Desarrollo histórico de la química

La química es una ciencia que estudia la materia y los cambios que ocurren en ella. Aunque su origen es antiguo, se la considera una ciencia moderna, activa y en evolución. Su desarrollo histórico ha estado asociado al descubrimiento, manejo y transformación de los recursos naturales que el hombre disponía.

raíces prehistóricas

Desde su inicio, el ser humano aprendió a modificar los materiales de la naturaleza, lo que constituye el principio de la química. El descubrimiento del fuego fue, sin lugar a dudas, el más importante de la época; gracias a este el hombre primitivo logró cocinar sus alimentos, mantenerse caliente, elaborar moldes de arcilla y modelar algunos metales como el cobre y el estaño.

Con el descubrimiento del fuego, nuestros ancestros hicieron un importante progreso en la transformación de materiales.

Primeras civilizaciones

En la Edad Antigua, el conocimiento que tenía el ser humano sobre los materiales logró el desarrollo de grandes civilizaciones como la persa, la mesopotámica, la griega, la egipcia y la romana. Algunas técnicas dominadas para entonces eran el manejo del vidrio y de metales como el oro, la plata y el hierro; también hacían perfumes, barnices, jabones, medicamentos, vino y muchos otros productos.

¿Cómo se compone la materia?

En el siglo VI a. C. los griegos intentaron dar una explicación a cómo se componía la materia. Las primeras teorías propuestas por los filósofos fueron las siguientes:

  • Para Aristóteles (384-322 a C.) la materia estaba formada por cuatro elementos: agua, tierra, fuego y aire.
  • Según Tales de Mileto (624-546 a. C.) la sustancia básica era el agua, pues sin agua no hay vida.
  • Leucipo (siglo V a. C.) y su discípulo Demócrito (siglo IV a. C.) expusieron que la materia se dividía hasta llegar a una partícula indivisible que denominaron “átomo“.

¿Sabías qué?
La palabra “átomo” proviene del griego átomon: a que significa “sin” y tomon que significa “división”.
Estatua de bronce de Aristóteles en Alemania. Su teoría de los cuatro elementos (más tarde llamada cinco elementos al añadir el éter) fue aceptada por más de un milenio en Occidente.

La alquimia

El dominio técnico de la civilización egipcia combinado con las teorías filosóficas de los griegos dio paso a la alquimia: práctica que buscaba comprender la naturaleza y encontrar la perfección, lo cual se materializaba en el oro. Por dicha razón, los alquimistas se dedicaron a manipular metales y sustancias con el fin de hallar la piedra filosofal, la cual se creía era un compuesto mágico que convertía metales en oro y concedía la eterna juventud.

La alquimia fusionó la técnica, el misticismo, la astrología, la filosofía, la superstición y la magia. Por este camino se desarrollaron y perfeccionaron métodos como el baño de María, la destilación, la sublimación, la calcinación y la metalurgia; e instrumentos como el alambique y la balanza.

El oro era el material perfecto para los alquimistas.

Jabir ibn Hayyan

El árabe Jabir ibn Hayyan tuvo importantes avances en el alquimia, al punto de ser considerado por algunos expertos como el padre de la alquimia y fundador de la química. Él clasificó las sustancias en espíritus, metales y cuerpo sólidos. Los espíritus eran sustancias volátiles como el alcohol, mientras que los cuerpos sólidos eran no volátiles.

La química moderna

Ya para el siglo XVIII, la teoría de los cuatro elementos de Aristóteles no era suficiente para comprender cómo se componía la materia, pues los avances en el estudio de los gases certificaron que el aire no era un elemento, sino un conjunto de diferente sustancias. En la Edad Moderna inició la química propiamente dichas y los hitos que marcaron este período fueron los siguientes:

George Ernst Stahl

1659-1734

 

Propuso la teoría del flogisto, esta aseguraba que lo cuerpos combustibles tenían una sustancia denominada flogisto que se perdía en el aire al arder el material.

Robert Boyle

1627-1691

 

Realizó importantes avances en el estudio de los gases. Sus teorías y planteamientos lograron comprobarse de forma experimental, razón por la que se le atribuye el método cualitativo.

Joseph Priestley

1733-1804

 

Estudió diversos gases y descubrió que la combustión era posible gracias al oxígeno. Fue el primero en aislar el oxígeno en forma gaseosa y reconocer su importancia para la vida.

Antoine Lavoisier

1743-1794

 

Conocido como el padre de la química moderna gracias a sus estudio sobre la fotosíntesis, la oxidación de los cuerpos, la combustión, el aire, la respiración animal y su ley de la conservación de la masa.

química en la edad contemporánea

A partir del siglo XIX la química se desarrolló con más fuerza. El descubrimiento y síntesis de nuevas sustancias caracterizó esta etapa. Los acontecimientos más relevantes se señalan a continuación:

John Dalton

1766-1844

 

Propuso la primera teoría atómica. Según Dalton la materia estaba formada por átomos indivisibles, indestructibles, de forma esférica e iguales entre sí para un mismo elemento.

Ernest Rutherford

1871-1937

 

Estableció una estructura atómica con partículas más pequeñas, por lo que el átomo dejó de ser indivisible. Este modelo consta de un núcleo cargado positivamente y una zona de partículas con cargas negativas.

Niel Bohr

1885-1962

 

Expuso que el átomo tiene electrones ubicados en órbitas estables alrededor del núcleo. Estos electrones emiten o absorben energía cuando saltan de una órbita a otra.

Dimitri Mendeleiev

1834-1907

 

Organizó los elementos existentes hasta ese momento de acuerdo a sus pesos atómicos en una tabla conocida como “la tabla periódica de los elementos”.

Marie y Pierre Curie

1867-1934, 1859-1906

 

Estudiaron el fenómeno de la radiactividad y descubrieron dos elementos llamados radio y polonio.

James Chadwick

1891-1972

 

Este físico británico logró demostrar la existencia de los neutrones: partículas eléctricamente neutras con una masa similar a la de los protones y ubicadas en el núcleo del átomo.

Francis Crick y James Watson

1916-2004, 1928-actualidad

 

Juntos hicieron uno de los avances más importantes de la bioquímica: resolvieron la estructura tridimensional de la molécula de ADN.

Hueso etmoides

Es un hueso pequeño y esponjoso, uno de los más frágiles del cuerpo humano, constituido por finas láminas óseas. Está ubicado en la zona mediofacial del cráneo y es un elemento importante que contribuye a la formación de la órbita, el tabique nasal, la cavidad nasal y el suelo de la fosa craneal anterior.

estructura y funciones

  • Hueso de tamaño reducido con estructura cúbica.
  • Consta de cuatro componentes principales: una placa cribiforme, dos laberintos etmoidales y la placa perpendicular.
  • Está separado de las órbitas por la lámina papirácea.
  • De las masas laterales etmoidales surgen los cornetes superior y medio, convirtiéndose en el meato superior y medio.
  • Alberga células aéreas etmoidales, responsables, entre otras cosas, de la sensación olfativa, la fonación y la ventilación.
  • Repercute en el drenaje de los senos frontales y maxilares mediante el complejo osteomeatal.

¿Sabías qué?
La palabra “etmoides” proviene del griego ēthmoeidés, que significa “(hueso) en forma de criba”. Lo que está directamente relacionado con su estructura esponjosa y ligera.
Ubicación del hueso etmoides en el cráneo.
Articulaciones

El hueso etmoides se articula con trece huesos: en la parte superior con el frontal; en la parte posterior con el esfenoides y con los palatinos; en la parte anterior con los nasales; en la parte lateral con los maxilares superiores y el unguis, y en la parte inferior con el vómer.

Vista posterior del hueso etmoides.
Vista anterior del hueso etmoides.

Músculos y nervios

El etmoides, al formar parte de la órbita, está asociado con siete músculos extraoculares. Seis de esos músculos nacen del vértice orbitario. El oblicuo inferior surge del suelo de la órbita, mientras que los músculos rectos (superior, inferior, lateral y medial) salen del anillo de Zinn.

Asimismo, el hueso etmoidal y los senos etmoidales están asociados con algunos nervios craneales, como el nervio olfatorio y el nervio óptico.

Fractura etmoidal

El hueso etmoides puede romperse o fracturarse tras un golpe o caída grave. Algunos signos de la fractura están relacionados con la estructura del hueso, por ejemplo:

  • Fractura de la placa cribiforme. Puede provocar pérdida del sentido del olfato.
  • Fractura del laberinto. Puede provocar enfisema orbital.

CAPÍTULO 14 / TEMA 5

Planetas enanos

La principal característica que diferencia a los planetas enanos de otros planetas es que orbitan alrededor del Sol junto a otros cuerpos. A través de los estudios astronómicos se han distinguido cinco planetas enanos: Ceres, Plutón, Eris, Haumea y Makemake.

¿QUÉ ES UN PLANETA ENANO?

Un planeta enano es un cuerpo celeste que orbita alrededor del Sol y que tiene la masa suficiente para que su autogravedad le confiera una forma casi esférica. Aunque esta característica lo hace similar a los planetas, no lo es.

¿Sabías qué?
La calificación de planetas enanos fue creada en 2006 por la Unión Astronómica Internacional (IUA).

¿Qué se necesita para ser un planeta enano?

  • Gira alrededor del Sol.
  • No es un satélite de un planeta ni de otro cuerpo estelar.
  • No ha limpiado la vecindad de su órbita, es decir, gira en su órbita con otros cuerpos.
¿Planeta o planeta enano?

 

La diferencia entre un planeta y un planeta enano radica en que este último es incapaz de mantener su órbita libre de otros cuerpos celestes. Además, dicha órbita frecuentemente se cruza con la de otros elementos del sistema solar.

No existen rangos máximos o mínimos en cuanto a la masa o el tamaño de los planetas enanos.
Órbitas de los planetas enanos.

CERES: EL MÁS GRANDE DE LOS ENANOS

Datos de interés

 

Diámetro: 952,4 km

Masa: 9,43 x 1020 kg

Distancia al Sol: 425 millones de km

Período orbital: 4,6 años terrestres

Periodo de rotación: 9,07 horas

Composición: hielo, carbonatos y arcillas

 

Ceres está ubicado en el cinturón de asteroides, entre las órbitas de Marte y Júpiter. Es el planeta enano más pequeño del sistema solar y tiene una forma bastante esférica para este tipo de objetos.

Tiene un tercio de la masa de todo el cinturón de asteroides. Contiene agua congelada en un manto de 100 kilómetros de espesor y un núcleo rocoso, por lo que ocupa más agua dulce que el propio planeta Tierra, pero se encuentra totalmente congelada, ya que la temperatura máxima del planeta es de -34 °C. A pesar de ello, no se descarta la presencia de vida en forma de microorganismos.

Partes del planeta enano Ceres.
En el año 2007 se lanzó la misión Dawn para visitar el planeta enano Ceres. La sonda obtuvo las primeras imágenes de su mapa en el año 2015.

PLUTÓN: EL DEGRADADO

VER INFOGRAFÍA

Datos de interés

 

Diámetro: 2.370 km

Masa: 1,25 x 1022 kg

Distancia al Sol: 6 mil millones de km

Período orbital: 248 años terrestres

Periodo de rotación: 153 horas

Composición: 90 % nitrógeno y 10 % metano

 

Plutón fue descubierto en el año 1930 y se lo consideró un planeta del sistema solar hasta el año 2006, fecha en la que fue reasignado en la categoría de planeta enano.

Este planeta enano está ubicado en el Cinturón de Kuiper y posee cinco satélites naturales. En orden de su descubrimiento son: Caronte, Nix, Hydra, P4 y P5. Se considera que Plutón y Caronte forman un sistema binario porque el segundo no orbita alrededor del primero, sino que ambos orbitan alrededor del centro de masas del sistema.

Misión New Horizons

 

La nave espacial New Horizons de la NASA envió las primeras imágenes y datos de Plutón y sus satélites en julio de 2015. La información recopilada por esta nave espacial reveló una actividad geológica inesperada en el planeta enano, a su vez ha aportado información acerca del complejo sistema de satélites que posee Plutón.

 

¿Sabías qué?
La inusual órbita de Plutón le permite estar más cerca del Sol que Neptuno durante 20 de los 248 años terrestres que dura su recorrido.

ERIS: EL MÁS PESADO DE LOS PLANETAS ENANOS

Datos de interés

 

Diámetro: 2.326 km

Masa: 1,67 x 1022 kg

Distancia al Sol: 10,12 millones de km

Período orbital: 557 años terrestres

Composición: nitrógeno, hielo, metano, roca y magma

 

 

Eris es el más masivo de los planetas enanos. Su nombre oficial es (136199) Eris, se encuentra ubicado en el disco disperso del Cinturón de Kuiper y el único satélite natural que se le conoce es Disnomia.

Este planeta enano tiene una pronunciada inclinación con respecto al plano de la Tierra (aproximadamente 44 grados), lo que lo convierte en el objeto de mayor inclinación de todo el sistema solar. Debido a esta inclinación es que se ha demorado tanto su descubrimiento, ya que no se enfocaba hacia objetos de tanta inclinación.

¿Qué significa su nombre?

 

En la mitología griega, Eris es la diosa griega de la discordia y la lucha, en tanto, Disnomia es su hija, la diosa de la anarquía.

 

Makemake, cuyo nombre oficial es (136472) Makemake, es uno de los dos cuerpos más grandes del Cinturón de Kuiper. Fue descubierto en el Observatorio Palomar en el año 2005, tres años después fue aceptado por la Unión Astronómica Internacional como un planeta enano. Es de color rojizo y más pequeño que Plutón.

¿Sabías qué?
Makemake es el nombre del dios de la fertilidad en la mitología Rapanui, un grupo nativo de la isla de Pascua, ubicada 3.600 km de Chile.
Satélite

 

En abril de 2016 fue descubierto un satélite en órbita alrededor del planeta enano Makemake. Provisionalmente se lo ha llamado MK2, y su descubrimiento ha servido para reforzar la teoría de que la mayoría de los planetas enanos tienen satélites.

HAUMEA: PLANETA SIN FORMA ESFÉRICA

Datos de interés

 

Diámetro: 1.400 km

Masa: 4,2 x 1021 kg

Distancia al Sol: 6,5 millones de km

Período orbital: 281,9 años terrestres

Periodo de rotación: 3,9 horas

Composición: hielo, cianuros y otros compuestos desconocidos

Haumea fue detectado por primera vez en el Observatorio de Sierra Nevada en España y en 2005 se hizo el anuncio oficial de su descubrimiento.

Forma elipsoidal   

      

El eje mayor de Haumea es el doble de diámetro que el eje menor, lo que da una idea de su forma. Se cree que esta particular forma alargada y sus dos satélites podrían ser el producto de un choque con otro objeto de gran tamaño.

Este planeta enano se encuentra en el llamado Cinturón de Kuiper y cuenta con dos satélites naturales: Haumea I (Hi’aka) y Haumea II (Namaka). Es posible verlo con un telescopio aficionado por su brillo y su masa, que es de un tercio respecto a la de Plutón, pero se diferencia principalmente por su forma elipsoide.

Ubicación de los planetas enanos en nuestro sistema solar.
RECURSOS PARA DOCENTES

Artículo destacado “Planetas enanos”

Este apartado describe las características generales de los cinco planetas enanos descubiertos hasta ahora.

VER

Artículo destacado “¿Cómo se forman los planetas?”

Artículo explicativo sobre los procesos que formaron nuestro sistema solar.

VER

Modelos atómicos: Thomson, Rutherford y Bohr

Durante siglos, la humanidad ha investigado a los átomos: partículas fundamentales de la materia. Estos átomos son tan pequeños que no es posible verlos, por lo que a lo largo de los años los científicos han propuesto modelos y teorías acerca de cómo son. A continuación se comparan tres de los primeros modelos atómicos que anteceden al modelo atómico actual.

Modelo atómico de Thomson Modelo atómico de Rutherford Modelo atómico de Bohr
Científico responsable Joseph Thomson

(1856 – 1940)

Ernest Rutherford

(1871 – 1937)

Niels Bohr

(1885 – 1962 )

Año de propuesta del modelo 1904 1911 1913
Forma del átomo Esfera maciza de materia con carga positiva y partículas incrustadas con carga negativa. Esfera maciza con carga positiva rodeada de pequeñas partículas con carga negativa. Esfera maciza con carga positiva rodeada de pequeñas partículas con carga negativa.
Descubrimiento experimental Los electrones: partículas diminutas con carga eléctrica negativa ubicadas dentro del átomo. El núcleo: zona central del átomo, muy pequeña. Espectros atómicos: radiación emitida por los átomos excitados de los elementos en estado gaseoso.
Núcleo No posee. Sí posee. Está cargado positivamente. Sí posee. Está cargado positivamente.
Masa del átomo Concentrada en toda la esfera maciza de materia. Concentrada en el núcleo. Concentrada en el núcleo.
Ubicación de electrones Incrustados en la esfera positiva. Alrededor del núcleo, en el espacio vacío. Alrededor del núcleo, en órbitas circulares.
Movimiento de electrones No posee. Giran constantemente cerca del núcleo, en el vacío. Giran constantemente cerca del núcleo en niveles definidos de energía.
Cantidad de cargas Igual cantidad de cargas positivas y negativas. El átomo es neutro. Igual cantidad de cargas positivas y negativas. El átomo es neutro. Igual cantidad de cargas positivas y negativas. El átomo es neutro.
Representación del modelo
Otros nombres del modelo Modelo del pudín de pasas. Modelo planetario. Modelo de Bohr.

 

Asteroides, cometas y meteoritos

Los asteroides son cuerpos celestes de dimensiones reducidas que se mueven en órbitas de tipo planetario. Los cometas son pequeños cuerpos celestes esferoidales constituidos por polvo cósmico y partículas de hielo y gases. Los meteoritos son vestigios del material con el que se constituyó el sistema solar.

Asteroides

El primer asteroide fue descubierto por el astrónomo italiano G. Piazzi en enero de 1801: se trataba de Ceres, desde 2006 considerado un planeta enano. Hoy se conocen varios miles de asteroides, pero con seguridad existen centenares de miles. En general, describen órbitas ligeramente alargadas y están situados en una zona entre Marte y Júpiter, si bien algunos penetran dentro de la órbita de Marte y otros llegan hasta las órbitas de Venus y de Mercurio.

Giuseppe Piazzi

Astrónomo italiano (1746-1826). Descubrió los cuerpos que pueblan el llamado cinturón de asteroides (nombre propuesto por Herschel). En la primera observación (1801) descubrió el asteroide Ceres (llamado planeta enano a partir de 2006), que orbita alrededor del Sol.

Los asteroides se ubican únicamente en el cinturón de asteroides.

A causa de sus pequeñas dimensiones, las fuerzas de gravitación internas son demasiado débiles para proporcionarles forma esférica; por consiguiente es probable que la mayoría de los asteroides tenga estructuras irregulares.

Los asteroides no están distribuidos de manera uniforme en orden de distancia al Sol. Ocupan una zona en la cual se encuentran espacios vacíos, que han sido atribuidos a las perturbaciones provocadas por Júpiter. Los planetoides Troyanos son una familia particular de asteroides. Se trata de 12 planetoides cuyos períodos de revolución son más o menos iguales a los de Júpiter (unos 12 años). Esta configuración permanece inmutable, es decir, los planetoides se mueven siempre equidistantes del Sol o de Júpiter, y aunque se desvían ligeramente, retornan a la posición de equilibrio. Siete de los planetoides Troyanos están próximos al vértice del triángulo equilátero que precede a Júpiter, y cinco están en el vértice que sigue Júpiter en su órbita.

¿Sabías qué...?
Palas es el asteroide con mayor tamaño del cinturón de asteroides. Fue encontrado por H. W. Olbers en marzo de 1802.
Cinturón de asteroides

La sonda Dawn, lanzada en septiembre de 2007, es la encargada de recoger datos sobre la naturaleza física y dinámica del cinturón de asteroides.

Los asteroides próximos

Se conocen varios asteroides que penetran en la órbita de Marte y pasan cerca de la órbita terrestre. Eros circula a unos 22.400 millones de kilómetros de ésta. Otros asteroides han pasado también muy cerca de la Tierra: en 1932, Amor pasó a unos 16.000 millones de kilómetros y Apolo a 10.500 millones de kilómetros. En 1936 Adonis lo hizo a unos 2.000 millones de kilómetros de las órbitas de Venus, la Tierra y Marte, y un año después, Hermes llegó aún más cerca: a casi 776.000 km, o sea dos veces la distancia a la Luna. Algunos cálculos muestran que Hermes se podría acercar directamente hasta 355.000 km. En las últimas décadas se han enviado sondas espaciales para la exploración de asteroides.

Posibilidades de colisión

Para los asteroides del grupo Apolo parece que la posibilidad de choque con la Tierra debe excluirse por un período de unos 200 millones de años, pero sería posible que cualquier asteroide menor cayera sobre la Tierra en los próximos dos millones de años. En el pasado las colisiones eran frecuentes, pero con el tiempo el número de los asteroides ha disminuido, especialmente entre Mercurio y la Tierra. Existe mucha mayor abundancia de ellos entre Marte y Júpiter; puesto que es donde se encuentra el cinturón de asteroides, y por ello, Marte está continuamente bombardeado por estos cuerpos celestes.

Cometas

Aunque sigan las leyes de la gravitación, las órbitas de los cometas cruzan las de los planetas en todas direcciones. Existen cometas periódicos que vuelven con frecuencia al perihelio; otros con órbitas tan alargadas que pasan una vez cada millón de años alrededor del Sol, y otros que orbitan también en los confines del sistema solar, a la velocidad de unos centímetros por segundo, y que no se alejan de esas regiones. Estos últimos tardan de 10 a 50 millones de años en realizar una órbita alrededor del Sol. Los cometas están constituidos por una mezcla de hielo, polvo, rocas y gas en estado sólido, condensados en un núcleo, encerrado a su vez en un envoltorio de polvo meteórico. Tales núcleos, que tienen masas tan pequeñas que se necesitarían millares para igualar la masa terrestre, se describen como “bolas de nieve sucia” y han sido estudiados desde la proximidad, sobre todo en el caso del cometa Halley, por diversas series de sondas, entre las cuales destaca la Giotto, de la Agencia Europea del Espacio (ESA). Esta sonda se aproximó en marzo de 1986 a menos de 1.000 km del núcleo del cometa, obteniendo datos valiosísimos acerca de la composición de estos cuerpos. Los datos que recogió la sonda NEAR (de la NASA), en 2000, del asteroide Eros serán muy valiosos para comprender la composición originaria del sistema solar.

Los cometas están formados por polvo, hielo y roca.

¿Sabías que el cometa Halley pasa regularmente cerca de la Tierra?

Este cometa describe una órbita alrededor del Sol, lo que permite predecir el momento en que pasará cerca de la Tierra, hecho que ocurre aproximadamente cada 76 años desde, al menos, el 240 a.C. Desde entonces ha pasado más de treinta veces por la órbita terrestre.

Cometa Halley

Al aproximarse al Sol, los cometas periódicos sufren ciertas modificaciones. En primer lugar, la radiación solar comienza a vaporizar los hielos. Estos materiales que se liberan son impelidos por la presión del viento solar, dando lugar a la característica cabellera de gas y polvo que siempre apunta en dirección contraria a la del Sol.

Los cometas con períodos más breves son los que se extinguen antes. Duran algunos millares de años y, en su lugar, aparecen nuevos cometas provenientes de los confines del sistema solar, de donde son arrancados por las perturbaciones cósmicas. Llegados a las proximidades de los planetas mayores, el campo de gravitación de éstos modifica sus órbitas, haciéndolas menos alargadas, y los transforma en cometas periódicos. Pero a veces puede suceder también lo contrario. Si el cometa encuentra al planeta tangencialmente, es lanzado como una honda fuera del sistema solar, en una órbita hiperbólica.

Una flotilla al encuentro de Halley

El estudio directo de los cometas, que habría parecido una misión imposible a los científicos de las primeras décadas del siglo XX, fue sin embargo la misión que la Agencia Espacial Europea se planteó como bautismo de fuego en el campo de la exploración del espacio. Para ello se propuso el desarrollo y construcción de una sonda interplanetaria, a la que se bautizó con el nombre de Giotto en recuerdo del pintor italiano Giotto di Bondone (1267-1337) -que representó el cometa en su famoso cuadro La adoración de los Magos-, que permitiese a la Agencia Espacial Europea colaborar activamente en el esfuerzo internacional de observación del cometa Halley durante su paso por las proximidades de la Tierra en 1986. Apoyada por una flotilla compuesta por los ingenios rusos Vega I y II y las naves japonesas Suisei y Sakigake, la sonda Giotto logró llevar a cabo la máxima aproximación al núcleo del cometa y realizar hasta un total de once experimentos cruciales que permitieron estudiar en detalle la estructura y composición de estos cuerpos procedentes de los confines remotos del sistema solar.

La sonda Giotto quedó “aparcada” en órbita hasta 1992, cuando llevó a cabo el estudio del cometa Grigg-Skjellerup.

Meteoritos

Como ya se ha dicho, los cometas están formados por polvo. A este propósito se puede decir que el polvo y los meteoritos son uno de los principales constituyentes del universo. Los planetas y las estrellas nacen alrededor de un núcleo de polvo. Los meteoritos que se observan en la actualidad son restos del material con que fue construido nuestro sistema solar. A los meteoritos que entran en la atmósfera terrestre se les denomina estrellas fugaces. A veces llegan como si se tratara de una lluvia; en este caso se pueden contar hasta cien en una hora, aunque se han registrado récords de millares de meteoros por hora durante las famosas lluvias de las Leónidas, Jacobínidas, etc. Sin embargo, la mayoría de ellos están aislados, y se llaman esporádicos. Su origen es muy diverso: o son partículas residuales de la nebulosa originaria, que poco a poco caen sobre el Sol al ser frenadas en sus órbitas por la presión de la radiación solar, o provienen de los espacios interestelares.

Cuando un meteoroide alcanza la superficie del planeta sin desintegrarse, se denomina meteorito.

Mientras que los pequeños meteoritos que penetran en la atmósfera terrestre se disgregan, hay meteoritos mucho mayores que alcanzan el suelo. Éstos pueden tener dimensiones considerables y pesar muchas más. Mientras que los meteoros pequeños son semejantes a copos de nieve y están constituidos por un material como el de los planetas, los meteoritos más grandes son petreoferrosos y están formados a elevadas presiones (a unas 50.000 atmósferas). De ello se deduce que sólo pueden formarse en el interior de los planetas.

De todos modos, es conveniente advertir que los meteoritos, aparte de haber experimentado la alteración normal durante su recorrido por el universo, han sufrido la importante acción de la atmósfera al producirse su penetración en la Tierra. Por ello, al estudiar este tipo de materiales, es necesario tratar de distinguir entre su propia naturaleza y los efectos sufridos, subsiguientes a su formación.