Desarrollo histórico de la química

La química es una ciencia que estudia la materia y los cambios que ocurren en ella. Aunque su origen es antiguo, se la considera una ciencia moderna, activa y en evolución. Su desarrollo histórico ha estado asociado al descubrimiento, manejo y transformación de los recursos naturales que el hombre disponía.

raíces prehistóricas

Desde su inicio, el ser humano aprendió a modificar los materiales de la naturaleza, lo que constituye el principio de la química. El descubrimiento del fuego fue, sin lugar a dudas, el más importante de la época; gracias a este el hombre primitivo logró cocinar sus alimentos, mantenerse caliente, elaborar moldes de arcilla y modelar algunos metales como el cobre y el estaño.

Con el descubrimiento del fuego, nuestros ancestros hicieron un importante progreso en la transformación de materiales.

Primeras civilizaciones

En la Edad Antigua, el conocimiento que tenía el ser humano sobre los materiales logró el desarrollo de grandes civilizaciones como la persa, la mesopotámica, la griega, la egipcia y la romana. Algunas técnicas dominadas para entonces eran el manejo del vidrio y de metales como el oro, la plata y el hierro; también hacían perfumes, barnices, jabones, medicamentos, vino y muchos otros productos.

¿Cómo se compone la materia?

En el siglo VI a. C. los griegos intentaron dar una explicación a cómo se componía la materia. Las primeras teorías propuestas por los filósofos fueron las siguientes:

  • Para Aristóteles (384-322 a C.) la materia estaba formada por cuatro elementos: agua, tierra, fuego y aire.
  • Según Tales de Mileto (624-546 a. C.) la sustancia básica era el agua, pues sin agua no hay vida.
  • Leucipo (siglo V a. C.) y su discípulo Demócrito (siglo IV a. C.) expusieron que la materia se dividía hasta llegar a una partícula indivisible que denominaron “átomo“.

¿Sabías qué?
La palabra “átomo” proviene del griego átomon: a que significa “sin” y tomon que significa “división”.
Estatua de bronce de Aristóteles en Alemania. Su teoría de los cuatro elementos (más tarde llamada cinco elementos al añadir el éter) fue aceptada por más de un milenio en Occidente.

La alquimia

El dominio técnico de la civilización egipcia combinado con las teorías filosóficas de los griegos dio paso a la alquimia: práctica que buscaba comprender la naturaleza y encontrar la perfección, lo cual se materializaba en el oro. Por dicha razón, los alquimistas se dedicaron a manipular metales y sustancias con el fin de hallar la piedra filosofal, la cual se creía era un compuesto mágico que convertía metales en oro y concedía la eterna juventud.

La alquimia fusionó la técnica, el misticismo, la astrología, la filosofía, la superstición y la magia. Por este camino se desarrollaron y perfeccionaron métodos como el baño de María, la destilación, la sublimación, la calcinación y la metalurgia; e instrumentos como el alambique y la balanza.

El oro era el material perfecto para los alquimistas.

Jabir ibn Hayyan

El árabe Jabir ibn Hayyan tuvo importantes avances en el alquimia, al punto de ser considerado por algunos expertos como el padre de la alquimia y fundador de la química. Él clasificó las sustancias en espíritus, metales y cuerpo sólidos. Los espíritus eran sustancias volátiles como el alcohol, mientras que los cuerpos sólidos eran no volátiles.

La química moderna

Ya para el siglo XVIII, la teoría de los cuatro elementos de Aristóteles no era suficiente para comprender cómo se componía la materia, pues los avances en el estudio de los gases certificaron que el aire no era un elemento, sino un conjunto de diferente sustancias. En la Edad Moderna inició la química propiamente dichas y los hitos que marcaron este período fueron los siguientes:

George Ernst Stahl

1659-1734

 

Propuso la teoría del flogisto, esta aseguraba que lo cuerpos combustibles tenían una sustancia denominada flogisto que se perdía en el aire al arder el material.

Robert Boyle

1627-1691

 

Realizó importantes avances en el estudio de los gases. Sus teorías y planteamientos lograron comprobarse de forma experimental, razón por la que se le atribuye el método cualitativo.

Joseph Priestley

1733-1804

 

Estudió diversos gases y descubrió que la combustión era posible gracias al oxígeno. Fue el primero en aislar el oxígeno en forma gaseosa y reconocer su importancia para la vida.

Antoine Lavoisier

1743-1794

 

Conocido como el padre de la química moderna gracias a sus estudio sobre la fotosíntesis, la oxidación de los cuerpos, la combustión, el aire, la respiración animal y su ley de la conservación de la masa.

química en la edad contemporánea

A partir del siglo XIX la química se desarrolló con más fuerza. El descubrimiento y síntesis de nuevas sustancias caracterizó esta etapa. Los acontecimientos más relevantes se señalan a continuación:

John Dalton

1766-1844

 

Propuso la primera teoría atómica. Según Dalton la materia estaba formada por átomos indivisibles, indestructibles, de forma esférica e iguales entre sí para un mismo elemento.

Ernest Rutherford

1871-1937

 

Estableció una estructura atómica con partículas más pequeñas, por lo que el átomo dejó de ser indivisible. Este modelo consta de un núcleo cargado positivamente y una zona de partículas con cargas negativas.

Niel Bohr

1885-1962

 

Expuso que el átomo tiene electrones ubicados en órbitas estables alrededor del núcleo. Estos electrones emiten o absorben energía cuando saltan de una órbita a otra.

Dimitri Mendeleiev

1834-1907

 

Organizó los elementos existentes hasta ese momento de acuerdo a sus pesos atómicos en una tabla conocida como “la tabla periódica de los elementos”.

Marie y Pierre Curie

1867-1934, 1859-1906

 

Estudiaron el fenómeno de la radiactividad y descubrieron dos elementos llamados radio y polonio.

James Chadwick

1891-1972

 

Este físico británico logró demostrar la existencia de los neutrones: partículas eléctricamente neutras con una masa similar a la de los protones y ubicadas en el núcleo del átomo.

Francis Crick y James Watson

1916-2004, 1928-actualidad

 

Juntos hicieron uno de los avances más importantes de la bioquímica: resolvieron la estructura tridimensional de la molécula de ADN.

Edad de Piedra y Edad de los Metales

La prehistoria es la extensa edad histórica que abarca desde el nacimiento de los primeros homínidos, antepasados de nuestra especie humana, hasta la invención de la escritura. La misma se divide en dos grandes etapas que definieron la evolución biológica, social y tecnológica del hombre: la Edad de Piedra y la Edad de los Metales.

Edad de Piedra Edad de los Metales
Período histórico Prehistoria. Prehistoria.
Cronología 2,5 millones a. C.-6500 a. C. 6500 a. C.-1000 a. C.
Lugar de origen África. Oriente Próximo.
Edades en las que se subdivide
  • Paleolítico.
  • Mesolítico.
  • Neolítico.
  • Edad de Cobre.
  • Edad de Bronce.
  • Edad de Hierro.
Características Al ser el período histórico más largo, es el que presenta más cambios. Surgen los primeros homínidos, quienes usaron la piedra como materia prima para la creación de armas y utensilios. Los seres humanos, únicos homínidos desde hace ya muchos años, descubrieron cómo fundir, forjar y dar forma a sus metales, por lo que todas sus herramientas evolucionaron en dureza, versatilidad y efectividad.
Sociedad y economía Pasaron de ser nómadas refugiados en cuevas y tomar todo de la naturaleza, similar a otros animales, a formar pequeñas comunidades de chozas sustentadas a través de la agricultura y la ganadería. Se organizaron en sociedades sedentarias más grandes y desarrollaron costumbres más complejas. Su economía dependía de la agricultura y la ganadería.
Arte Resaltan las pinturas rupestres, las esculturas y los grabados. Asimismo, se elaboraban y decoraban cerámicas, y se tallaban estatuillas funerarias.

Venus de Brassempouy, estatuilla que data del Paleolítico superior.
Destacan los megalitos, así como la pintura y la decoración de la cerámica. Los megalitos eran de tres tipos: menhir, crómlech y el dolmen.

Dolmen de Djebel Gorra, en Túnez, megalito que data del III milenio a. C.
Homínidos destacados
  • Australopithecus.
  • Homo habilis.
  • Homo ergaster.
  • Homo erectus.
  • Homo heidelbergensis.
  • Homo neanderthalensis.
  • Homo sapiens.
  • Homo sapiens.
Elementos inorgánicos más utilizados
  • Sílex o pedernal.
  • Obsidiana.
  • Cuarzo.
  • Cuarcita.
  • Cobre.
  • Bronce.
  • Hierro.
  • Bismuto.
  • Arsénico.
  • Estaño.
  • Hematita.
  • Magnetita.
Descubrimientos e inventos importantes
  • El fuego.
  • Herramientas de piedra, hueso y madera para cazar, cortar, tallar, desgarrar, perforar, cavar y tejer.
  • Piedras talladas y eventualmente piedras pulidas.
  • Arcos y flechas primitivos.
  • Canoas y otras embarcaciones menores.
  • Pinturas rupestres.
  • Ornamentos.
  • Telares.
  • La rueda.
  • Herramientas de metal utilizadas para una gran variedad de propósitos.
  • La metalurgia.
  • Canales de riego y arado.
  • El comercio intensivo.
  • Barco de vela.
  • Calendario solar.

CAPÍTULO 1 / EJERCICIOS

materiales | ejercicios

características y propiedades de la materia

1. Completa la siguiente tabla con ejemplos de propiedades intensivas y extensivas.

Propiedades intensivas Propiedades extensivas
 

 

 

 

 

 

 

 

2. Los materiales tienen propiedades específicas que permiten diferenciarlos. Escribe en cada caso el tipo de propiedad que corresponda.

 

  • Brillo

______________________________________________________________________________________________________

  • Transparencia

______________________________________________________________________________________________________

  • Densidad

______________________________________________________________________________________________________

  • Plasticidad

______________________________________________________________________________________________________

  • Sabor

______________________________________________________________________________________________________

  • Tamaño

______________________________________________________________________________________________________

  • Conductividad

______________________________________________________________________________________________________

  • Dureza

______________________________________________________________________________________________________

  • Ductibilidad

______________________________________________________________________________________________________

  • Tenacidad

______________________________________________________________________________________________________

  • Maleabilidad

______________________________________________________________________________________________________

  • Corrosión

______________________________________________________________________________________________________

3. Indica el estado en que se encuentra cada material.

_________________________________
_________________________________
__________________________________
__________________________________

el agua

1. Completa el siguiente texto sobre la historia del agua.

El filósofo griego Aristóteles postuló que el agua era un elemento ________________ que se encontraba de forma natural en estado _______________ en la naturaleza. Luego, otro filósofo griego, Anaxímenes, descubrió que en la atmósfera había _______________________, y concluyó que esta sustancia también se podía encontrar naturalmente en la atmósfera.

2. Responde brevemente las siguientes preguntas:

  • ¿Qué elementos forman la molécula de agua?

______________________________________________________________________________________________________

  • ¿Cuál es el tipo de agua apta para el consumo humano?

______________________________________________________________________________________________________

  • ¿Quiénes fueron los primeros en descubrir un método para potabilizar el agua?

______________________________________________________________________________________________________

  • ¿Cuáles son las propiedades organolépticas del agua?

______________________________________________________________________________________________________

  • ¿Cuáles son las temperaturas de ebullición y fusión del agua?

______________________________________________________________________________________________________

3. Escoge una de las siguientes imágenes y describe brevemente la importancia del agua para ese ser vivo.

el aire

1. Selecciona la opción correcta:

El aire es una mezcla de…

a) líquidos

b) gases

c) metales

¿Cuál de estos no es un elemento que forma parte del aire?

a) Argón

b) Dióxido de carbono

c) Glucosa

¿Cuál de éstas no es una capa de la atmósfera?

a) Manto

b) Tropósfera

c) Exósfera

Las propiedades físicas del aire están determinadas por las características propias del estado…

a) sólido

b) gaseoso

c) líquido

¿Cuál de estos no forma parte de la clasificación de los vientos?

a) Regulares

b) Periódicos

c) Populares

 

2. Investiga cuál es el único mamífero volador y describe sus características.

 

________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

 

la madera

1. Relaciona cada término con su descripción.

Corteza Madera dura y consistente que se encuentra hacia el centro del árbol.
Duramen Madera joven de reciente formación.
Médula Capa más externa del árbol.
Albura Zona central del tronco de poca resistencia.

2. Investiga cómo se fabrica el papel y realiza un esquema sobre el proceso.

 

 

 

 

 

 

 

 

 

 

 

 

los minerales

1. Completa las siguientes oraciones sobre las características de los minerales:

  • Son de origen _________________, es decir, están formados por elementos químicos donde el carbono es el menos predominante.
  • Son ________________ a temperatura ambiente.
  • Tienen una _________________________ definida.
  • Tienen una estructura interna ordenada característica del estado ______________ de la materia.

2. Escribe un ejemplo de cada tipo de mineral.

Elementos nativos: ___________________________

Sulfuros: ___________________________

Halogenuros: ___________________________

Sulfatos: ___________________________

Carbonatos: ___________________________

Fosfatos: ___________________________

Silicatos: ___________________________

Óxidos: ___________________________

los metales

1. Realiza un cuadro comparativo entre los metales pesados y los metales tóxicos.

Metales pesados Metales tóxicos
 

 

 

 

 

 

2. Realiza una lista de 5 metales, escoge 2 e indica sus características (símbolo, tipo, estado de agregación y punto de ebullición o fusión)

  1. ___________________________
  2. ___________________________
  3. ___________________________
  4. ___________________________
  5. ___________________________

 

________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

 

________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

el petróleo

1. Completa la siguiente tabla relacionada con los productos derivados del petróleo.

¿En qué consiste? Usos
Gasolina
Kerosén
Asfalto
Gasoil
Gas natural

2. Observa la siguiente imagen y describe cómo afectan los derrames de petróleo al medioambiente.

 

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

los plásticos

1. Marca con una cruz (X) las opciones correctas relacionadas con las propiedades del plástico.

(   ) Pueden ser duros o blandos, dependiendo el objeto que se quiera hacer.

(   ) No transmiten la electricidad ni el calor, por lo tanto son buenos aislantes.

(   ) La mayoría son pesados.

(   ) Pueden ser opacos o transparentes.

(   ) Son más costosos que otros materiales.

(   ) Son contaminantes ya que muchos no son degradables ni fáciles de reciclar.

2. De esta lista de termoplásticos escoge uno e indica sus características y usos.

  1. PET
  2. Poliestireno
  3. Polipropileno
  4. Policlorulo de vinilo

________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

los cerámicos

1. Utiliza las palabras que se presentan a continuación para explicar la fabricación del plástico.

a) Arcilla     b) Tipos de suelos     c) Extracción     d) Fábricas     e) Caolín     f) Cocción

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. De las siguientes imágenes indica cuáles pertenecen al grupo de los cerámicos.

¿qué es el reciclaje? ¿cuál es su utilidad?

1. Describe en cada material cómo se puede reciclar.

Metal

______________________________________________________________________________________________________

______________________________________________________________________________________________________

 

Plástico

______________________________________________________________________________________________________

______________________________________________________________________________________________________

 

Pilas y baterías

______________________________________________________________________________________________________

______________________________________________________________________________________________________

 

Vidrio

______________________________________________________________________________________________________

______________________________________________________________________________________________________

 

Materia orgánica

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. Observa la siguiente imagen y responde:

¿Cuáles son los materiales no biodegradables?

______________________________________________________________________________________________________

______________________________________________________________________________________________________

¿Qué significan las tres R?

______________________________________________________________________________________________________

______________________________________________________________________________________________________

¿Cómo podemos ayudar a reciclar en nuestro hogar?

______________________________________________________________________________________________________

______________________________________________________________________________________________________

¿Qué pasa si no reclamos los residuos que producimos?

______________________________________________________________________________________________________

______________________________________________________________________________________________________

CAPÍTULO 15 / TEMA 4

Período cuaternario

Este período es el último de la era geológica cenozoica. Se extiende hasta la actualidad y se caracteriza especialmente por el desarrollo del ser humano. Se divide en dos épocas: el Pleistoceno y el Holoceno. Esta última es la más actual de las épocas.

DURACIÓN Y DIVISIONES DEL CUATERNARIO

El Cuaternario comenzó hace unos 2,5 millones de años y continúa hasta la actualidad. Es el período que le sigue al Neógeno. El Pleistoceno es la primera y más larga época del período, mientras que el Holoceno, segunda época del Cuaternario, inició hace unos 12.000 años.

División del Cuaternario
Era Período Época
CENOZOICO Cuaternario Holoceno

(inició hace 0,01 millones de años)

Pleistoceno

(inició hace 2,59 millones de años)

Neógeno
Paleógeno  
Otro nombre

El Cuaternario también es denominado etapa Antropozoica, en alusión a las migraciones de grandes mamíferos y al origen del hombre.

Pleistoceno

Es una época del período Cuaternario. También es una de las divisiones geológicas más estudiadas, pues es muy importante estudiar y entender la evolución del hombre. Inició con la edad gelasiense hace unos 2,59 millones de años y finalizó con la edad tarantiense. El término Pleistoceno proviene de las palabras griegas pleistos y kainos, que significan “lo más” y “nuevo”, respectivamente.

División del Pleistoceno
Período Época Edad
Cuaternario Holoceno
Pleistoceno Tarantiense

(inició hace 0,13 millones de años)

Ioniense

(inició hace 0,78 millones de años)

Calabriense

(inició hace 1,80 millones de años)

Gelasiense

(inició hace 2,59 millones de años)

Geología

A diferencia de los períodos anteriores, durante el Pleistoceno no hubo mucha actividad geológica: la deriva continental empezó a ir más despacio. La posición de los continentes era prácticamente la misma que existe en la actualidad. Esta época se caracterizó por las glaciaciones, fenómeno que cubrió gran parte del territorio del planeta de hielo.

¿Sabías qué?
Los especialistas afirman que las placas tectónicas de los continentes no se han desplazado a más de 100 km de distancia entre ellas.
La Antártida del Pleistoceno

Los especialistas probaron que durante el Pleistoceno la Antártida estaba cubierta por un casquete polar, hecho que ha perdurado hasta la actualidad. También se comprobó que las capas de hielo tenían un espesor de entre 3 y 4 km.

Estrecho de Bering

Aunque las posiciones de los continentes estaban dispuestas de la misma forma que hoy se ven, algunas zonas que hoy están sumergidas bajo el mar estaban sobre la superficie en el Pleistoceno. El estrecho de Bering es un ejemplo de ello. Antes, este estrecho era el puente entre el extremo occidental de Norteamérica y el extremo oriental de Asia. Hoy en día es una canal que comunica el océano Pacífico con el Ártico.

Erosión

Uno de los efectos geológicos de las glaciaciones durante el Pleistoceno fue la erosión en la superficie de los continentes. De igual forma, algunos cuerpos de agua se vieron modificados y algunos otros se originaron con el fin de cada glaciación.

Clima

Algunos especialistas reconocen esta época como la era de Hielo. No obstante, se conocen períodos de tiempo en los que las temperaturas ambientales aumentaron y son llamados interglaciares. Es decir, el clima y la temperatura fluctuaron durante toda la época, pero se caracterizó principalmente por las glaciaciones.

¿Qué son las glaciaciones?

Son períodos en los que las temperaturas bajan en forma extraordinaria, disminuyen las lluvias y se crean masas de hielo de gran espesor. El hielo cubre gran parte de la Tierra y genera diversas consecuencias para el planeta, entre ellas, la extinción de algunos animales y plantas.

Vida vegetal

Los biomas que perduraron durante el Pleistoceno estuvieron restringidos a ciertas áreas, por lo que las plantas desarrolladas fueron propias de un bioma específico, por ejemplo, hacia el norte de la Tierra se desarrolló la tundra. También se observó el bioma taiga y prados templados. Hacia el interior de los continentes se extendieron árboles de gran tamaño que juntos conformaron grandes bosques.

Lo líquines son el tipo de vegetación más representativo del bioma tundra.
La vegetación predominante del bioma taiga son las coníferas.
¿Sabías qué?
Durante el Pleistoceno surgieron plantas termófilas: plantas que podían adaptarse y soportar temperaturas extremas.

Vida animal

Al igual que en otras épocas, los mamíferos fueron el grupo dominante. Lo más destacado del Pleistoceno fue la aparición de la megafauna: animales de gran tamaño que podían llegar a resistir muy bajas temperaturas. También se diversificaron las aves, los anfibios y los reptiles.

Desarrollo humano

A lo largo del Pleistoceno, la especie humana inició su desarrollo hasta convertirse en el hombre moderno, cuyos antepasados fueron las especies Homo habilis, Homo erectus y Homo neanderthalensis.

Evolución del hombre
Homo habilis Homo erectus Homo neanderthalensis Homo sapiens
“Hombre hábil” “Hombre erecto” “Hombre de Neandertal” “Hombre pensante”
Apareció hace 2,4 millones de años Apareció hace 2 millones de años Apareció hace 0,3 millones de años Apareció hace 0,3 – 0 millones de años
Durante el Pleistoceno inferior – medio Durante el Pleistoceno Durante el Pleistoceno superior Durante el Pleistoceno – Holoceno
Fabricaba y usaba herramientas sencillas hechas de piedra y metal. Construyó cabañas y formó asentamientos. Existió en África, Europa, Oceanía y Asia. Fue el primero en desarrollar convivencia social. Era robusto y de talla elevada. Tenía un cerebro algo más grande que el del ser humano actual. También desarrolló una gran adaptación al frío. Su cerebro se desarrolló ampliamente y cuenta con capacidades mentales que le permiten aprender, utilizar estructuras lingüísticas, e inventar.
Evolución de los cráneos.

Holoceno

El Holoceno es la última época de la era cenozoica y se extiende hasta la actualidad. Se caracteriza por abarcar la mayor parte del desarrollo de la humanidad, incluida la agricultura y la civilización. Tiene distintas propuestas para su división, unas relacionadas a la evolución del hombre y otras en relación a los sedimentos acumulados y el tiempo transcurrido desde la última glaciación. El término Holoceno deriva de las palabras griegas holos y kainos, que significan “todo” y “reciente”, respectivamente.

¿Sabías qué?
Algunos especialistas proponen sustituir el nombre Holoceno por Antropoceno debido a que la única especie que vivió la época fue el Homo sapiens.
División del Holoceno
Período Época Edad
Cuaternario Holoceno Megalayense

 

Norgripiense

 

Groenlandiense

 

Pleistoceno  
Divisiones

En julio de 2018, la Unión Internacional de Ciencias Geológicas aprobó las tres subdivisiones del Holoceno: Groenlandiense, Norgripiense y Megalayense.

Geología

Los continentes no han presentado cambios importantes ni grandes movimientos orogénicos durante el Holoceno. Si bien algunos fragmentos de la antigua Pangea aún se movilizan, lo hacen con una lentitud superior a la de las épocas anteriores. También es importante destacar que algunos territorios que al inicio del Holoceno estaban sobre la superficie hoy están sumergidos bajo el agua, como el estrecho de Bering y el estrecho de Torres.

Pangea fue un supercontinente que existió durante el final del Paleozoico e inicios del Mesozoico.
Nivel del mar: un gran cambio

Durante el Holoceno, el nivel del mar aumentó de forma significativa. La principal causa de esta variación es el deshielo de los glaciares y el casquete polar. Los especialistas han concluido que, desde que inició esta época, el mar ha aumentado aproximadamente 35 metros.

Origen del Holoceno

La palabra Holoceno fue empleada por primera vez en 1867 por Paul Gervais, quien se refirió al actual espacio de tiempo cálido tras la última glaciación con dicho término. Pasó a formar una época del Cuaternario de manera formal en 2005.

Würm: última glaciación

También conocida como Edad de Hielo, Würm fue la última glaciación del Cuaternario. Comenzó hace 110.000 años y culminó hacia 10.000 a. C., cerca del inicio del Holoceno.

Clima

El Holoceno inició tras la glaciación Würm y las temperaturas fueron más suaves que las de las épocas previas. Un fenómeno climático de interés fue el óptimo climático del Holoceno, caracterizado por temperaturas cálidas. Los especialistas no descartan la posibilidad de que vivamos en una época interglaciar y que dentro de unos millones de años ocurra otra glaciación.

Óptimo climático del Holoceno

Fue un período de tiempo en que las temperaturas fueron cálidas en comparación con las épocas anteriores, alrededor de 4 y 9 °C de aumento. Tuvo lugar entre el 6.000 a. C. y el 2.500 a. C. Este calentamiento no fue uniforme, y algunas regiones sufrieron enfriamiento.

Pequeña Edad de Hielo

Tras el óptimo climático del Holoceno, las temperaturas ambientales descendieron gradualmente, en especial entre el siglo XIV y el siglo XIX, cuando el hemisferio norte tuvo un enfriamiento de menos de 1 °C, hecho conocido como la Pequeña Edad de Hielo.

Vida vegetal

Desde el punto de vista evolutivo, la vida vegetal no ha sufrido grandes cambios. No obstante, durante el Holoceno ha existido una tendencia hacia la desaparición de múltiples especies. Las plantas más distribuidas en el planeta son las angiospermas. También se observan selvas húmedas hacia las regiones del trópico y bosques de pinos hacia los polos.

La selva amazónica es la más importante del planeta porque proporciona una gran cantidad del oxígeno que se respira.
En zonas de altas temperaturas y poca agua, como el Sahara en África, Atacama en Chile o El Gobi en Mongolia, se pueden encontrar plantas como el cactus.
¿Sabías qué?
Los especialistas coinciden en que la extinción de especies vegetales y animales está relacionada con la aparición del ser humano.

Vida animal

La fauna del Holoceno no ha variado mucho en el tiempo que lleva. A principios de la época existían mamuts, dodos, moas, tilacinos y palomas viajeras, entre otros animales. Un aspecto a destacar es que se ha acentuado la extinción de especies terrestres y marítimas. La tasa de extinción es acelerada y se prolonga hasta la actualidad.

Extinción masiva del Holoceno

Es un evento de extinción del Cuaternario tardío. Inició poco antes del Holoceno y ha continuado hasta el día hoy. Incontables especies animales y vegetales han desaparecido cada año y una de sus principales causas es el cambio climático como resultado de la propagación del humano moderno.

Desarrollo humano

La mayor parte del desarrollo de la humanidad ha ocurrido dentro del Holoceno, desde las costumbres nómadas del Homo sapiens hasta las civilizaciones y grandes avances culturales e intelectuales. Los hechos más destacados son los siguientes:

  • Prehistoria
Edad de Piedra – El Paleolítico coincidió con el Pleistoceno. Aparecieron todos los representantes del género Homo: desde el Homo habilis hasta el Homo sapiens.

– El Mesolítico se caracterizó por el cambio de las costumbres nómadas del hombre para convertirse en pueblos sedentarios.

– Durante el Neolítico, el humano comenzó a practicar la agricultura y la ganadería, lo que reafirmó sus hábitos sedentarios.

Edad de los Metales – En la Edad del Cobre, el hombre comenzó a trabajar con cobre, plata y oro con el fin de crear armas y herramientas.

– Durante la Edad del Bronce, el hombre conoció la aleación entre el estaño y el cobre, con la cual creó herramientas y utensilios. Además, el hombre empezó a jerarquizar las sociedades.

– La Edad de Hierro fue importante porque el hombre aprendió a extraer hierro del subsuelo y lo empleó para fabricar sus armas.

  • Historia humana
Edad Antigua – Durante esta edad se inventó la escritura. Asimismo, surgieron diversas civilizaciones como la griega, la romana, la egipcia, la china y la mesopotámica. Finalizó con la caída del Imperio romano.
Edad Media – Esta edad cubrió un amplio período de tiempo. Surgió el feudalismo, se incrementaron la agricultura, la ganadería y el teocentrismo.
Edad Moderna – Para determinar el inicio de esta edad se toma como referencia el descubrimiento de América. En Europa surgió el Renacimiento: etapa de auge para las artes con importantes representantes como da Vinci y Miguel Ángel.
Edad Contemporánea – Se ha caracterizado por diversas resoluciones, como la francesa, rusa o cubana; grandes guerras, como la Primera y Segunda Guerra Mundial; profundo desarrollo intelectual, con personajes como Einstein, Mendel y Freud; y un avanzado desarrollo tecnológico, en el que destaca el internet.
RECURSOS PARA DOCENTES

Artículo “Revolución Neolítica”

Este artículo describe el impacto que la agricultura tuvo sobre la población durante el final de la Edad de Piedra.

VER

Artículo “Edad de piedra: Paleolítico”

Este recurso le permitirá conocer más sobre el período histórico en el que los humanos empezaron a fabricar sus primeras herramientas de piedra, madera y hueso.

VER

Artículo “La Edad de Piedra: el Neolítico”

Este artículo describe los aspectos más importantes del Neolítico: período prehistórico en el que se inicia la aparición de la agricultura y los primeros asentamientos.

VER

Recursos naturales renovables y no renovables

Los recursos naturales son todos aquellos elementos que provienen de la naturaleza y que, además, pueden ser usados para satisfacer las necesidades del ser humano. De acuerdo a sus posibilidades de recuperación, estos recursos naturales pueden clasificarse en renovables y no renovables.

Recurso natural renovable Recurso natural no renovable
Otro nombre Recurso natural de flujo. Recurso natural agotable.
Procedencia De la naturaleza. De la naturaleza.
Cantidad generada Ilimitada (bajo correcta gestión). Limitada.
Tiempo de regeneración Relativamente corto. Millones de años.
Consecuencias de su explotación
  • Deforestación.
  • Extinción de especies animales y vegetales.
  • Contaminación ambiental.
  • Extinción de especies animales y vegetales.
  • Contaminación ambiental.
Clasificación y ejemplos
  • Renovable con gestión sostenible.

Ejemplo: el agua subterránea.

 

  • Renovables en sentido estricto.

Ejemplo: Aire puro.

  • Destructivos o de consumo por uso.

Ejemplo: Petróleo.

 

  • Reciclables o reutilizables en partes.

Ejemplo: Oro.

 

  • Potencialmente renovables.

Ejemplo: Azufre.

Otros ejemplos
  • Fauna.
  • Flora.
  • Suelos fértiles.
  • Energía de mareas y vientos.
  • Gas.
  • Carbón.
  • Aguas fósiles.
  • Minerales metálicos y no metálicos.

 

Metales, metaloides y no metales

La materia está formada por elementos cuya unidad fundamental es el átomo. Estos elementos se organizan en la tabla periódica y pueden clasificarse como metales, metaloides y no metales. Cada categoría presenta una química muy particular con propiedades características que permiten diferenciarlas.

 

Metales Metaloides No metales
Estado físico Sólidos a temperatura ambiente, excepto el mercurio (Hg) y el francio (Fr), que son líquidos. Sólidos a temperatura ambiente. Sólidos, como el carbono (C); líquidos, como el bromo (Br); y gaseosos, como el oxígeno (O).
Apariencia Tienen brillo metálico. La mayoría son plateados, excepto el cobre (Cu) que es rojizo y el oro (Au) que es amarillo. La mayoría tiene brillo metálico. No tienen brillo metálico. Se presentan de diversos colores: el bromo (Br) es rojo y el azufre (S) es amarillo.
Abundancia en la Tierra Baja. A pesar de que el

79 % de los elementos existentes son metales, en la Tierra éstos son los menos abundantes.

Algunos son abundantes en la corteza terrestre como el silicio (Si), y otros son muy raros de encontrar, como el polonio (Po). Alta. A pesar de que el 21 % de los elementos existentes son no metales, son los más abundantes en nuestro planeta.
Presentes en el cuerpo humano
  • Na y K: ayudan a transportar oxígeno.
  • Ca: fortalece los huesos.
  • Mg: ayuda a la coagulación de la sangre.
  • Fe: asimila el oxígeno en la sangre y produce hemoglobina.
  • Cu: combate la anemia.
  • Zn: ayuda a metabolizar carbohidratos y fortalece el sistema inmune.
Presentes en concentraciones mínimas.
  • O: indispensable para la respiración.
  • C: presente en todas la biomoléculas.
  • H: presente en casi todas las biomoléculas.
  • N: presente en las proteínas y en los ácidos nucleicos.
  • P: presente en los ácidos nucleicos, en el ATP de las moléculas. Forma dientes y huesos.
  • S: forma parte de diversas proteínas.
Propiedades mecánicas Son muy dúctiles y maleables. Son intermedios entre los metales y los no metales. No son dúctiles ni maleables. Gran parte de ellos son duros y quebradizos.
Conductividad  Son buenos conductores de electricidad y calor. Son semiconductores. Son malos conductores de electricidad y calor.
Punto de fusión y ebullición  Relativamente altos. Altos respecto a los no metales. Relativamente bajos.
Capa de valencia Átomos con capa de valencia ocupada con pocos electrones, generalmente dos o tres. Átomos con capa de valencia ocupada con tres electrones. Átomos con capa de valencia ocupada con cuatro o más electrones, excepto el helio y el hidrógeno.
Electronegatividad Baja Intermedia Alta
Reactividad Tiende a perder electrones cuando se combina con otros elementos. Se convierten en cationes. Reactividad química variada. Se pueden comportar como metales o no metales. Tienden a ganar electrones cuando se combinan con otros elementos. Se convierten en aniones.
Ubicación en la tabla periódica
Ejemplos Litio (Li), sodio (Na), cromo (Cr), cobre (Cu), plata (Ag), oro (Au), platino (Pt), calcio (Ca), mercurio (Hg), hierro (Fe) y aluminio (Al), entre otros. Boro (B), silicio (Si), germanio (Ge), arsénico (As), antimonio (Sb), polonio (Po), telurio (Te), astato (At) y selenio (Se). Hidrógeno (H), oxígeno (O), carbono (C), nitrógeno (N), azufre (S), fósforo (P), flúor (F), cloro (Cl), bromo (Br), yodo (I), neón (Ne) y Argón (Ar), entre otros.

 

Fuegos artificiales

El descubrimiento de lo que hoy en día se conoce como fuegos artificiales o juegos pirotécnicos data del siglo XII en China, relacionándosele con la aparición de la pólvora negra. Posteriormente su uso se fue expandiendo a nivel mundial y con esto se fue perfeccionando su técnica, pero no es hasta el siglo XIII cuando llega a Europa.

Hasta el siglo XIX los fuegos artificiales eran exclusivamente de color amarillo, por lo que se dice que eran monocromos (con un sólo color), esta coloración se la proporcionaba la mezcla de sus componentes con sodio. Sin embargo, en Europa (España e Italia, principalmente) los maestros pirotécnicos trabajaban aislados y en secreto desarrollando nuevas técnicas para lograr un mayor impacto visual en el público, obteniendo así la coloración roja al adicionar estroncio en la mezcla. Cuando incorporaron diferentes sales de clorato, para formar a partir de ellas los cloruros, se obtuvo la gran gama de colores que hoy en día conocemos.

En sí, los fuegos artificiales son producidos y funcionan como resultado de la mezcla de diferentes compuestos químicos que reaccionan entre sí bajo ciertos requerimientos, entre ellos la presencia de oxígeno necesaria para la combustión.

Se llama combustión a la unión de dos componentes (combustible y comburente) que forman nuevas sustancias al reaccionar, generando de esta forma luz y calor.

La pólvora negra produce gran cantidad de humo y residuos al quemarse.

La pólvora negra, ya sea pulverizada (polvorín) o no, es el compuesto más empleado para acelerar el proceso de combustión en los fuegos artificiales, ya que el nitrato, uno de sus constituyentes, proporciona el oxígeno necesario para la combustión completa en un espacio carente de aire.

Molécula de Dióxido de Carbono (CO2).

Estas sustancias comienzan a reaccionar cuando se enciende la mecha del dispositivo del fuego artificial, en dicho momento se produce una reacción de transferencia de electrones, en la que los átomos del combustible aportan electrones a los átomos del oxidante y se mezclan con el oxígeno, de tal forma que los nuevos enlaces que se forman son más estables que los iniciales y por ello se libera energía en forma de luz y calor.

Las mechas tienen una longitud adecuada, para permitir que la persona pueda retirarse antes de la explosión.
¿Sabías qué...?
Los fuegos artificiales deben ser almacenados en lugares frescos, secos y ventilados, para evitar explosiones.

En la siguiente tabla se muestran algunos de los compuestos que aportan coloración en los fuegos artificiales:

Sustancias Colorantes que componen los fuegos artificiales

Cada color presenta una longitud de onda diferente, característica que permite que los colores sean diferenciados por el ojo humano, por ejemplo: el rojo tiene una mayor longitud de onda (620–750 nm) que el azul (450-495 nm).

nanómetro (nm)= Medida de longitud equivalente a 0,000 000 001 m, en notación científica: 10-9 m.
Los colores de los fuegos artificiales dependen de las sales o metales que contengan.

Aunque están constituidos por los mismos componentes químicos, continuamente aparecen en el mercado diferentes tipos de fuegos artificiales (baterías, tracas, petardos, etc.) que están destinados a sorprender cada vez más, por su variedad de colores y formas.

Algunos funcionan a nivel del suelo y otros a grandes alturas, pero básicamente a lo largo del tiempo se han mantenido dos tipos principales:

Las luces de bengala, por lo general son las que representan un menor riesgo, puesto que consisten en una varilla de tamaño medio cubierta por pólvora hasta cierto nivel, la cual al ser encendida genera pequeñas chispas que van aumentando-disminuyendo de intensidad a medida que se va consumiendo la pólvora.

Algunas veces a las bengalas se les adiciona aluminio o magnesio en polvo, de manera que se crean chispas brillantes y relucientes.

Luces de bengala.

Los fuegos artificiales aéreos, como su nombre lo indica, se construyen para que exploten y puedan ser observados en el cielo a una cierta altura y por un mayor número de personas. Están conformados por una envoltura que consta de cuatro partes: contenedor, esferas, carga explosiva y fusible.

A diferencia de las bengalas, los fuegos artificiales aéreos explotarán y producirán brillantes destellos de luz coloreada directamente en el cielo, esto ocurre cuando la envoltura del fusible se quema al alcanzar la altura suficiente para no causar una lesión a las personas que lo observan. Es allí cuando el fusible enciende la carga explosiva y se genera la explosión.

La explosión activa las esferas que contienen la pólvora y es entonces cuando comienza a arder con chispas relucientes y abundantes en todas las direcciones. El patrón o forma mostrada en el cielo depende de la disposición de la pólvora dentro de la esfera resguardada.

Pero la verdadera explicación técnica por la cual se pueden llegar a observar las diferentes tonalidades de colores puede ser por dos fenómenos:

Incandescencia: La expresión de la energía calórica (altas temperaturas) es emitida a una determinada frecuencia o longitud de onda, generando la manifestación de los colores.

Luminiscencia: La energía calórica producida es generada por las temperaturas ambientales.

Podemos decir entonces que con la incandescencia se suelen comenzar a observar colores de la zona infrarroja del espectro (rojo, naranja), mientras que por la luminiscencia los colores que se aprecian son todos los que comprenden el espectro visible.

De igual forma, además de las sustancias oxidantes, reductoras y colorantes, deben agregarse a esta mezcla diferentes compuestos que le proporcionen estabilidad, como agentes aglomerantes para cohesionar la mezcla, protegerla de la humedad y garantizar su duración mientras esta almacenada.

Así mismo, el calor que interviene en la explosión de los fuegos artificiales provoca la expansión del aire alrededor de este, lo que hace que el oído humano perciba las ondas emitidas como un intenso sonido. Algunas veces el sonido es tan fuerte que puede provocar que nuestro pecho y pies puedan también sentir la onda vibratoria.

La mecha de los fuegos artificiales debe ser encendida sólo por un adulto, para evitar quemaduras en niños pequeños con el fuego.

Cómo se visualiza el fuego artificial está determinado por el modo en que fue envuelta la pólvora, si se empaqueta en forma de globo, los fuegos artificiales explotarán con aspecto de esfera; si se colocan con estructura de estrella, explotarán con dicha apariencia.

Aplicación de los Fuegos Artificiales

Aunque desde sus inicios los fuegos artificiales han sido utilizados generalmente para dar impresionantes espectáculos con ocasión de fiestas, conmemoraciones, entre otros, estos han sido empleados de diversas formas conforme ha transcurrido el tiempo, actualmente los fuegos artificiales o juegos pirotécnicos son utilizados con los siguientes fines.

¿Sabías qué...?
La quema de los fuegos artificiales debe de ser realizada en terrenos planos para asegurar la estabilidad del producto y por lo tanto nuestra propia seguridad.

Para el señalamiento y localización en caso de accidentes o emergencias en ferrocarriles, transportes terrestres, aéreos y marítimos, así como para la localización de personas.

Para la agricultura y ganadería, como botes fumígenos contra plagas, tiras detonantes y cohetes antigranizo para provocar lluvia y favorecer el riego de los sembradíos.

Bengala de humo para señalamiento, con componentes especiales para funcionar en el agua.

En la industria pesquera suelen utilizarse bengalas submarinas para generar una luz bastante amplia y resistente al agua, la tinta que contiene funciona como un marcador submarino.

En la industria minera se emplean como explosivos para realizar sus actividades de excavación.

En las actividades mineras existes especialistas en explosivos para poder realizar extracciones selectivas de minerales o metales.

En la capacitación y adiestramiento militar sirven para simular explosiones y disparos.

Afinidad y valencia química

Los elementos químicos son sustancias que no pueden descomponerse en sustancias más simples mediante procesos químicos ordinarios. Los elementos son los materiales fundamentales de los que se compone toda la materia.

Valencia y afinidad química

El concepto de afinidad química hace referencia a la tendencia de un átomo o de una molécula a reaccionar o combinarse con otros átomos u otras moléculas distintas. Definido en términos parecidos, el concepto ya fue introducido en la química en el s. XVIII. Pero para que un concepto tenga realmente carácter científico debe estar asociado a una magnitud medible y de ahí que en el s. XIX se explorasen posibles maneras de medir la afinidad. Se asoció finalmente con la disminución de la energía libre (función de estado de un sistema que depende de la concentración de las sustancias, la presión y la temperatura). Sin embargo, nosotros utilizaremos aquí el concepto de afinidad de un modo laxo, como un recurso de lenguaje para expresar la tendencia a reaccionar de dos sustancias, dos moléculas o dos átomos.

¿Sabías qué...?
El 6 de marzo de 1869 fue presentada por el científico ruso Dimitri Mendeleev la primera tabla periódica. El elemento radioactivo mendelevium es un homenaje a él.

Si dos elementos son afines, en condiciones adecuadas reaccionarán para formar un compuesto. Esos dos elementos se combinarán en determinada proporción, lo que sugiere el concepto de valencia química, que puede definirse como un número entero que expresa la capacidad de combinación de un átomo con otros para formar un compuesto. Aclararemos y ampliaremos esta definición con un ejemplo: el hidrógeno y el oxígeno se combinan para dar agua según la reacción

Hidrógeno + oxígeno = agua

La fórmula del agua es H2O, lo que significa que la molécula de agua está formada por tres átomos: dos de hidrógeno y uno de oxígeno. Así pues, el oxígeno y el hidrógeno se combinan en la proporción 1:2, es decir, que el oxígeno “vale” o tiene valencia doble que la del hidrógeno. Si damos el valor 1 a la valencia del hidrógeno, la valencia del oxígeno será 2.

Las valencias son el número de enlaces que puede formar un elemento químico.

Análogamente a como hemos razonado la valencia del oxígeno se razona la valencia de otros no metales. Así, para el cloro, puesto que se une al hidrógeno para formar cloruro de hidrógeno (HCl) en la proporción 1:1, la valencia será 1; para el nitrógeno, que se une al hidrógeno para formar amoníaco (NH3) en la proporción 1:3, la valencia será 3; y para el carbono, que se une al hidrógeno para formar metano (CH4) en la proporción 1:4, la valencia será 4.

En el caso de los metales, la valencia se computa a partir del número de átomos de hidrógeno que el metal sustituye en un compuesto. Así, en el cloruro de sodio (sal común, NaCl) el átomo de sodio, Na, sustituye a un átomo de hidrógeno (ya que el ácido del que deriva la sal es HCl), por lo tanto la valencia del sodio es 1. En el carbonato de calcio (caliza, CaCO3), el átomo de calcio sustituye a dos átomos de hidrógeno, por lo tanto la valencia del calcio es 2.

Existen muchos elementos que presentan valencias de valores distintos; así el nitrógeno es trivalente en el amoníaco, pero forma óxidos con las valencias 2, 3, 4 y 5.

Teoría del enlace de valencia

Es una teoría química que explica que un átomo central de una molécula tiende a formar pares de electrones, de acuerdo con las restricciones geométricas, definidas por la regla del octeto.

Los enlaces químicos

La energía de un agregado de dos o más átomos puede ser menor que la suma de las energías de esos átomos aislados y de ahí que, siguiendo la tendencia de cualquier sistema a alcanzar su estado de mínima energía, los átomos se unan unos con otros de diversos modos para formar moléculas estables. Así, sólo los gases nobles y los metales en estado de vapor están constituidos por átomos aislados.

Todas las demás sustancias están constituidas por moléculas integradas por un número de átomos que puede ir desde dos hasta cientos de miles (polímeros). En la formación del enlace químico intervienen únicamente los electrones de la última capa, los llamados electrones de valencia, que pueden ser parcialmente compartidos entre dos átomos (enlace covalente) o bien cedidos por uno a otro (enlace electrovalente). Es importante destacar que desde el punto de vista de la teoría química actual el enlace químico tiene carácter unitario, basándose siempre en compartir electrones por pares.

Las moléculas están constituidas por la unión de cierto número de átomos iguales o distintos. Se plantea, pues, la cuestión de saber cuál es el nexo que mantiene a los átomos unidos entre sí para formar moléculas. En todos los casos, este nexo se establece únicamente a partir de los electrones que forman la última capa de los átomos, los llamados electrones de valencia.

Hablaremos de cinco tipos de enlace distintos: iónico o electrovalente, covalente, metálico, de hidrógeno y covalente coordinado.

El fundamento del enlace químico es la Ley Física Fundamental según la cual todo sistema evoluciona hacia su estado de energía más bajo. Esta ley explica, por ejemplo, el hecho de que una bola que se encuentra en un recipiente cóncavo se sitúe en el punto más bajo del mismo o bien que, si dos disoluciones de distinta concentración están separadas por un tabique poroso, la concentración de ambas tienda a igualarse por migración del soluto a través del tabique.

 

Existen cinco tipos de enlaces: iónico o electrovalente, covalente, metálico, de hidrógeno y covalente coordinado.

Para poder aclarar la naturaleza de cada uno de los distintos tipos de enlace listados, antes deberemos explicar algunos conceptos importantes, en particular el concepto de ion, y formular la teoría del octete (u octeto).

Con respecto a la mayor o menor facilidad con que permiten el paso de la corriente eléctrica, los cuerpos se clasifican en:

  • Aislantes
  • Conductores:
    • de primera clase
    • de segunda clase o electrólitos

Los conductores de primera clase son aquellos que, como los metales, no se alteran con el paso de la corriente eléctrica.

Por el contrario, los conductores de segunda clase o electrólitos se descomponen cuando son atravesados por una corriente eléctrica. Los electrólitos son exclusivamente ácidos, bases o sales fundidos o disueltos en agua u otros líquidos.

El primero que formuló una explicación científica coherente de la descomposición de los electrólitos por el paso de una corriente eléctrica (electrólisis) fue Arrhenius, quien, en 1883-1887, propuso su teoría de la disociación electrolítica. Aunque inicialmente fue recibida sin entusiasmo por los medios científicos, esta teoría ha sido una de las más fecundas de la química moderna, ya que sentó las bases para el desarrollo de la electroquímica, que hoy constituye una de las bases de la química industrial.

Teoría de Arrhenius de la disociación electrolítica

Se denomina ion a un átomo o una partícula formada por varios átomos que posee una carga eléctrica debida a un defecto o un exceso de electrones planetarios. Según sea su carga eléctrica, los iones se clasifican en positivos o cationes y negativos o aniones.

De acuerdo con la teoría formulada por Arrhenius:

  1. Los electrólitos, en disolución o fundidos, se disocian parcialmente en iones dotados de carga eléctrica, siendo la carga total de los iones positivos igual a la carga total de los iones negativos; la disolución en su conjunto permanece neutra.
  2. Las sustancias químicamente análogas se disocian en los mismos iones (por ejemplo, el grupo NO3 de los nitratos, PO4 de los fosfatos o Na de las sales sódicas). La carga eléctrica del ion es igual a su valencia y es negativa para los no metales y radicales no metálicos (aniones) y positiva para los metales (cationes).

Así, por ejemplo, al disociarse electrolíticamente el cloruro de hidrógeno (un ácido), el cloruro de calcio (una sal) y el hidróxido de sodio (una base) tendremos respectivamente:

HCl  H+ (1 ion positivo) + Cl- (1 ion negativo)

CaCl2   Ca2+ (1 ion positivo) + 2Cl- (dos iones negativos)

NaOH  Na+ (1 ion positivo) + (OH)- (1 ion negativo)

Los iones positivos son más pequeños que los átomos metálicos de los que proceden (por ejemplo, el radio del ion Na+ es sólo muy poco mayor que la mitad del radio del átomo de sodio), mientras que los iones negativos son siempre mayores que los átomos de los no metales a partir de los que se han formado (por ejemplo, el radio del ion Cl- es casi el doble que el radio del átomo de cloro).

Steve August Arrehnius (1859-1927) fue un reconocido científico sueco.

Ionización

La formación de iones se explica por la cesión o admisión de electrones, generalmente en la capa más externa, por parte de un átomo. Es decir, si un átomo X acepta un electrón se rompe el equilibrio eléctrico en que se encontraba, al pasar a poseer una carga negativa más; tendremos así un ion negativo X-. Si el átomo X hubiera aceptado dos electrones estaríamos ante un ion X2-, etcétera.

Por el contrario, si un átomo X cede un electrón pasará a convertirse en un ion positivo, X+, puesto que su número de cargas negativas será entonces inferior en una unidad al número de cargas positivas del núcleo (protones); en el caso de que cediera dos electrones, se tendría el ion X2+, etcétera.

La ionización no es un fenómeno que pueda producirse únicamente a causa de la disociación de un electrólito en disolución. También por efecto del calor, las radiaciones ionizantes o el choque con otras partículas, un átomo puede perder uno o más electrones o bien absorber electrones extraños. Por ejemplo, en las capas altas de la atmósfera (ionosfera), los átomos del aire son constantemente bombardeados por radiaciones solares de alta energía, las cuales les arrancan electrones. Asimismo, los meteoritos, al atravesar la atmósfera a gran velocidad, producen un calentamiento local del aire, ionizándolo a lo largo de su trayectoria.

Un ion se forma cuando una molécula le “cede” electrones a otra.

Los iones presentes en el aire atraen el polvo y las gotitas de agua, y por esta razón se emplean iones para que actúen como núcleos de condensación con el fin de provocar artificialmente la lluvia. En un proceso esencialmente análogo, en las cámaras de ionización la observación de las trayectorias de las partículas atómicas se basa en la condensación que provocan a su paso.

En determinadas condiciones, un gas puede hallarse completamente ionizado, es decir, con todos sus átomos en defecto de electrones; en ese caso se le denomina plasma. Sin embargo, el propio plasma se encuentra en estado neutro, ya que, al hallarse íntimamente mezclados en todo el espacio ocupado, sus electrones y sus iones positivos compensan sus cargas entre sí.

Teoría del octete

Los gases nobles constituyen el grupo 0 de la Tabla Periódica. Las moléculas de estos gases son monoatómicas, ya que la característica más destacada de estos elementos es que sus átomos carecen prácticamente de capacidad para unirse con otros átomos de su misma o de otra especie.

Todos los gases nobles, a excepción del primer elemento del grupo, el helio, poseen ocho electrones en la última órbita. Este hecho llevó a considerar que ésta era la configuración electrónica más estable. Por ello, Lewis introdujo en 1916 la teoría del octete u octeto: “Cuando los átomos reaccionan entre sí tienden a adquirir la estructura electrónica del gas noble de número atómico más próximo.” Sorprendentemente, esta ingeniosa teoría se ajusta muy bien a la realidad, aunque en el momento en que fue propuesta carecía por completo de verdadera justificación teórica.

Los gases nobles son los elementos que, en las condiciones normales de la Tierra, están formados por un solo tipo de átomos.

Intoxicación por Monóxido de Carbono

El monóxido de carbono es un gas venenoso, sin color ni olor, por lo que se lo conoce como “el asesino invisible”. El monóxido de carbono se produce por la combustión incompleta del carbono presente en materiales tales como leña, carbón de leña, gas, kerosene, alcohol, gas oil y nafta.

Cada año mueren unas 200 personas por intoxicación por monóxido de carbono, todas ellas prevenibles. La vida media en personas sanas que respiran aire contaminado por monóxido de carbono, varía entre 3 a 4 horas.

Las alarmas detectoras de dióxido de carbono salvan vidas.

¿Cómo se produce la intoxicación por Monóxido de Carbono?

La inhalación e Intoxicación por monóxido de carbono produce que éste reemplace al oxígeno en el torrente sanguíneo. En consecuencia, la falta de oxígeno hace que sufran el corazón, el cerebro y el cuerpo.

¿Cuáles son sus síntomas?

Los síntomas pueden variar de una persona a otra. Quienes tienen mayor riesgo de intoxicación son los niños pequeños, los adultos mayores, las personas con enfermedades cardíacas y/o pulmonares, los fumadores y las personas que habitan en zonas de gran altitud.

El principal riesgo de este tipo de intoxicación es que en muchos casos la persona no es consciente de los síntomas. Éstos pueden ser:

  • Dolor de cabeza.
  • Náuseas o vómitos.
  • Mareos, acompañados de cansancio.
  • Letargo o confusión.
  • Desmayo o pérdida de conocimiento.
  • Alteraciones visuales.
  • Convulsiones.
  • Estado de coma.
  • Pueden producirse otros síntomas parecidos a una intoxicación alimentaria, un cuadro gripal, un problema neurológico o cardíaco. Es decir, ante la inhalación de este gas venenoso, puede parecer que la persona tiene otra patología, pero podría tratarse de una Intoxicación por monóxido de carbono.

Ante los primeros síntomas, es necesario ventilar el ambiente y recurrir a un centro de salud u hospital y/o asistir a un servicio de emergencias médicas. Infórmele al personal médico sobre la sospecha de estar sufriendo intoxicación por monóxido de carbono.

¿Cómo se puede prevenir?

– Para prevenir la intoxicación por monóxido de carbono es elemental el control de las instalaciones y el buen funcionamiento de artefactos así como es importante mantener los ambientes bien ventilados:

  • Control de instalaciones:

– Controlar la correcta instalación y el buen funcionamiento de los artefactos: calefones, termotanques, estufas a gas, salamandras, hogares a leña, calderas, cocinas, calentadores, faroles, motores de combustión interna en automóviles y motos, braseros.

– Examinar especialmente las salidas al exterior de hornos, calefones, estufas y calderas para asegurarse que están permeables y en buen estado.

– Hacer una verificación de las instalaciones con personal matriculado que pueda identificar y corregir los desperfectos de la fuente generadora de monóxido de carbono.

Existen distintos signos que muestran que un artefacto no está funcionando bien y vuelve urgente hacer revisar la conexión por un gasista matriculado:

– Comprobar que la llama de estufas y hornallas sea siempre de color azul. Si la misma es anaranjada, es una mala señal.

– Lo más notorio en un conducto de gas que no esté bien puesto o mal tapado, es el rastro de una mancha negra en el techo y en la pared (en el recorrido que hace el caño).

  • Ambientes bien ventilados:

– Comprobar que los ambientes tengan ventilación hacia el exterior.

-Ventilar toda la casa una vez al día, aunque haga frío.

– Dejar siempre una puerta o ventana entreabierta, tanto de día como de noche, y aún cuando haga frío.

– Si se encienden brasas o llamas de cualquier tipo, no dormir con éstas encendidas y apagarlas fuera de la casa.

– No usar el horno u hornallas de la cocina para calefaccionar el ambiente.

– No mantener recipientes con agua sobre la estufa, cocina u otra fuente de calor.

– El calefón no debe estar en el baño, ni en espacios cerrados o mal ventilados.

– No encender motores a combustión (grupos electrógenos, motosierra, etc.) en cuartos cerrados, en sótanos o garages.

– No mantener el motor del auto en funcionamiento cuando el garaje está cerrado. Si su garaje está conectado al resto de su hogar, cierre las puertas.

– No arrojar al fuego plásticos, goma o metales porque desprenden gases y vapor que contaminan el aire.

¿Cómo actuar ante una intoxicación por Monóxido de Carbono?

Ante la sospecha de estar padeciendo una intoxicación por Monóxido de Carbono:

  • Salga a tomar aire fresco inmediatamente, abra ventanas y puertas, apague los artefactos de gas y llame al servicio de emergencia. No permanezca en su domicilio.
  • Ante los primeros síntomas, recurra inmediatamente al médico.

TODAS LAS INTOXICACIONES POR MONOXIDO DE CARBONO SON EVITABLES

Fuente: Ministerio de Salud – Presidencia de la Nación (Argentina)

http://www.msal.gob.ar/index.php/component/content/article/48-temas-de-salud-de-la-a-a-la-z/334-intoxicacion-por-monoxido-de-carbono