Sinapsis eléctrica y sinapsis química

Las neuronas se comunican entre sí a través de una señal eléctrica que se propaga por medio de sitios específicos de conexión llamados sinapsis. Según el mecanismo de transmisión de los impulsos nerviosos, responsables de coordinar las funciones vitales de cada individuo, la sinapsis puede ser eléctrica o química. 

Sinapsis eléctrica Sinapsis química
Definición Las neuronas emisoras transmiten el impulso nervioso a las neuronas receptoras por medio del paso iones que viajan por unos pequeños canales denominados uniones gap. Las neuronas emisoras liberan los neurotransmisores para que estos se fusionen con los receptores de las neuronas postsinápticas y así transmitir la señal nerviosa.
Presencia de uniones gap Sí. No.
Espacio sináptico Pequeño, el espacio interno de una neurona y el de la siguiente están en contacto. Amplio, la neurona presináptica y la postsináptica están separadas por un claro espacio sináptico.
¿Es liberado un neurotransmisor? No. Sí.
Dirección Bidireccional. Unidireccional.
Retardo sináptico No. Sí.
¿En qué organismos está presente? Invertebrados, aunque también está presente en algunas partes del cuerpo de los vertebrados. Vertebrados.
Ilustración

1. Neurona presináptica

2. Flujo de iones

3. Unión en hendidura

4. Neurona postsináptica

1. Neurona presináptica

2. Vesícula sináptica

3. Neurotransmisores

4. Canales iónicos reguladores

5. Neurona postsináptica

 

CAPÍTULO 13 / TEMA 5

Los tornados

Los tornados son uno de los fenómenos más violentos de la naturaleza. Están formados por una gran columna giratoria de aire, con vientos que alcanzan hasta 480 km/h. Los tornados pueden destruir casas, grandes edificios, desarraigar árboles y lanzar vehículos a cientos de metros.

VER INFOGRAFÍA

¿CÓMO SE FORMAN LOS TORNADOS?

Antes de que se desarrollen las tormentas eléctricas se genera un cambio en la dirección del viento por el aumento en la velocidad y en la altura que crea un efecto de giro horizontal invisible en la atmósfera inferior.

  1. Los tornados comienzan cuando los rayos solares calientan la superficie de la Tierra. A medida que el aire cálido y menos pesado comienza a elevarse, se encuentra con el aire más frío y pesado sobre él.
  2. El aire en movimiento más rápido comienza a girar sobre el viento más lento. A medida que avanza, aumenta su ritmo y crece.
  3. En esta etapa se forma una especie de cilindro que gira y rueda horizontalmente. A medida que los vientos se acumulan, el aire cálido más fuerte impulsa los vientos giratorios verticalmente hacia arriba, lo que causa una corriente ascendente.
  4. Con el aumento del aire caliente, el aire giratorio encuentra más corriente ascendente, por lo que gira más rápido hacia arriba y gana más impulso.
  5. Los vientos que giran crean un vórtice y la corriente de aire tiene suficiente energía para alimentarse.
  6. El tornado está completamente formado y se mueve en la dirección de los vientos de la tormenta.

¿Cuándo suelen ocurrir los tornados?

Los tornados pueden formarse en cualquier época del año, pero la temporada típica se extiende desde marzo hasta agosto. Es más probable que ocurran entre las 3 de la tarde y las 9 de la noche.

ESCALA DE FUJITA

La escala de Fujita se utiliza para asignar a un tornado una calificación basada en la velocidad estimada del viento y los daños relacionados.

Cuando se examina el daño relacionado con el tornado, se compara con una lista de indicadores y grados de daño que ayudan a estimar mejor el rango de velocidades del viento que el tornado probablemente produjo.

F0 — Ligero: vienen como vientos fuertes y causan poco daño a los techos que están deteriorados. Estos vientos pueden desplazar objetos livianos como botes de basura. Los tornados en esta categoría ocurren con mucha frecuencia y representan aproximadamente el 60 % del número total de tornados en el año.

F1: Moderado: representan aproximadamente el 28 % del número total de tornados. Causan daños menores al paisaje, árboles jóvenes, techos de edificios y ventanas rotas. Pueden desplazar objetos más pesados.

F2: Considerable: representan aproximadamente el 9 % del número total. Rompen ramas de árboles, causan daños considerables a la propiedad como resultado de los desechos en el aire. Pueden mover y desplazar un cobertizo de jardín con cimientos débiles.

Trombas marinas

Las trombas marinas son tornados débiles que se forman sobre el agua tibia. Las trombas son más comunes a lo largo de la costa del Golfo. Ocasionalmente se mueven tierra adentro y se convierten en tornados que causan graves daños.

F3— Grave: pueden arrancar árboles de raíz y romper paredes de edificios. Pueden volar techos y causar daños graves. Representan aproximadamente el 3 % del número total de tornados.

Han ocurrido algunos tornados muy devastadores que han arrasado con muchas casas, escuelas y estructuras a lo largo de su camino.

F4—Devastador: son bastante destructivos, ya que los autos pequeños son volcados y desplazados. Destruyen casas, arrancan los árboles de raíz y los destruyen, elevan escombros pesados ​​y devastan cualquier cosa a su paso. Constituyen alrededor del 1 %.

F5 — Impresionante: representan menos del 1 % en número. Son tan poderosos que aplanan casi cualquier estructura en su camino. Los árboles maduros se quedan sin ramas, otros son desarraigados y arrastrados por el viento, y los automóviles son arrastrados y desplazados significativamente.

Pasillo de los tornados

El tornado más devastador que ocurrió en América del Sur se originó el 10 de enero de 1973, a 105 km al norte de la ciudad de Santa Fe en Argentina y fue nombrado Tornado de San Justo. Debido al grado de daño que causó fue considerado un F5.

LUGARES DE RIESGO DE TORNADOS

El país con mayor ocurrencia de tornados durante el año es Estados Unidos. Todos los estados tienen algún riesgo de daños, pero Arkansas, Iowa, Kansas, Luisiana, Minnesota, Nebraska, Dakota del Norte, Ohio, Oklahoma, Dakota del Sur y Texas tienen el mayor riesgo.

Los tornados ocurren en muchas partes del mundo, por ejemplo Australia, Europa, África, Asia y América del Sur. Incluso Nueva Zelanda cuenta con al menos 20 tornados cada año. Dos de las concentraciones más altas de tornados fuera de los Estados Unidos son Argentina y Bangladesh.

¿Sabías qué?
Cada año hay un promedio de 1.200 tornados que golpean varias partes de Estados Unidos.

MEDIDAS DE PREVENCIÓN Y SEGURIDAD FRENTE A LOS TORNADOS

Antes de un tornado:

  • Tener en cuenta los lugares más seguros o áreas de refugio a los que se puede ir antes de las visita de un tornado.
  • Tomar algunos artículos de primeros auxilios, almacenar agua y algunos suministros de emergencia en caso de que haya tiempo suficiente.
  • Intentar mantenerse en contacto con la estación meteorológica local y fijarse si hay nubes oscuras y tormentas eléctricas.
  • Tener en cuenta el clima de la ciudad y las acciones sugeridas que se pueden hacer para mantenerse a salvo.
Los tornados son difíciles de predecir. La mayoría de las veces solo se cuenta con unos minutos de advertencia.

Durante un tornado:

  • Moverse rápidamente al sótano de su hogar o área designada en caso de encontrase en un lugar público.
  • Si se está conduciendo un vehículo, se debe dirigir al edificio resistente más cercano y ponerse a cubierto. Si no hay ninguno alrededor, se debe quedar en el automóvil, usar el cinturón de seguridad y cubrirse la cabeza con los brazos o una almohada.
Nunca se debe intentar mirar por la ventana o salir, ya que puede haber escombros voladores.

Después de un tornado:

  • Usar prendas de seguridad al caminar o trabajar a través de los escombros, ya que podría haber vidrios rotos y otros productos químicos peligrosos.
  • No tocar las líneas eléctricas y los objetos en los charcos de agua.
  • Mantener registros, notas, fotos de artículos rotos, en caso de que la compañía de seguros los necesite.
Los objetos voladores causan la mayoría de las lesiones y muertes durante los tornados.
RECURSOS PARA DOCENTES

Artículo “Cambios terrestres”

En este recurso se explican los fenómenos y fuerzas tanto internas como externas que actúan sobre la faz de la Tierra.

VER

Video “Los tornados”

Este recurso audiovisual explica cómo se forman los tornados.

VER

Video “Catástrofes naturales”

Este recurso audiovisual describe las diferentes catástrofes que ocurren en nuestro planeta y sus posibles consecuencias.

VER

CAPÍTULO 4 / EJERCICIOS

la energía | ejercicios

¿QUÉ ES LA ENERGÍA?

1. Indica con una flecha el término que corresponde a cada definición:

Energía cinética Capacidad de un sistema físico para hacer el trabajo.
Calor Energía del movimiento.
Energía Energía producida por el aprovechamiento de la energía cinética y potencial gravitatoria de los saltos de agua natural.
Temperatura Energía almacenada en los objetos.
Energía hidráulica Forma de energía que se transfiere entre diferentes cuerpos que presentan distintas temperaturas.
Energía mecánica Magnitud que da cuenta de nociones como frío, caliente o tibio.

2. Escribe un ejemplo de cada tipo de energía y explica el aprovechamiento que le damos los seres humanos en cada caso.

Energía mecánica

Ejemplo: ___________________________________________________________________.

Explicación: ________________________________________________________________________________________

__________________________________________________________________________________________________.

Energía potencial

Ejemplo: ___________________________________________________________________.

Explicación: ________________________________________________________________________________________

__________________________________________________________________________________________________.

Energía térmica

Ejemplo: ___________________________________________________________________.

Explicación: ________________________________________________________________________________________

__________________________________________________________________________________________________.

Energía eléctrica

Ejemplo: ___________________________________________________________________.

Explicación: ________________________________________________________________________________________

__________________________________________________________________________________________________.

Energía radiante

Ejemplo: ___________________________________________________________________.

Explicación: ________________________________________________________________________________________

__________________________________________________________________________________________________.

3. Completa el siguiente cuadro con los consejos de ahorro de energía según la frecuencia con la que los realices.

Nunca hago A veces hago Siempre hago
En la sala
En el baño
En la habitación
En la cocina

Transformación y conservación de la energía

1. Construye un texto de 5 líneas máximo con las siguientes palabras.

  • Energía
  • Transformada
  • Ley
  • Eléctrica
  • Conservación

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. Completa el texto con las siguientes palabras:

  • Agua
  • Gases
  • Caliente
  • Convección
  • Densidad
  • Calor

La _____________ es la transferencia de ___________ por medio del movimiento de una masa fluida, como por ejemplo el aire o el _________. Sólo se produce en líquidos y _________ donde los átomos y moléculas son libres de moverse en el medio. Dicho movimiento es producto de que el fluido ____________ se dilata y causa una disminución en su _______________, lo que a su vez provoca el ascenso del fluido caliente y el descenso del fluido frío, que es más denso.

formas de energía

1. Responde

¿Cuál es la forma de energía en los siguientes ejemplos? Justifica la respuesta.

  • Fotosíntesis: ____________________, porque ______________________________________________________

________________________________________________________________________________________________.

  • Bombilla: _____________________, porque ________________________________________________________

________________________________________________________________________________________________.

  • Molinos de viento: _____________________, porque ________________________________________________

________________________________________________________________________________________________.

  • Lanzamiento de pelota: _________________, porque ________________________________________________

________________________________________________________________________________________________.

  • Rayos X: _________________, porque ____________________________________________________________

________________________________________________________________________________________________.

  • Imanes: __________________, porque ____________________________________________________________

________________________________________________________________________________________________.

  • Bomba atómica: __________________, porque _____________________________________________________

________________________________________________________________________________________________.

2. La energía eléctrica desde que se produce hasta que se consume en hogares e industrias, debe ser transformada. Basado en esto y a lo que ya conocemos, responde:

¿Dónde se produce la energía eléctrica?

______________________________________________________________________________________________________

______________________________________________________________________________________________________

¿Cómo se transporta esa electricidad?

______________________________________________________________________________________________________

______________________________________________________________________________________________________

¿Cómo se llama el lugar que distribuye la electricidad hasta nuestros hogares?

______________________________________________________________________________________________________

______________________________________________________________________________________________________

energía mecánica

1. Responde de la manera más breve:

  • ¿Qué es el trabajo?

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Describe 2 ejemplos de trabajo.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • ¿Qué relación hay entre la fuerza y el trabajo?

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. Basado en la energía potencial elástica, escribe 5 ejemplos de deformaciones.

  1. _____________________________________________________.
  2. _____________________________________________________.
  3. _____________________________________________________.
  4. _____________________________________________________.
  5. _____________________________________________________.

fuentes de energía

1. En las siguientes oraciones escribe con una V si es verdadera o F si es falsa. En caso de ser falsa justifica tu respuesta.

  1. Las fuentes renovables se dividen en dos categorías.  (   )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  1. Las fuentes no renovables son las más abundantes en la naturaleza.  (   )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  1. Algunas fuentes de energía renovables también son conocidas como energías alternativas.  (   )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  1. Las fuentes de energía renovables son las más usadas en la actualidad a pesar de encontrarse en cantidades limitadas en la naturaleza.  (   )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  1. Los combustibles fósiles son un tipo de fuente de energía no renovable.  (   )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. Completa las siguientes oraciones:

  1. La energía __________________ se obtiene mediante el movimiento del agua.
  2. La energía solar llega en forma de ___________________________ proveniente del Sol.
  3. La energía del Sol se aprovecha por medio de ___________________________.
  4. La _____________ es la materia orgánica que se origina en un proceso biológico.
  5. El _______________________ es un acuerdo firmado en Japón, que comprometió a los países industrializados a estabilizar las emisiones de gases de efecto invernadero entre el período 2008 y 2012.

fenómenos ondulatorios

1. Explica la diferencia que existe entre:

  • Ondas longitudinales y ondas transversales.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Período y frecuencia.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Relexión y refracción.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Intensidad y timbre.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Sonido y ruido.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. Describe las principales aplicaciones de las ondas electromagnéticas.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

3. Define con tus propias palabras el efecto Doppler.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

El calor y la temperatura

1. Observa la siguiente lista de materiales conductores y aislantes, ordénalos y colócalos en la columna correspondiente.

  • Mercurio
  • Polietileno
  • Oro
  • Madera
  • Hierro
  • Goma
  • Corcho
  • Aluminio
Materiales conductores Materiales aislantes

2. Encierra en un círculo la alternativa correcta.

  • Si un cubo de hielo se coloca a 30 °C de temperatura, ¿qué le ocurrirá?
  1. Aumentará su masa.
  2. Cambiará de estado.
  3. Conservará su forma.
  • ¿Qué magnitud podemos utilizar para la energía térmica?
  1. Humedad relativa
  2. Frecuencia
  3. Temperatura

CAPÍTULO 4 / REVISIÓN

LA ENERGÍA | ¿qué aprendimos?

¿Qué es la energía?

Los movimientos y las transformaciones que presenciamos en nuestro día a día se originan gracias a la energía. Ésta no es más que la capacidad de producir cambios o la capacidad de un sistema físico para hacer el trabajo o mover algo contra una fuerza, como la gravedad. Hay muchos tipos de energía diferentes en el universo. Toma muchas formas.

El Sol provee energía a través de radiaciones electromagnéticas que son aprovechadas por el hombre.

Transformación y conservación de la energía

Con la transformación de la materia también hay transformaciones de una energía a otra. Además, la energía puede conservarse, es decir, mantenerse constante, traspasarse en forma de calor o trabajo, y también degradarse, es decir, puede perder su calidad en el proceso de transformación.

La ley de la conservación de la energía dice que la energía no se crea ni se destruye, sólo se transforma.

Formas de energía

La energía se entiende como la capacidad que posee un cuerpo de realizar distintos tipos de trabajo, como el movimiento, el calor o la luz. Esta energía puede manifestarse de muchas maneras, como energía mecánica, energía química, energía térmica, energía radiante, energía eléctrica, energía magnética y energía nuclear.

En el proceso de fotosíntesis, la energía de la luz solar es convertida en energía química, la cual se almacena en los enlaces de carbohidratos.

Energía mecánica

El movimiento y los cambios de posición en los objetos se deben a la energía mecánica. Ésta resulta de la suma de dos formas de energía: la energía cinética, que es la energía que tienen los cuerpos en movimiento; y la energía potencial, que está relacionada con la posición del cuerpo. La energía potencial puede ser gravitatoria o elástica.

Cuando el vagón de una montaña rusa llega a la parte más elevada aumenta su energía potencial, mientras que al bajar y aumentar su velocidad incrementa su energía cinética.

Fuentes de energía

Las fuentes de energía son aquellos recursos naturales o cuerpos que almacenan energía que puede transformarse en energía utilizable. Pueden ser renovables o no renovables. Las fuentes de energía renovables son las más abundantes en la naturaleza y son inagotables, por ejemplo: la energía hidráulica, la energía solar y la energía geotérmica. En cambio, las fuentes no renovables son las más utilizadas a pesar de ser limitadas, por ejemplo los combustibles fósiles.

La energía nuclear es una fuente de energía no renovable. Un ejemplo de ella es la bomba atómica.

Fenómenos ondulatorios

Una onda es una perturbación que se propaga en el espacio. Las ondas pueden comportarse de distintas maneras según el medio en el que se encuentren y se caracterizan por transportar energía, más no materia. Las ondas pueden ser transversales o longitudinales según la dirección en la que se propagan; también se pueden clasificar como mecánicas o electromagnéticas según el medio de propagación.

La luz y el sonido son ejemplos de ondas.

El calor y la temperatura

Aunque en nuestro vocabulario estos términos se usen sin distinción, el calor y la temperatura no son lo mismo. El calor es una forma de energía que se transfiere de un material más caliente a otro menos caliente, mientras que la temperatura es la medida de la cantidad de movimiento de las moléculas de un sistema; es decir, es una medida de la energía térmica.

La temperatura es una magnitud que puede medirse con un termómetro.

CAPÍTULO 4 / TEMA 1

¿Qué es la energía?

Todos los objetos a nuestro alrededor tienen la capacidad de producir cambios. Por ello, convivimos con movimientos y transformaciones constantes, algunos más perceptibles que otros, pero que tienen su origen en un único concepto: la energía.

ENERGÍA: CAPACIDAD DE PRODUCIR TRABAJO

Ley de conservación de la energía

La energía no puede ser creada ni destruida, sino que puede ser transformada, por lo que la cantidad total de energía es siempre la misma. Por ejemplo, la energía lumínica del Sol se transforma en energía eléctrica mediante el uso de paneles solares.

La energía es la capacidad de un sistema físico para hacer el trabajo o mover algo contra una fuerza, como la gravedad. Si bien no se tiene una definición concreta de energía, los físicos han logrado determinar una ley universal: si la energía de un cuerpo aumenta en determinada cantidad, la de otro disminuye de manera proporcional.

La energía que la humanidad necesita en un año es irradiada por el Sol en 15 minutos.
¿Sabías qué?
El término “energía” proviene del griego enérgeia, que significa “actividad”. Pero esta idea no debe confundirse: no es necesario un movimiento abrupto para reconocer la presencia de energía ya que, en realidad, se encuentra en todos lados aunque no sea posible observarla.

TIPOS DE ENERGÍA

La energía es la capacidad de realizar cambios en los sistemas y los cuerpos. Hay diferentes tipos de energía en el universo y en muchas formas.

Energía primaria

La producción de energía primaria se relaciona con las formas de energía disponibles en la naturaleza antes de ser transformadas, como el petróleo, el gas natural, los combustibles sólidos, los combustibles renovables y la electricidad primaria.

 

VER INFOGRAFÍA

Energía mecánica

Es la energía almacenada en objetos y es la suma de otras dos fuentes de energía: cinética y potencial. Por ejemplo, justo en el punto más elevado de una montaña rusa, toda la energía del vagón es energía potencial y al comenzar a descender la energía potencial se transforma en energía cinética.

¿Qué es la energía hidráulica?

Es la energía producida por el aprovechamiento de la energía cinética y potencial gravitatoria de los saltos de agua natural. Se aplica en la generación de energía eléctrica para ciudades, pueblos e industrias.

Energía potencial

Es cualquier forma de energía que tiene un potencial almacenado que puede ser usado en el futuro, y que solamente se manifiesta al convertirse en energía cinética. Por ejemplo, si una pelota se levanta, adquiere energía potencial de la gravedad que se vuelve aparente al caer.

Tipos de energía potencial

 

 

Energía potencial elástica

Resulta de estirar y comprimir objetos elásticos, como las ligas.

 

Energía potencial gravitacional

Resulta del almacenamiento de energía por la fuerza de gravedad, como un fruto que cuelga de un árbol.

 

 

Energía potencial química

Resulta de la transformación de energía química a través de una reacción química, como el cambio de energía eléctrica a química en una pila.

Energía cinética

Significa “movimiento”. Cuanto más rápido se mueve un objeto, mayor es su energía cinética. La energía de los ríos y la del viento son formas de energía cinética. Ésta se puede convertir en energía mecánica mediante molinos de agua, molinos de viento o bombas conectadas a turbinas o a electricidad.

Al lanzar una pelota se transfiere energía cinética para que pase del estado de reposo al estado en movimiento.
Ventajas de la energía cinética

– No genera residuos tóxicos.

– Los parques generadores de energía cinética pueden construirse en terrenos no aptos para otras actividades.

– Los parques generadores son de rápida instalación.

Energía térmica

Todos los materiales están compuestos por moléculas en constante movimiento. La energía térmica es producto del movimiento de esas moléculas, es decir, la energía cinética que poseen. Cuanto más se muevan y choquen entre sí, mayor será el calor que generen y, por lo tanto, aumentará su temperatura y su energía térmica.

¿El calor es igual a la temperatura?

No. El calor es una forma de energía que se transfiere entre diferentes cuerpos o distintas partes de un cuerpo, las cuales presentan distintas temperaturas. Por su parte, la temperatura es una magnitud que da cuenta de nociones como frío, caliente o tibio. La misma se mide a través de un termómetro.

 

VER INFOGRAFÍA

 

Energía química

Es aquella que es liberada durante las reacciones químicas. Podemos encontrar este tipo de energía siempre en la materia, pero sólo se manifiesta cuando ocurre un cambio en ella. Algunos ejemplos de energía química son la combustión y la energía nuclear.

Energía eléctrica

VER INFOGRAFÍA

Es la energía transferida de un sistema a otro mediante el uso de electricidad, que es el movimiento de partículas cargadas. En otras palabras, este tipo de energía es causada por el movimiento de los electrones a través de materiales conductores de la electricidad.

Puede generarse a partir de otras energías y a su vez puede ser transformada y producir varios efectos: luminosos, térmicos y magnéticos.

La mantarraya puede generar corrientes eléctricas de hasta 200 voltios.
¿Qué es una represa hidroeléctrica?

Es un sistema diseñado y construido para producir energía eléctrica mediante el aprovechamiento del caudal de los cursos de agua.

 

VER INFOGRAFÍA

Energía radiante

Es energía transportada por la radiación. Tanto la luz visible como la radiación infrarroja son formas de energía radiante, ambas son emitidas por el Sol.

La energía de los rayos solares puede recuperarse y convertirse en electricidad o calor.

La energía radiante está en constante movimiento y a velocidades altísimas, lo que forma ondas que poseen distintas longitudes y frecuencias. La mayoría de estas ondas pueden propagarse por el vacío, por eso los rayos del Sol o las ondas de los satélites pueden alcanzar la superficie de la Tierra.

¿Sabías qué?
La energía radiante es aplicada en radiografías, medicina nuclear, radios y algunos aparatos electrónicos.

Energía nuclear

Es la energía contenida en el núcleo de un átomo. Se puede obtener a través de reacciones de fisión y fusión de un núcleo atómico. Dentro de los núcleos atómicos, las fuerzas entre los protones y neutrones del núcleo atómico son muy intensas, por lo que los procesos de transformación nuclear generan gran cantidad de energía.

Las reacciones en el núcleo pueden ser de fusión o de fisión.
¿Sabías qué?
En estrellas como el Sol, la energía atómica se libera cuando los núcleos se combinan en un proceso conocido como fusión.
¿Qué es un reactor nuclear?

Es una instalación física donde se produce, mantiene y controla una reacción nuclear en cadena. Se puede utilizar para la obtención de energía, para la producción de materiales fisionables como el plutonio, como armamento nuclear, o para la propulsión de buques o de satélites artificiales.

 

VER INFOGRAFÍA

Energía magnética

Es la capacidad de atraer o repeler que poseen algunos materiales sobre otros y que originan campos magnéticos permanentes que producen energía magnética. Existen diversos materiales con propiedades magnéticas, entre ellos podemos encontrar el níquel, el cobalto, el hierro y sus aleaciones. Sin embargo, la presencia de campos magnéticos influye, en mayor o menor medida, en todos los materiales.

UNIDADES DE MEDIDA DE ENERGÍA

Una de las propiedades de la energía es que puede ser medida. Para ello, según el Sistema Internacional, la unidad más utilizada es el “Joule” o “Julio”, y es simbolizada con la letra jota mayúscula (J). Esta unidad es nombrada así en honor al físico James Prescott Joule, quien fue uno de los científicos más importantes de su época. Estudió, entre otras cosas, el magnetismo y su relación con el trabajo mecánico, lo que lo condujo a la teoría de la energía. El Joule equivale a:

Donde

N = Newton

m = metros

kg = kilogramos

s = segundos

Otras equivalencias

Nombre Equivalencia en julios
Caloría (cal) 4,1855
Kilovatio hora (kWh) 3.600.000
Electronvoltio (eV) 1,6023 x 10-19
British Thermal Unit (BTU) 1.005,05585
Ergio (erg) 1 x10-7
Energía en los alimentos

Cada célula de nuestro cuerpo requiere energía para funcionar adecuadamente. Ésta es proporcionada por las calorías y por ello resulta importante conocer la cantidad que aportan los nutrientes que ingerimos y así evitar consecuencias negativas para nuestro organismo.

 

VER INFOGRAFÍA

 

RECURSOS PARA DOCENTES

Video “Intercambio de calor”

Recurso audiovisual que le permitirá profundizar sobre el proceso de transferencia de energía en forma de calor de un cuerpo a otro.

VER

Aplicaciones del magnetismo: la brújula, el campo electromagnético

Este video describe a detalle el funcionamiento magnético de una brújula.

VER

 

 

CAPÍTULO 4 / TEMA 3

Formas de energía

La energía es la capacidad que posee un cuerpo de realizar distintos tipos de trabajo, como el movimiento, el calor o la luz. Esta energía puede manifestarse de muchas maneras, ya sea transferida o transformada de un tipo a otro.

ENERGÍA MECÁNICA

Es la energía almacenada y relacionada con la posición y el movimiento de los cuerpos. Asimismo, es producto de la suma de otras dos formar de energía: la cinética y la potencial.

¿Sabías qué?
En física, el trabajo es un principio de la mecánica que comprende una fuerza y un desplazamiento; el trabajo (W) lo usamos para describir cuantitativamente lo que se obtiene cuando una fuerza hace mover a un cuerpo a lo largo de una distancia.

Energía potencial

Es cualquier forma de energía con un potencial almacenado que puede ser usado en el futuro y que solamente se manifiesta al convertirse en energía cinética.

La energía potencial se puede presentar como:

Energía potencial gravitatoria

Es la que poseen los cuerpos debido a la fuerza de gravedad que ejerce la Tierra.

Energía potencial elástica

Es la energía acumulada en un cuerpo elástico, es decir, aquellos que tienen la capacidad de deformarse y luego recuperar su forma original.

Energía potencial química

Es aquella que se transforma en energía cinética a partir de un proceso de combustión interna.

Energía cinética

Significa “movimiento”, cuanto más rápido se mueve un objeto, mayor es su energía cinética. Ésta se puede convertir en energía mecánica mediante molinos de agua, molinos de viento o bombas conectadas a turbinas o a electricidad.

El valor de esta forma de energía depende de la masa (m) y de la velocidad (v) del cuerpo.

Cuando se lanza una pelota, gana energía cinética progresivamente.
Justo en el punto más elevado de la montaña rusa, toda la energía del vagón sería energía potencial, y al comenzar a descender, la energía potencial se transforma en energía cinética.

ENERGÍA QUÍMICA

La energía química es aquella que posee la materia debido a su estructura interna, este tipo de energía se puede aprovechar de las reacciones químicas, ya que se origina en las uniones entre átomos y moléculas. Esta energía puede ser liberada o absorbida durante la reacción, por lo tanto también puede liberar o absorber calor.

Las reacciones químicas pueden ser:
Exotérmicas si liberan calor Endotérmicas si absorben calor

Respiración de los seres vivos.

 

Combustión de compuestos orgánicos.

Fotosíntesis.

 

Descomposición de proteínas.

¿Qué es la biomasa?

Es material orgánico que proviene de plantas y animales, y es una fuente de energía renovable. Cuando se quema el material se libera calor que puede ser aprovechado, es decir, se transforma la energía química contenida en energía térmica.

 

La combustión es una de las reacciones más comunes. En estas reacciones el oxígeno del aire reacciona con un combustible y libera energía en forma de calor. Esta transformación se puede representar de la siguiente forma:

 

Donde:

Pc = poder calorífico de un cuerpo al arder, es decir, la energía que puede obtenerse de un kilogramo de combustible.

m = masa del cuerpo que se quema (en kg).

V = volumen del cuerpo que se quema (en m3).

ENERGÍA TÉRMICA

La energía térmica es la manifestación de la energía en forma de calor, por lo tanto es una energía en “paso o de tránsito”, que se transfiere de un cuerpo a otro. Se debe al movimiento de las partículas que forman la materia. Cuando ese movimiento se acelera, aumenta la temperatura y por consiguiente hay más energía térmica.

Así, cuando un cuerpo esté a baja temperatura tendrá menos energía térmica que otro que esté a mayor temperatura. De este modo, el calor no es más que una forma de denominar a los aumentos y pérdidas de energía térmica.

El calor puede transferirse de distintas formas:

Conducción

Es la transferencia de energía térmica que se produce a través de un medio material sin que se manifieste transporte de materia.

Convección

Es la transferencia de calor por medio del movimiento de una masa fluida, como aire o agua. En esta forma de propagación sí hay transporte de materia.

Radiación

Es la transmisión del calor por ondas electromagnéticas, a diferencia de la conducción y convección, no necesita de un medio material para propagarse.

Se debe saber que a causa del intercambio de calor, un cuerpo puede variar su temperatura o cambiar su estado (por ejemplo, de líquido a sólido). Si se quiere calcular la cantidad de energía intercambiada es posible utilizar la siguiente ecuación:

Donde:

Q = cantidad de energía en forma de calor intercambiada entre los sistemas.

m = masa del sistema.

c = propiedad que depende del material que constituye el cuerpo y se denomina calor específico.

ΔT = variación de temperatura.

ENERGÍA RADIANTE

Este tipo de energía es producida por las ondas electromagnéticas, como las ondas de radio. Se caracteriza principalmente por la capacidad que tiene de propagarse en todas las direcciones en el vacío sin soporte material.

La energía solar es un ejemplo de energía radiante.

La energía radiante está en constante movimiento y a velocidades altísimas, lo que forma ondas que poseen distintas longitudes y frecuencias. La mayoría de estas ondas puede propagarse por el vacío, por eso, los rayos del Sol o las ondas de los satélites pueden llegar hasta la superficie de la Tierra.

Ejemplos de energía radiante

 

Rayos X.

 

 

Rayos infrarrojos.

 

 

Rayos ultravioletas.

¿Qué son las ondas electromagnéticas?

Son aquellas que se pueden propagar en el vacío sin necesidad de un medio material. La luz, los rayos x, los rayos láser y otros, son ejemplos de ondas electromagnéticas.

ENERGÍA ELÉCTRICA

Este tipo de energía es causada por el movimiento de las cargas eléctricas o de los electrones que poseen los materiales conductores. Puede generarse a partir de otras energías y, a su vez, puede ser transformada y producir varios efectos: luminosos, térmicos y magnéticos.

Un relámpago es la emisión de luz seguida de la descarga eléctrica del rayo.

La energía eléctrica es aquella que se usa al encender la luz, calentar la comida con el horno de microondas o cargar el teléfono celular. Una forma de obtener energía eléctrica a partir del Sol es mediante la utilización de paneles solares.

La energía eléctrica puede representarse de la siguiente manera:

Ee = Pt = VIt = I^{2}Rt

Donde:

P = potencia expresada en vatio (W).

t = tiempo en segundos.

V = voltaje en voltios (V).

R = resistencia eléctrica en ohmios (Ω).

I = intensidad d corriente en amperios (A).

¿Qué es la electricidad?

El término “electricidad” deriva del griego electron, que significa “ámbar”, y con este nombre se denominan todos los fenómenos físicos relacionados con la atracción de cargas negativas o positivas, y resultantes de la presencia y flujo de una corriente eléctrica.

 

VER INFOGRAFÍA

 

ENERGÍA MAGNÉTICA

VER INFOGRAFÍA

Es la capacidad de atraer o repeler que poseen algunos materiales sobre otros y que originan campos magnéticos permanentes que producen energía magnética. Existen diversos materiales con propiedades magnéticas, entre ellos se encuentran el níquel, el cobalto, el hierro y sus aleaciones. Sin embargo, la presencia de campos magnéticos influye, en mayor o menor medida, en todos los materiales.

¿Sabías qué?
En año 1819, el danés Hans Christian Orested fue el primero en relacionar los imanes con las corrientes eléctricas para definir lo que hoy se conoce como electromagnetismo.

Teorías del magnetismo

VER INFOGRAFÍA

Para poder comprender el fenómeno del magnetismo se han desarrollado distintas teorías.

Teoría de Weber

Un imán puede dividirse indefinidamente y aun así conservar sus propiedades magnéticas. Los materiales están compuestos de pequeñas moléculas imantadas.

Teoría de Ewing

Los materiales están compuestos por grupos de átomos con momentos magnéticos diferentes que son capaces de reordenarse cuando se les aproxima un material imantado y volverse magnéticos.

Teoría de Ampere

Cuando las corrientes elementales de un material ferromagnético son ordenadas, éste adquiere propiedades magnéticas.

¿Qué es un campo magnético?

Es la región en la cual el imán ejerce sus efectos. Esta zona muchas veces no puede ser observada a simple vista. Para representar el campo magnético se utilizan líneas denominadas líneas de fuerza.

Las brújulas y los imanes representan los ejemplos más comunes de magnetismo.

ENERGÍA NUCLEAR

Es la energía contenida en el núcleo de un átomo. Se puede obtener a través de reacciones de fisión y fusión de un núcleo atómico. Dentro de los núcleos atómicos, las fuerzas entre los protones y neutrones son muy intensas, por lo que los procesos de transformación nuclear generan gran cantidad de energía.

Tipos reacciones nucleares

Reacción de fusión

Es un proceso en el que dos núcleos ligeros se unen para formar un núcleo más pesado. En el proceso se desprende gran cantidad de energía.

Reacción de fisión

Es un proceso en el que un núcleo de gran tamaño se divide en núcleos más pequeños mientras libera neutrones y gran cantidad de energía.

En estas reacciones nucleares la energía se expresa en relación a la masa:

Donde:

E = energía, se mide en julios (J).

m = masa que desaparece (en kg).

c = velocidad de la luz (3 x 108 m/s).

Bomba atómica

La bomba atómica adquiere su nombre debido a su funcionamiento, ya que no depende de la combustión de algún material o de la reacción de algunos materiales o elementos químicos, sino que se basan en reacciones nucleares.

 

VER INFOGRAFÍA

RECURSOS PARA DOCENTES

Video “energía de un oscilador mecánico”

Recurso audiovisual que le permitirá resolver problemas sobre energía de un oscilador mecánico.

VER

Video “Física nuclear: desintegración radiactiva”

Este video explica en detalle en qué consiste el proceso de desintegración de núcleos radiactivos.

VER

Video “Energía y las reacciones químicas”

Este recurso describe cómo se manifiesta la energía en las reacciones químicas.

VER

Corriente continua y corriente alterna

La corriente eléctrica es el desplazamiento ordenado de cargas eléctricas a través de un conductor. Según el sentido, ésta puede ser continua o alterna. Ambas son muy usadas e indispensables para el funcionamiento de artefactos electrónicos y del alumbrado público.

Corriente continua Corriente alterna
Abreviación DC (direct current). AC (alternating current).
Dirección del flujo de electrones Una sola dirección constante en el tiempo. Varía, cambia continuamente y no es constante en el tiempo.
Voltaje Constante. Cambios periódicos.
Polaridad Tiene polaridad (positivo o negativo). No tiene polaridad.
Frecuencia Siempre será igual a 0. Cerca de 50 a 60 Hz.
Fuente Baterías, electroquímicos y celdas fotovoltaicas. Alternadores.
Pérdida La transmisión de DC genera pérdidas mayores a la de AC. Para largas distancias habrá pérdida de corriente. La pérdida en la transmisión de AC es menor que la de DC. Este tipo de corriente es apta para recorrer largas distancias.
Ventajas
  • Puede almacenarse en baterías.
  • Puede reducirse su voltaje a niveles muy bajos para ser usado en dispositivos electrónicos.
  • Fácil transformación.
  • Facilidad de transporte a larga distancia.
  • Fácil y económico manejo cambio en los niveles de voltaje.
Aplicación En los dispositivos electrónicos y digitales. En los alumbrados públicos y viviendas.
Conversión De DC a AC se usan rectificadores y diodos semiconductores. De AC a DC se usan diodos, capacitores y reguladores.
Forma representativa

 

Ley de Coulomb y ley de gravitación universal

La ley de Coulomb y la ley de gravitación universal son de gran importancia para entender el comportamiento de dos de las fuerzas fundamentales en la naturaleza: la eléctrica y la gravitacional. Ambas leyes se representan por medio de expresiones matemáticas muy similares, sin embargo sus diferencias son notorias.

Ley de Coulomb Ley Gravitacional universal
Enunciado La fuerza eléctrica de atracción y repulsión entre dos cargas es directamente proporcional al producto de las mismas e inversamente proporcional al cuadrado de la distancia que los separa. La fuerza gravitacional de atracción entre dos masas es directamente proporcional al producto de las mismas e inversamente proporcional al cuadrado de la distancia que los separa.
Interacción Fuerza entre cargas. Puede ser atractiva o repulsiva. Fuerza entre masas. Siempre es atractiva.
Efectos Más evidente en cuerpos pequeños: los átomos. Más evidente en cuerpos grandes: galaxias, planetas y estrellas.
Expresión matemática F_{E} = K \frac{q_{1}q_{2}}{r^{^{2}}} F_{G} = G \frac{m_{1}m_{2}}{r^{2}}
Cuerpos implicados Cargas: q_{1}q_{2} Masas: m_{1}m_{2}
La distancia entre: Los centros de las cargas es r Los centros de las masas es r
Constante K = 9 . 10^{9} N.m^{2}/C^{2} G = 6,67 . 10^{-11} N.m^{2}/kg^{2}
Fuerza sobre el átomo de hidrógeno Carga del electrón del átomo de H

q_{1} = - 1,6 . 10^{-19} C

 

Carga del protón del átomo de H

q_{2} = 1,6 . 10^{-19} C

Masa del electrón del átomo de H

m_{1} = 9,1 . 10^{-31} kg

 

Masa del protón del átomo de H

m_{2} = 1,67 . 10^{-27} kg

Energía eólica, nuclear y solar

Las energías renovables se obtienen de fuentes naturales que virtualmente no deberían agotarse, como la radiación solar y el viento; mientras que las energías no renovables se obtienen de fuentes naturales en cantidades limitadas, como los combustibles fósiles. Tres tipos de energía se comparan a continuación.

 

Energía eólica Energía nuclear Energía solar
Obtención Se obtiene gracias a la capacidad de los aerogeneradores de transformar la energía cinética del viento en electricidad. Se obtiene a través de reacciones de fisión y fusión de un núcleo atómico. Es la energía que contiene el núcleo de un átomo. Se obtiene de la radiación electromagnética proveniente del Sol. Se aprovecha por los paneles solares.
Tipo Renovable. No renovable. Renovable.
Fuente El viento. El átomo. El Sol.
Mayor productor (2019) China. Estados Unidos. China.
Ventajas
  • Fuente de energía limpia con bajo impacto ambiental.
  • Fuente válida de energía renovable.
  • Los costos y el mantenimiento de turbinas eólicas son bajos.
  • Las centrales nucleares emiten sólo agua caliente.
  • Con la energía nuclear muchos países pueden alcanzar la independencia energética.
  • Puede mantenerse la producción por muchos años.
  • El Sol ofrece una fuente ilimitada de energía.
  • Es un recurso limpio que no causa graves daños en el medio ambiente.
  • Puede proporcionar electricidad a comunidades aisladas.
Desventajas
  • Afecta a la avifauna local.
  • Debido a las condiciones climáticas, el viento no está garantizado.
  • La construcción de una planta eólica modifica el paisaje.
  • Las partículas sobrantes de la separación de los átomos pueden causar daños biológicos.
  • Pueden producir accidentes graves.
  • Las plantas nucleares son más grandes y complejas que otras plantas de energía.
  • Varía de acuerdo a las estaciones.
  • Se necesita una gran inversión inicial.
  • Sus costos asociados son más altos comparados con otras tecnologías.
Aplicaciones Principalmente para producir energía eléctrica. Principalmente para producir energía eléctrica. Principalmente para producir energía eléctrica, también para cocinar y como sistema de calefacción.
Ejemplos Aerogeneradores, molinos de viento, molinos de bombeo y veleros.

 

Molino de viento en Güeldres, Países Bajos
Centrales nucleares, colisionador de hadrones, pila atómica y automóviles nucleares.

 

Central nuclear de Tihange, Bélgica.

 

Proyecto solar, energía solar térmica, energía fotovoltaica e invernaderos.

 

Plantas de energía solar en Texas, Estados Unidos

 

 

Energía cinética y energía potencial

Un sistema posee energía si tiene la capacidad de hacer el trabajo. El trabajo desplaza la energía de un sistema a otro. Hay muchos tipos diferentes de energía que se dividen en dos formas principales: cinética y potencial. Aunque puede transformarse de un tipo a otro, la energía nunca puede ser creada o destruida.

Energía cinética Energía potencial
Se asocia con:
El movimiento. La energía almacenada.
Depende de: La masa del objeto y su velocidad. La altura del cuerpo respecto a un sistema de referencia.
Se puede convertir en: Energía potencial Energía cinética
Unidad de medición Joule (J) Joule (J)
Formas de energía
Mecánica, térmica, eléctrica, radiante y sonora. Mecánica, eléctrica e hidráulica.
Fórmula Ek= ½ m. v2 EPg= m.g.h
Ejemplo Cualquier tipo de movimiento. La energía de un objeto ubicado a lo alto de una montaña con respecto a la base de la misma.