de un sólido al estado líquido por medio del aumento de la temperatura hasta alcanzar el “punto de fusión” de dicho sólido.
2 Sublimación Es el cambio del estado líquido al gaseoso. Se produce por el calentamiento del material. Al agregar calor, las moléculas se mueven hasta que se separan del líquido y forman el gas.
3 Ionización Ocurre de manera contraria a la fusión, es decir, se produce por un descenso en la temperatura de un líquido hasta que éste alcanza su punto de congelación.
4 Condensación Es el paso de una sustancia en estado gaseoso al estado sólido sin pasar por el líquido. El ejemplo más relevante es la formación de la nieve o escarcha.
5 Sublimación inversa Parte de la fase plasmática al anular la carga de las partículas para así obtener finalmente el gas.
6 Solidificación Es la conversión de átomos en iones para convertirse en un conductor de la electricidad.
7 Des ionización Consiste en el paso de un sólido al estado gaseoso sin pasar por el estado líquido. El ejemplo más común es el que ocurre en el llamado “hielo seco”, que es dióxido de carbono en estado sólido. Éste se “esfuma” sin pasar por el estado líquido.
8 Fusión Es el paso del estado gaseoso al estado líquido. Se produce por el enfriamiento o la compresión del gas, las moléculas pierden velocidad de movimiento y al entrar en contacto unas con otras quedan unidas para formar una masa líquida.

2. Explica con tus propias palabras por qué es importante conocer los estados de la materia.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

instrumentos y escalas de medición

1. Completa el siguiente cuadro de sistemas de unidades.

Magnitud Sistema Internacional Sistema Cegesimal Sistema anglosajón
Longitud
Masa
Tiempo
Superficie
Volumen
Fuerza

2. Menciona los instrumentos empleados para realizar las siguientes mediciones.

 

Magnitud Instrumentos
Longitud
Masa
Tiempo
Superficie
Volumen
Fuerza
Intensidad de la corriente
Temperatura
Intensidad luminosa
Presión

clasificación y utilización de materiales

1. Menciona cuatro materiales de distinto origen y explica para qué se utilizan en la vida cotidiana.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. Investiga cuáles son los cinco materiales más costos y por qué.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

materiales de riesgo para el ambiente

1. Indica si las siguientes afirmaciones son verdaderas (V) o falsas (F). Justifica tu respuesta en los casos falsos.

  • El mercurio es un elemento presente en la corteza terrestre. Al aumentar su concentración es inocuo para los seres humanos. (  )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • La contaminación natural es la que ocurre como consecuencia de las actividades realizadas por el hombre, por ejemplo el uso de fertilizantes, los derrames petroleros y la quema indiscriminada de arboles. (  )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • El efecto invernadero es causado por la interacción entre la energía del Sol y los gases de efecto invernadero en la atmósfera de la Tierra. (  )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • El desarrollo sustentable se refiere al proceso integral que conjuga a la sociedad, la economía y al planeta Tierra con su naturaleza. (  )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Paul Hermann Müller fue conocido por contribuir a la conciencia ambiental e impulsar la prohibición del DDT y otros pesticidas. (  )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Los gases que contrarrestan el efecto invernadero son los siguientes: el vapor de agua, el dióxido de carbono (CO2), el metano (CH4), los óxidos de nitrógeno (NOx), el ozono (O3) y los clorofluorocarbonos (CFC). (  )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. Marca con una equis (x) los contaminantes artificiales.

(  ) Incendio forestal.

(  ) Vertederos de basura.

(  ) Animales muertos.

(  ) Radiación.

(  ) Erupción volcanica.

(  ) Minerales en el agua.

(  ) Fertilzantes.

(  ) Derrames de petroleo.

(  ) Gases de efecto invernadero.

3. ¿Conoces algún lugar muy contaminado en tu país? ¿Cómo piensas que puede solucionarse este problema particular?

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

Configuración electrónica

Los electrones están distribuidos en niveles de energía, y aquellos que se encuentran en niveles más externos son los que intervienen en las uniones químicas. Las configuraciones electrónicas de los elementos permiten identificar cuántos electrones se encuentran en los niveles de energía más externos y conocer de este modo el tipo de reacciones en las que pueden participar.

La estructura electrónica de los átomos determina las propiedades de los elementos, especialmente el ordenamiento de los electrones en los niveles de energía más externos. Al observar la tabla periódica se puede apreciar que todos los elementos de un mismo grupo poseen la misma configuración electrónica en su nivel más externo, siendo el número de grupo la cantidad de electrones que se encuentran en dicho nivel.

TABLA PERIÓDICA

La tabla periódica contiene gran cantidad de información, en cada casillero se puede extraer información específica del elemento, ya sea su símbolo, su número atómico, su número másico, configuración electrónica, etc. El número atómico (Z) coincide con el número de orden de la tabla periódica, lo cual facilita la ubicación de un elemento en particular. Estos elementos están distribuidos según sean metales (con sus subclasificaciones), no metales, metaloides, lantánidos, actínidos, halógenos y gases nobles. Además de dicha clasificación, la tabla periódica está dividida en grupos y períodos, lo que nos brinda aún mayor información, ya que agrupa a los elementos según características específicas.

GRUPOS: son las dieciocho columnas (verticales) de la tabla periódica, se numeran del 1 al 18, pero en algunas tablas aún se puede apreciar la numeración anterior, en la cual se utilizaban números romanos seguidos de las letras A o B. Los elementos de un mismo grupo tienen propiedades similares, en algunos casos forman familias, como la del grupo 14, que es la familia del carbono, o la del grupo 17 que corresponde a los halógenos. Elementos del mismo grupo poseen la misma cantidad de electrones en su última o últimas capas.

PERÍODOS: son las filas (horizontales) y en total son siete. El número de período coincide con la última capa electrónica del elemento, es decir, un elemento del período 2 cuenta con dos capas electrónicas. Esto implica que elementos del mismo período tengan propiedades químicas similares.

Además de tener gran cantidad de información, incluyendo la configuración electrónica de cada elemento, en la tabla periódica también se pueden observar las propiedades periódicas, como el radio atómico, la energía de ionización, la afinidad electrónica y la electronegatividad.

configuración electrónica (c.E.)

El número Z indica la cantidad de protones que contiene un átomo determinado y, en consecuencia, también la cantidad de electrones de un átomo neutro. Esta información es la base de la configuración electrónica. Ejemplo:

El elemento carbono (C) tiene número Z=6.

Como los elementos de la tabla periódica se consideran neutros, el carbono tiene 6 protones y 6 electrones. Estos seis electrones se deben ubicar en los distintos niveles de energía y en los orbitales correspondientes. Para saber cuántos y dónde colocarlos es preciso conocer la regla de las diagonales.

Regla de las diagonales.

En la regla de las diagonales se pueden observar esferas donde se agrupan las clases de orbitales (s, p, d y f). El llenado de orbitales se realiza siguiendo el sentido de la flecha. Se puede ver que horizontalmente se llega hasta el número 7, esto corresponde con que hay siete períodos o siete niveles de energía.

RECORDAR

Orbitales s: son orbitales esféricos con capacidad para 2 electrones.

Orbitales p: son tres orbitales bilobulados que pueden albergar dos electrones cada uno, por lo tanto tienen una capacidad total de 6 electrones.

Orbitales d: son cinco orbitales bilobulados, cada uno puede contener dos electrones, por lo tanto tienen capacidad para 10 electrones.

Orbitales f: son siete orbitales con capacidad total para 14 electrones.

Siguiendo con el ejemplo, se realizará la configuración electrónica del C. Los seis electrones del carbono se ubican de la siguiente manera:

Configuración electrónica del C.

La configuración electrónica queda expresada de esta forma dado que en los orbitales “s” se pueden colocar hasta dos electrones, y en el orbital “p” se ubican los dos que faltan para llegar a los 6 electrones que posee el carbono.

OTRO EJEMPLO:

Hallar la configuración electrónica del sodio (Na).

En primer lugar se debe ubicar el elemento en la tabla periódica para ver cuál es su número atómico. En el caso del Na es Z=11, entonces se sabe que el Na cuenta con 11 electrones para ubicar.

Luego se observa la regla de las diagonales y siguiendo el sentido de la flecha se van llenando los orbitales:

Configuración electrónica del Na.

Observar que la suma de los superíndices es igual a 11 (número de electrones).

En la mayoría de las tablas periódicas dicha configuración electrónica ya está escrita, pero se escribe simplificada.

En este ejemplo la configuración del sodio está expresada como [Ne] 3s1. Lo que se hizo fue indicar que la configuración del sodio es igual a la configuración del gas noble más cercano ,Ne, adicionándole 1 electrón al orbital 3s.

¿cómo ubicar un elemento en la tabla periódica sabiendo su C.E.?

En primer lugar se cuentan los superíndices:

1s22s22p63s23p La suma de los superíndices es 13. Por lo tanto el elemento está ubicado en Z=13.

El último electrón se ubicó en 3p1, ésto significa que se encuentra en el nivel de energía 3 (período 3).

1s22s22p63s23p  

El elemento es el aluminio (Al).

a practicar lo aprendido

  1. Escribir la configuración electrónica de los siguientes elementos:

a) H

b) N

c) P

2. Identificar a qué elemento corresponde la configuración electrónica:

a) Cloro

b) Silicio

b) Berilio

RESPUESTAS

1.

a) 1s1

b) 1s22s22p3

c) 1s22s22p63s23p3

2.

a) 1s22s22p63s23p5

b) 1s22s22p63s23p2

c) 1s22s2

¿Sabías qué...?
El elemento carbono es el compuesto principal de las minas de los lápices, y a su vez en una de sus formas también conforma el diamante.

 

Afinidad y valencia química

Los elementos químicos son sustancias que no pueden descomponerse en sustancias más simples mediante procesos químicos ordinarios. Los elementos son los materiales fundamentales de los que se compone toda la materia.

Valencia y afinidad química

El concepto de afinidad química hace referencia a la tendencia de un átomo o de una molécula a reaccionar o combinarse con otros átomos u otras moléculas distintas. Definido en términos parecidos, el concepto ya fue introducido en la química en el s. XVIII. Pero para que un concepto tenga realmente carácter científico debe estar asociado a una magnitud medible y de ahí que en el s. XIX se explorasen posibles maneras de medir la afinidad. Se asoció finalmente con la disminución de la energía libre (función de estado de un sistema que depende de la concentración de las sustancias, la presión y la temperatura). Sin embargo, nosotros utilizaremos aquí el concepto de afinidad de un modo laxo, como un recurso de lenguaje para expresar la tendencia a reaccionar de dos sustancias, dos moléculas o dos átomos.

¿Sabías qué...?
El 6 de marzo de 1869 fue presentada por el científico ruso Dimitri Mendeleev la primera tabla periódica. El elemento radioactivo mendelevium es un homenaje a él.

Si dos elementos son afines, en condiciones adecuadas reaccionarán para formar un compuesto. Esos dos elementos se combinarán en determinada proporción, lo que sugiere el concepto de valencia química, que puede definirse como un número entero que expresa la capacidad de combinación de un átomo con otros para formar un compuesto. Aclararemos y ampliaremos esta definición con un ejemplo: el hidrógeno y el oxígeno se combinan para dar agua según la reacción

Hidrógeno + oxígeno = agua

La fórmula del agua es H2O, lo que significa que la molécula de agua está formada por tres átomos: dos de hidrógeno y uno de oxígeno. Así pues, el oxígeno y el hidrógeno se combinan en la proporción 1:2, es decir, que el oxígeno “vale” o tiene valencia doble que la del hidrógeno. Si damos el valor 1 a la valencia del hidrógeno, la valencia del oxígeno será 2.

Las valencias son el número de enlaces que puede formar un elemento químico.

Análogamente a como hemos razonado la valencia del oxígeno se razona la valencia de otros no metales. Así, para el cloro, puesto que se une al hidrógeno para formar cloruro de hidrógeno (HCl) en la proporción 1:1, la valencia será 1; para el nitrógeno, que se une al hidrógeno para formar amoníaco (NH3) en la proporción 1:3, la valencia será 3; y para el carbono, que se une al hidrógeno para formar metano (CH4) en la proporción 1:4, la valencia será 4.

En el caso de los metales, la valencia se computa a partir del número de átomos de hidrógeno que el metal sustituye en un compuesto. Así, en el cloruro de sodio (sal común, NaCl) el átomo de sodio, Na, sustituye a un átomo de hidrógeno (ya que el ácido del que deriva la sal es HCl), por lo tanto la valencia del sodio es 1. En el carbonato de calcio (caliza, CaCO3), el átomo de calcio sustituye a dos átomos de hidrógeno, por lo tanto la valencia del calcio es 2.

Existen muchos elementos que presentan valencias de valores distintos; así el nitrógeno es trivalente en el amoníaco, pero forma óxidos con las valencias 2, 3, 4 y 5.

Teoría del enlace de valencia

Es una teoría química que explica que un átomo central de una molécula tiende a formar pares de electrones, de acuerdo con las restricciones geométricas, definidas por la regla del octeto.

Aplicaciones y propiedades de los elementos químicos

El avance de la ciencia en gran parte se debió a los usos que los seres humanos le dieron a los elementos químicos, cada uno de los cuales presenta cualidades particulares, como su dureza, resistencia a la corrosión y otras más que permiten emplearlos para distintos fines como chips, medicinas y cosméticos.

Los elementos químicos

Un elemento químico se define como la sustancia conformada por un solo tipo de átomo. Hasta la fecha se han identificado 118 elementos de los que solamente 92 pueden encontrarse en la naturaleza y el resto son elementos sintéticos producidos por el ser humano de forma artificial.

Cada elemento químico de la tabla periódica tiene un número atómico que indica la cantidad de protones que posee en su estructura atómica.
Cada elemento químico de la tabla periódica tiene un número atómico que indica la cantidad de protones que posee en su estructura atómica.

El elemento que se encuentra con mayor presencia en el universo es el hidrógeno y sirve como combustible para las estrellas, el segundo más abundante es el helio. Por otra parte, el elemento más abundante en la corteza y atmósfera de nuestro planeta es el oxígeno, seguido por el silicio que se encuentra en formas rocosas y en la arena.

El cuerpo es un conglomerado de elementos químicos, los más abundantes son el oxígeno y el carbono.
El cuerpo es un conglomerado de elementos químicos, los más abundantes son el oxígeno y el carbono.

Aplicaciones de los elementos

Dependiendo de las propiedades físicas y químicas de los elementos, el ser humano ha sabido hacer uso de ellos para una infinidad de productos que muchas veces pasan desapercibidos en nuestra vida, pero juegan un gran papel importante en la ciencia y en la sociedad actual.

Los elementos de la tabla periódica se encuentran distribuidos en 7 filas denominadas periodos y 18 columnas denominadas grupos. Cada grupo de elementos presenta características químicas similares. A continuación se muestran algunas de las aplicaciones de los elementos de cada grupo:

Grupo IA – Metales alcalinos

Son todos (a excepción del hidrógeno) blancos, brillantes y muy activos, se encuentran en la naturaleza en forma de compuestos. El sodio y el potasio se emplean en la industria principalmente en forma de sales. El litio se usa en reactores de fusión y en la fabricación de baterías eléctricas. El rubidio es empleado en las celdas fotoeléctricas y como localizador de tumores cerebrales.

La sal común está formada por cloro y sodio.
La sal común está formada por cloro y sodio.

Grupo IIA – Metales alcalinotérreos

Obtienen su nombre debido al aspecto térreo de sus óxidos, se caracterizan por ser buenos conductores de calor y de electricidad. Debido a que son demasiado activos, no existen en la naturaleza y son metales difíciles de obtener, por lo que sus aplicaciones son muy limitadas. El berilio se usa en aleaciones de uso industrial y para fabricar pantallas y ventanas de radiación en dispositivos de rayos X. El magnesio presenta alta resistencia a la tensión, por lo que es usado en aleaciones para la industria aeronáutica y para fabricar émbolos y pistones, se usa también como material refractario y para la elaboración de pastillas. El estroncio se emplea como purificador del azúcar, aunque la medicina lo ubica como un elemento causante de cáncer. El bario se emplea en la pirotecnia y sirve como medio de contraste para que el estómago y los intestinos puedan observarse en las radiografías. El radio es usado en la pintura fluorescente.

En la purificación del azúcar se emplea el estroncio.
En la purificación del azúcar se emplea el estroncio.

Grupo IIIA – Familia del boro

El boro tiene una amplia química de estudio, se usa para fabricar vidrios, esmaltes y utensilios de cocina. El aluminio es empleado en la fabricación de materiales de cocinas como ollas y sartenes, también se usa en la industria automotriz para fabricar pistones y motores. El galio, el indio y el talio son raros y existen en cantidades mínimas. El galio y el indio tienen aplicaciones principalmente médicas en dispositivos especiales para detectar enfermedades. El talio se usa como veneno para las ratas por no tener ni olor ni sabor.

Muchos utensilios de cocina son fabricados con aluminio.

Grupo IV – Familia del carbono

La química orgánica es la disciplina encargada de estudiar los compuestos del carbono, el cual en su estado elemental se presenta como diamante y como grafito, este último empleado en la fabricación de lápices y para generar fibras de carbono. El silicio se emplea para la preparación de siliconas y por ser un elemento semiconductor muy abundante, se usa en la industria electrónica para crear chips. El óxido de silicio se usa para la fabricación de hormigón y también se emplea en la fabricación de vidrios. El germanio se usa en la fabricación de transistores y semiconductores, en las fibras y lentes ópticas. El estaño es ampliamente usado en los procesos industriales, en soldaduras de circuitos y en la fabricación del vidrio para reducir su fragilidad, también se usa como fungicida y en otros productos como tintes, dentífricos e insecticidas. El plomo se usa para la fabricación de baterías, como aislante de la radiación y como químico en la refinación del petróleo.

Los lápices emplean láminas de grafito, un mineral formado casi completamente por carbono.

Grupo V – Familia del nitrógeno

Es el grupo más heterogéneo de la tabla periódica y por esta razón las aplicaciones de los elementos de este grupo son muy variadas. El nitrógeno se usa para fabricar fertilizantes, explosivos, colorantes y para la síntesis del amoníaco. El fósforo se emplea en la fabricación de fuegos artificiales, en explosivos y en venenos para el control de plagas. El arsénico es un elemento muy contaminante y peligroso, es usado para limpiar las impurezas del vidrio y para fabricar pesticidas. El antimonio se emplea en aleaciones metálicas y en la fabricación de esmaltes y pinturas, también se usa en el proceso de vulcanización del caucho. El bismuto se usa para fabricar fusibles, para aleaciones de bajo punto de fusión y en la medicina se emplea en forma de subsalicilato de bismuto para tratar la diarrea.

El fósforo es usado en los fuegos artificiales.
El fósforo es usado en los fuegos artificiales.

Grupo VI – Colágenos

Son elementos no metálicos y la mayoría son corrosivos. El oxígeno se usa como aire artificial y como combustible de cohetes en su forma líquida. El azufre se emplea en la fabricación de pólvora, fósforos y como fungicida. El selenio es usado en la fabricación de dispositivos fotoeléctricos y en células solares. El teluro se usa para realizar aleaciones con cobre y el plomo para aumentar la resistencia a la tensión.

El azufre se emplea en la fabricación de la pólvora.

Grupo VII – Halógenos

Son compuestos que presentan una coloración característica en su estado gaseoso y tienen gran afinidad con el hidrógeno y con el oxígeno. El flúor es usado en la fabricación de dentífricos y enjuagues bucales, también se usa para el tratamiento del agua. El cloro se usa como blanqueador y desinfectante. El bromo se emplea en los fluidos de perforación de pozos petroleros, también es usado como colorante y en la fotografía. El yodo se usa principalmente en la medicina como antiséptico y desinfectante, también se usa como medio de contraste para la radiografía y como tratamiento de alteraciones de la tiroides.

Los dentífricos emplean flúor para proteger los dientes.
Los dentífricos emplean flúor para proteger los dientes.

Grupo VIII – Gases nobles

Los elementos que conforman a este grupo presentan propiedades similares, en condiciones normales son gases monoatómicos incoloros e inodoros, también puede decirse que su reactividad química es muy baja. El helio se usa para llenar globos meteorológicos, se usa mezclado con el oxígeno como aire artificial en los tanques de buceo. El neón es empleado como refrigerante, también se usa en los tubos incandescentes y en las pantallas de televisión. El argón se usa en las lámparas de incandescencia y se usa como gas para las soldaduras. El kriptón se emplea en las pistas de aterrizajes en los focos incandescentes debido a la luz roja que emite.

El helio es usado para llenar globos.
El helio es usado para llenar globos.

Elementos de transición

Están formados por los grupos IIB, IVB, VB, VIB, VIIB, IB y IIB de la tabla periódica. Los elementos pertenecientes a estos grupos presentan características muy variadas y todos son metales. Debido a su variabilidad en el estado de oxidación, sus compuestos son muy coloridos. Algunos de los elementos que conforman a este grupo son: cromo, hierro, níquel, cobre, cinc, plata y oro. El cromo es usado en aleaciones con otros metales para aumentar la dureza y resistencia a la corrosión de estos. El hierro debido a su abundancia se emplea mayormente para fabricar aceros. El níquel se emplea en la fabricación de componentes electrónicos como pilas y como revestimiento de otros metales propensos a la corrosión. El cobre se usa en la fabricación de cables y monedas, también se emplea para elaborar pigmentos. El cinc es usado en la fabricación de termómetros de altas temperaturas, también se emplea en componentes electrónicos como células fotoeléctricas y transistores. El oro y la plata se usan principalmente en la joyería y en algunos dispositivos electrónicos.

El hierro es el metal más abundante.
El hierro es el metal más abundante.

Los enlaces químicos

La energía de un agregado de dos o más átomos puede ser menor que la suma de las energías de esos átomos aislados y de ahí que, siguiendo la tendencia de cualquier sistema a alcanzar su estado de mínima energía, los átomos se unan unos con otros de diversos modos para formar moléculas estables. Así, sólo los gases nobles y los metales en estado de vapor están constituidos por átomos aislados.

Todas las demás sustancias están constituidas por moléculas integradas por un número de átomos que puede ir desde dos hasta cientos de miles (polímeros). En la formación del enlace químico intervienen únicamente los electrones de la última capa, los llamados electrones de valencia, que pueden ser parcialmente compartidos entre dos átomos (enlace covalente) o bien cedidos por uno a otro (enlace electrovalente). Es importante destacar que desde el punto de vista de la teoría química actual el enlace químico tiene carácter unitario, basándose siempre en compartir electrones por pares.

Las moléculas están constituidas por la unión de cierto número de átomos iguales o distintos. Se plantea, pues, la cuestión de saber cuál es el nexo que mantiene a los átomos unidos entre sí para formar moléculas. En todos los casos, este nexo se establece únicamente a partir de los electrones que forman la última capa de los átomos, los llamados electrones de valencia.

Hablaremos de cinco tipos de enlace distintos: iónico o electrovalente, covalente, metálico, de hidrógeno y covalente coordinado.

El fundamento del enlace químico es la Ley Física Fundamental según la cual todo sistema evoluciona hacia su estado de energía más bajo. Esta ley explica, por ejemplo, el hecho de que una bola que se encuentra en un recipiente cóncavo se sitúe en el punto más bajo del mismo o bien que, si dos disoluciones de distinta concentración están separadas por un tabique poroso, la concentración de ambas tienda a igualarse por migración del soluto a través del tabique.

 

Existen cinco tipos de enlaces: iónico o electrovalente, covalente, metálico, de hidrógeno y covalente coordinado.

Para poder aclarar la naturaleza de cada uno de los distintos tipos de enlace listados, antes deberemos explicar algunos conceptos importantes, en particular el concepto de ion, y formular la teoría del octete (u octeto).

Con respecto a la mayor o menor facilidad con que permiten el paso de la corriente eléctrica, los cuerpos se clasifican en:

  • Aislantes
  • Conductores:
    • de primera clase
    • de segunda clase o electrólitos

Los conductores de primera clase son aquellos que, como los metales, no se alteran con el paso de la corriente eléctrica.

Por el contrario, los conductores de segunda clase o electrólitos se descomponen cuando son atravesados por una corriente eléctrica. Los electrólitos son exclusivamente ácidos, bases o sales fundidos o disueltos en agua u otros líquidos.

El primero que formuló una explicación científica coherente de la descomposición de los electrólitos por el paso de una corriente eléctrica (electrólisis) fue Arrhenius, quien, en 1883-1887, propuso su teoría de la disociación electrolítica. Aunque inicialmente fue recibida sin entusiasmo por los medios científicos, esta teoría ha sido una de las más fecundas de la química moderna, ya que sentó las bases para el desarrollo de la electroquímica, que hoy constituye una de las bases de la química industrial.

Teoría de Arrhenius de la disociación electrolítica

Se denomina ion a un átomo o una partícula formada por varios átomos que posee una carga eléctrica debida a un defecto o un exceso de electrones planetarios. Según sea su carga eléctrica, los iones se clasifican en positivos o cationes y negativos o aniones.

De acuerdo con la teoría formulada por Arrhenius:

  1. Los electrólitos, en disolución o fundidos, se disocian parcialmente en iones dotados de carga eléctrica, siendo la carga total de los iones positivos igual a la carga total de los iones negativos; la disolución en su conjunto permanece neutra.
  2. Las sustancias químicamente análogas se disocian en los mismos iones (por ejemplo, el grupo NO3 de los nitratos, PO4 de los fosfatos o Na de las sales sódicas). La carga eléctrica del ion es igual a su valencia y es negativa para los no metales y radicales no metálicos (aniones) y positiva para los metales (cationes).

Así, por ejemplo, al disociarse electrolíticamente el cloruro de hidrógeno (un ácido), el cloruro de calcio (una sal) y el hidróxido de sodio (una base) tendremos respectivamente:

HCl  H+ (1 ion positivo) + Cl- (1 ion negativo)

CaCl2   Ca2+ (1 ion positivo) + 2Cl- (dos iones negativos)

NaOH  Na+ (1 ion positivo) + (OH)- (1 ion negativo)

Los iones positivos son más pequeños que los átomos metálicos de los que proceden (por ejemplo, el radio del ion Na+ es sólo muy poco mayor que la mitad del radio del átomo de sodio), mientras que los iones negativos son siempre mayores que los átomos de los no metales a partir de los que se han formado (por ejemplo, el radio del ion Cl- es casi el doble que el radio del átomo de cloro).

Steve August Arrehnius (1859-1927) fue un reconocido científico sueco.

Ionización

La formación de iones se explica por la cesión o admisión de electrones, generalmente en la capa más externa, por parte de un átomo. Es decir, si un átomo X acepta un electrón se rompe el equilibrio eléctrico en que se encontraba, al pasar a poseer una carga negativa más; tendremos así un ion negativo X-. Si el átomo X hubiera aceptado dos electrones estaríamos ante un ion X2-, etcétera.

Por el contrario, si un átomo X cede un electrón pasará a convertirse en un ion positivo, X+, puesto que su número de cargas negativas será entonces inferior en una unidad al número de cargas positivas del núcleo (protones); en el caso de que cediera dos electrones, se tendría el ion X2+, etcétera.

La ionización no es un fenómeno que pueda producirse únicamente a causa de la disociación de un electrólito en disolución. También por efecto del calor, las radiaciones ionizantes o el choque con otras partículas, un átomo puede perder uno o más electrones o bien absorber electrones extraños. Por ejemplo, en las capas altas de la atmósfera (ionosfera), los átomos del aire son constantemente bombardeados por radiaciones solares de alta energía, las cuales les arrancan electrones. Asimismo, los meteoritos, al atravesar la atmósfera a gran velocidad, producen un calentamiento local del aire, ionizándolo a lo largo de su trayectoria.

Un ion se forma cuando una molécula le “cede” electrones a otra.

Los iones presentes en el aire atraen el polvo y las gotitas de agua, y por esta razón se emplean iones para que actúen como núcleos de condensación con el fin de provocar artificialmente la lluvia. En un proceso esencialmente análogo, en las cámaras de ionización la observación de las trayectorias de las partículas atómicas se basa en la condensación que provocan a su paso.

En determinadas condiciones, un gas puede hallarse completamente ionizado, es decir, con todos sus átomos en defecto de electrones; en ese caso se le denomina plasma. Sin embargo, el propio plasma se encuentra en estado neutro, ya que, al hallarse íntimamente mezclados en todo el espacio ocupado, sus electrones y sus iones positivos compensan sus cargas entre sí.

Teoría del octete

Los gases nobles constituyen el grupo 0 de la Tabla Periódica. Las moléculas de estos gases son monoatómicas, ya que la característica más destacada de estos elementos es que sus átomos carecen prácticamente de capacidad para unirse con otros átomos de su misma o de otra especie.

Todos los gases nobles, a excepción del primer elemento del grupo, el helio, poseen ocho electrones en la última órbita. Este hecho llevó a considerar que ésta era la configuración electrónica más estable. Por ello, Lewis introdujo en 1916 la teoría del octete u octeto: “Cuando los átomos reaccionan entre sí tienden a adquirir la estructura electrónica del gas noble de número atómico más próximo.” Sorprendentemente, esta ingeniosa teoría se ajusta muy bien a la realidad, aunque en el momento en que fue propuesta carecía por completo de verdadera justificación teórica.

Los gases nobles son los elementos que, en las condiciones normales de la Tierra, están formados por un solo tipo de átomos.