Estructuras de Lewis

El químico y físico Gilbert Newton Lewis fue quién ideó una forma de esquematizar los electrones externos en los elementos representativos. Estos electrones se encuentran en el último nivel de energía y son aquellos que intervienen en las reacciones químicas.

La mayoría de los elementos se encuentran en la naturaleza formando compuestos. Durante mucho tiempo los científicos se preguntaban cómo sucedían estas uniones, hasta que el desarrollo de la tabla periódica permitió identificar las configuraciones electrónicas y de esta forma comprender cómo se forman las sustancias. Los electrones exteriores se denominan electrones de valencia y son aquellos que intervienen en los enlaces químicos.

ELECTRONES DE VALENCIA Y NÚMEROS DE OXIDACIÓN

Los electrones de valencia son conocidos también como número de valencia, que es un número natural (1,2,3,…). Es el número de electrones perdidos o ganados por determinado elemento cuando la unión es iónica, o el número de electrones compartidos cuando la unión es covalente.

Los números de oxidación representan la carga eléctrica formal, por lo tanto puede ser positiva o negativa. Se establece para un átomo cuando éste se encuentra formando un compuesto. No representan la carga eléctrica real de los átomos.

Por lo tanto, valencia y números de oxidación suelen usarse como sinónimos, pero en forma estricta no lo son.

Este estudio se centra en los elementos representativos, dado que los elementos de transición tienen algunas particularidades. Los elementos representativos son los grupos:

  • Metales alcalinos (1/1A)
  • Metales alcalinotérreos (2/IIA)
  • Familia del boro (13/IIIA)
  • Familia del carbono (14/IVA)
  • Familia del nitrógeno (15/VA)
  • Calcógenos (16/VIA)
  • Halógenos (17/VIIA)
  • Gases nobles (18/VIIIA)

Antes se los asignaba con números romanos y la letra A, dejando para los elementos de transición la letra B. En la tabla periódica se indica su ubicación.

regla del octeto

Los elementos que poseen su último nivel de energía completo son poco reactivos y se los considera estables, es el caso de los gases nobles. Estos gases poseen ocho electrones en su última capa, con excepción del helio que tiene dos. A principios del siglo XX, el físico y químico Gilbert N. Lewis supuso que los átomos para estabilizarse ceden, captan o comparten electrones con otros átomos y dan lugar a la regla del octeto.

“Los átomos de los elementos se unen entre sí compartiendo o transfiriendo electrones, para adquirir de este modo la configuración externa de los átomos del gas noble más próximo (en la tabla periódica). De esta forma logran estabilizarse”.

Existen algunas excepciones, como el fósforo, el azufre, el selenio y el silicio.

Además de este postulado, Gilbert Lewis propuso una manera de representar los átomos en las uniones químicas. Se escribe el símbolo del elemento y se lo rodea por los electrones de valencia utilizando puntos y cruces.

estructuras o símbolos de lewis

Cada elemento del compuesto se representa por puntos o cruces, distribuidos simétricamente alrededor del símbolo.

Estructuras de Lewis para el sodio, el silicio y el cloro, respectivamente.

¿Cómo identificar cuántos puntos dibujar?

Una de las formas de saber cuántos puntos o cruces colocar, es conocer la configuración electrónica externa. Por ejemplo:

SÍMBOLO DEL ELEMENTO CONFIGURACIÓN ELECTRÓNICA (C.E) CONFIGURACIÓN ELECTRÓNICA EXTERNA (C.E.E)
Na 1s22s22p63s1 3s1
Si 1s22s22p63s23p2 3s23p2
Cl 1s22s22p63s23p5 3s23p5

 

La configuración electrónica externa corresponde al último nivel de energía, en los ejemplos de la tabla el último nivel de energía es el 3, por lo tanto se deben contar los electrones totales que se encuentran en dicho nivel.

El Na tiene una configuración para sus electrones externos 3s, esto significa que posee un solo electrón disponible para realizar la unión química.

El Si tiene una C.E.E. 3s23p, es decir, que en el nivel 3 contiene 4 electrones (se cuentan los superíndices).

Con el mismo criterio se puede identificar la cantidad de electrones que posee el Cl para combinarse con otro elemento.

En los elementos representativos, la cantidad de electrones que pueden combinarse para formar compuestos corresponde al número del grupo (en números romanos) al cual pertenece el elemento. En los ejemplos anteriores serían:

Na: grupo 1/IA

Si: grupo 14/IVA

Cl: grupo 17/VIIA

Tanto con el grupo como con la configuración electrónica se puede obtener la información para realizar las estructuras de Lewis.

estructuras de lewis para compuestos iónicos

Los enlaces iónicos se producen con metales que forman fácilmente cationes y no metales que forman aniones. Ejemplo:

El Cl tiene 7 electrones en su último nivel de energía y el Na cuenta con 1 electrón para realizar el enlace. Para alcanzar el equilibrio, el Na cede un electrón al cloro, quedando ambos con 8 electrones en su nivel exterior.

Al recibir 1 electrón, el cloro queda cargado negativamente, por lo tanto se convierte en un anión, mientras que el sodio adquiere la configuración de un catión que se corresponde con la configuración del gas noble más cercano (Ne). De este modo, el sodio también tiene ocho electrones en su último nivel de energía.

C.E. Na: 1s22s22p63s1

C.E. Na+1s22s22p6 (el catión sodio, Na+, cuenta con 8 electrones en su última capa, que corresponde al nivel 2 de energía)

C.E. Na+ = C.E. Ne = 1s22s22pEl catión sodio adquiere la configuración del gas noble más cercano.

El anión cloro adquiere la configuración del argón que es el gas noble más cercano a éste.

C.E. Cl = C.E. Ar = 1s22s22p63s23p6

A continuación se expresa lo antedicho formalmente, es decir, mediante ecuaciones químicas:

La unión de sodio y cloro da como resultado cloruro de sodio, un compuesto iónico cuya estructura de Lewis es:

 

estructuras de lewis para compuestos covalentes

La molécula de agua es un compuesto covalente, el hidrógeno es un no metal al igual que el oxígeno, pero al ser el primer elemento de la tabla periódica tiene una única capa de electrones que se completa al llegar a dos en vez de ocho como el resto de los elementos.

En estos compuestos, los átomos comparten electrones para adquirir la configuración electrónica del gas noble más cercano. Se da en combinaciones de elementos no metálicos.

Las uniones covalentes pueden ser:

  • Simples: cada átomo comparte un electrón.

  • Dobles: cada átomo comparte dos electrones.

  • Triples: cada átomo comparte tres electrones.

Cuando las uniones son covalentes se cuentan los electrones compartidos más los no compartidos en cada átomo, y la suma debe ser cinco para aquellos que cumplen la regla del octeto (recordar que existen excepciones).

En el compuesto Cl-Cl, cada cloro completa su octeto. Su fórmula molecular es Cl2.

Los pares de átomos compartidos se representan con líneas, lo que da lugar a la fórmula desarrollada del compuesto. Siendo los tres casos anteriores:

  • Cl-Cl
  • O=O
  • N≡N

Los compuestos covalentes pueden ser formados por el mismo elemento o por distintos elementos, como es el caso del dióxido de carbono:

El oxígeno tiene 6 electrones de valencia y el carbono 4. Como son elementos distintos, se representan los electrones de oxígenos con puntos y los electrones del carbono cruces, con el fin de diferenciarlos.

Se puede apreciar que hay dos pares de electrones compartidos entre cada oxígeno y el carbono central. Por lo tanto la fórmula desarrollada es:

O=C=O

a practicar lo aprendido

  1. Escribir las estructuras de Lewis para los siguientes compuestos iónicos.

a) MgO

b) Na2O

2. Escribir las estructuras de Lewis para los siguientes compuestos covalentes.

a) F2O

b) H2O

respuestas

1.

a) 

b)  La fórmula indica que hay dos átomos de Na, cada uno de ellos aporta un electrón.

2.

a) 

b) 

¿Sabías qué...?
Gilbert Newton Lewis, químico que ideó los símbolos de Lewis, estudió en su hogar hasta los 10 años, luego asistió a escuela pública por 4 años e ingresó a la universidad a los 14 años de edad.

 

 

Los enlaces químicos

La energía de un agregado de dos o más átomos puede ser menor que la suma de las energías de esos átomos aislados y de ahí que, siguiendo la tendencia de cualquier sistema a alcanzar su estado de mínima energía, los átomos se unan unos con otros de diversos modos para formar moléculas estables. Así, sólo los gases nobles y los metales en estado de vapor están constituidos por átomos aislados.

Todas las demás sustancias están constituidas por moléculas integradas por un número de átomos que puede ir desde dos hasta cientos de miles (polímeros). En la formación del enlace químico intervienen únicamente los electrones de la última capa, los llamados electrones de valencia, que pueden ser parcialmente compartidos entre dos átomos (enlace covalente) o bien cedidos por uno a otro (enlace electrovalente). Es importante destacar que desde el punto de vista de la teoría química actual el enlace químico tiene carácter unitario, basándose siempre en compartir electrones por pares.

Las moléculas están constituidas por la unión de cierto número de átomos iguales o distintos. Se plantea, pues, la cuestión de saber cuál es el nexo que mantiene a los átomos unidos entre sí para formar moléculas. En todos los casos, este nexo se establece únicamente a partir de los electrones que forman la última capa de los átomos, los llamados electrones de valencia.

Hablaremos de cinco tipos de enlace distintos: iónico o electrovalente, covalente, metálico, de hidrógeno y covalente coordinado.

El fundamento del enlace químico es la Ley Física Fundamental según la cual todo sistema evoluciona hacia su estado de energía más bajo. Esta ley explica, por ejemplo, el hecho de que una bola que se encuentra en un recipiente cóncavo se sitúe en el punto más bajo del mismo o bien que, si dos disoluciones de distinta concentración están separadas por un tabique poroso, la concentración de ambas tienda a igualarse por migración del soluto a través del tabique.

 

Existen cinco tipos de enlaces: iónico o electrovalente, covalente, metálico, de hidrógeno y covalente coordinado.

Para poder aclarar la naturaleza de cada uno de los distintos tipos de enlace listados, antes deberemos explicar algunos conceptos importantes, en particular el concepto de ion, y formular la teoría del octete (u octeto).

Con respecto a la mayor o menor facilidad con que permiten el paso de la corriente eléctrica, los cuerpos se clasifican en:

  • Aislantes
  • Conductores:
    • de primera clase
    • de segunda clase o electrólitos

Los conductores de primera clase son aquellos que, como los metales, no se alteran con el paso de la corriente eléctrica.

Por el contrario, los conductores de segunda clase o electrólitos se descomponen cuando son atravesados por una corriente eléctrica. Los electrólitos son exclusivamente ácidos, bases o sales fundidos o disueltos en agua u otros líquidos.

El primero que formuló una explicación científica coherente de la descomposición de los electrólitos por el paso de una corriente eléctrica (electrólisis) fue Arrhenius, quien, en 1883-1887, propuso su teoría de la disociación electrolítica. Aunque inicialmente fue recibida sin entusiasmo por los medios científicos, esta teoría ha sido una de las más fecundas de la química moderna, ya que sentó las bases para el desarrollo de la electroquímica, que hoy constituye una de las bases de la química industrial.

Teoría de Arrhenius de la disociación electrolítica

Se denomina ion a un átomo o una partícula formada por varios átomos que posee una carga eléctrica debida a un defecto o un exceso de electrones planetarios. Según sea su carga eléctrica, los iones se clasifican en positivos o cationes y negativos o aniones.

De acuerdo con la teoría formulada por Arrhenius:

  1. Los electrólitos, en disolución o fundidos, se disocian parcialmente en iones dotados de carga eléctrica, siendo la carga total de los iones positivos igual a la carga total de los iones negativos; la disolución en su conjunto permanece neutra.
  2. Las sustancias químicamente análogas se disocian en los mismos iones (por ejemplo, el grupo NO3 de los nitratos, PO4 de los fosfatos o Na de las sales sódicas). La carga eléctrica del ion es igual a su valencia y es negativa para los no metales y radicales no metálicos (aniones) y positiva para los metales (cationes).

Así, por ejemplo, al disociarse electrolíticamente el cloruro de hidrógeno (un ácido), el cloruro de calcio (una sal) y el hidróxido de sodio (una base) tendremos respectivamente:

HCl  H+ (1 ion positivo) + Cl- (1 ion negativo)

CaCl2   Ca2+ (1 ion positivo) + 2Cl- (dos iones negativos)

NaOH  Na+ (1 ion positivo) + (OH)- (1 ion negativo)

Los iones positivos son más pequeños que los átomos metálicos de los que proceden (por ejemplo, el radio del ion Na+ es sólo muy poco mayor que la mitad del radio del átomo de sodio), mientras que los iones negativos son siempre mayores que los átomos de los no metales a partir de los que se han formado (por ejemplo, el radio del ion Cl- es casi el doble que el radio del átomo de cloro).

Steve August Arrehnius (1859-1927) fue un reconocido científico sueco.

Ionización

La formación de iones se explica por la cesión o admisión de electrones, generalmente en la capa más externa, por parte de un átomo. Es decir, si un átomo X acepta un electrón se rompe el equilibrio eléctrico en que se encontraba, al pasar a poseer una carga negativa más; tendremos así un ion negativo X-. Si el átomo X hubiera aceptado dos electrones estaríamos ante un ion X2-, etcétera.

Por el contrario, si un átomo X cede un electrón pasará a convertirse en un ion positivo, X+, puesto que su número de cargas negativas será entonces inferior en una unidad al número de cargas positivas del núcleo (protones); en el caso de que cediera dos electrones, se tendría el ion X2+, etcétera.

La ionización no es un fenómeno que pueda producirse únicamente a causa de la disociación de un electrólito en disolución. También por efecto del calor, las radiaciones ionizantes o el choque con otras partículas, un átomo puede perder uno o más electrones o bien absorber electrones extraños. Por ejemplo, en las capas altas de la atmósfera (ionosfera), los átomos del aire son constantemente bombardeados por radiaciones solares de alta energía, las cuales les arrancan electrones. Asimismo, los meteoritos, al atravesar la atmósfera a gran velocidad, producen un calentamiento local del aire, ionizándolo a lo largo de su trayectoria.

Un ion se forma cuando una molécula le “cede” electrones a otra.

Los iones presentes en el aire atraen el polvo y las gotitas de agua, y por esta razón se emplean iones para que actúen como núcleos de condensación con el fin de provocar artificialmente la lluvia. En un proceso esencialmente análogo, en las cámaras de ionización la observación de las trayectorias de las partículas atómicas se basa en la condensación que provocan a su paso.

En determinadas condiciones, un gas puede hallarse completamente ionizado, es decir, con todos sus átomos en defecto de electrones; en ese caso se le denomina plasma. Sin embargo, el propio plasma se encuentra en estado neutro, ya que, al hallarse íntimamente mezclados en todo el espacio ocupado, sus electrones y sus iones positivos compensan sus cargas entre sí.

Teoría del octete

Los gases nobles constituyen el grupo 0 de la Tabla Periódica. Las moléculas de estos gases son monoatómicas, ya que la característica más destacada de estos elementos es que sus átomos carecen prácticamente de capacidad para unirse con otros átomos de su misma o de otra especie.

Todos los gases nobles, a excepción del primer elemento del grupo, el helio, poseen ocho electrones en la última órbita. Este hecho llevó a considerar que ésta era la configuración electrónica más estable. Por ello, Lewis introdujo en 1916 la teoría del octete u octeto: “Cuando los átomos reaccionan entre sí tienden a adquirir la estructura electrónica del gas noble de número atómico más próximo.” Sorprendentemente, esta ingeniosa teoría se ajusta muy bien a la realidad, aunque en el momento en que fue propuesta carecía por completo de verdadera justificación teórica.

Los gases nobles son los elementos que, en las condiciones normales de la Tierra, están formados por un solo tipo de átomos.

Tipos de compuestos orgánicos

Se le llama compuesto o molécula orgánica a las sustancias químicas que están compuestas por carbono y forman enlaces carbono-carbono-carbono-oxígeno. La principal característica de estos compuestos es que pueden ser combustibles.

Existen dos tipos o series de compuestos orgánicos: la serie acíclica, que comprende los compuestos cuyos carbonos están unidos formando cadenas abiertas, ramificadas o no, y la serie cíclica, que comprende los compuestos cuyos carbonos forman cadenas cerradas, anillos o ciclos. Los anillos formados exclusivamente por átomos de carbono se llaman homocíclicos o isocíclicos y, si contienen algún átomo de otro elemento, se llaman heterocíclicos. Entre los primeros, merece especial mención el anillo bencénico, que constituye el núcleo de los compuestos de la llamada serie armática.

Los compuestos acíclicos se denominan alifáticos debido a que los primeros compuestos de este tipo que se estudiaron fueron los ácidos grasos (del griego aliphos, grasa).

 

Todos los combustibles son compuestos orgánicos.

Los átomos de carbono se denominan primarios, secundarios, terciarios o cuaternarios según estén enlazados a uno, dos, tres o cuatro átomos de carbono.

En química orgánica existen varios agrupamientos de átomos a los que corresponden propiedades características. Estos agrupamientos se llaman grupos funcionales; y de los compuestos cuya molécula contiene un determinado grupo funcional se dice que pertenecen a la misma función química. Así, por ejemplo, un compuesto posee la función aldehído cuando en su molécula tiene el grupo funcional CHO. El resto de la molécula se denomina radical, y puede influir en la reactividad del grupo funcional.

No obstante, cuando se formulan reacciones de los grupos funcionales es frecuente representar el radical escribiendo simplemente R o Ar, según se trate de un radical hidrocarbonado o un radical aromático.

Finalmente, una misma molécula puede contener varias funciones de la misma clase (función múltiple) o bien diversas funciones de distinta clase (función mixta).

Los átomos de carbono se denominan primarios, secundarios, terciarios o cuaternarios según estén enlazados a uno, dos, tres o cuatro átomos de carbono.

Los alcanos

Los alcanos son compuestos que están formados solo por enlaces entre átomos de carbono e hidrógeno. Comúnmente se los suele llamar también hidrocarburos.

El alcano más simple es el metano, cuya fórmula molecular es CH4. Admitiendo la tetravalencia del carbono y la monovalencia del hidrógeno, solamente es posible una estructura para el metano:

El alcano con dos átomos de carbono, el etano, tiene por fórmula molecular C2H6. Su fórmula estructural es:

Cuando el número de átomos de carbono es n, su fórmula molecular es CnH2n+2. Los alcanos pueden suponerse derivados del metano por sustitución sucesiva de un hidrógeno por un grupo metilo, CH3.

Los alcanos pueden ser de cadena lineal o de cadena ramificada. En la cadena normal cada átomo de carbono está unido directamente a lo sumo a otros dos, es decir, los carbonos son primarios o secundarios; en las cadenas ramificadas existen también átomos de carbono terciarios o cuaternarios:

 

El metano es el alcano más simple.

Una cadena ramificada se puede considerar como una cadena normal en la que la parte de sus átomos de hidrógeno han sido sustituidos por grupos CnH2n+1, que se denominan cadenas laterales.

Dado que la fórmula estructural desarrollada ocupa mucho espacio, para los alcanos de cadena larga se acostumbra usar la fórmula estructural abreviada, que se escribe poniendo entre paréntesis las cadenas laterales (y los sustituyentes) para indicar que esos átomos o grupos están directamente unidos al átomo de carbono precedente no escrito entre paréntesis. Por ejemplo, la última fórmula que hemos escrito en forma desarrollada, en forma abreviada se escribiría:

CH3 CH(CH3)CH2 C(CH3)3

Nomenclatura de los alcanos

Los primeros químicos nombraban en general los compuestos haciendo referencia a su origen. Esto dio lugar a una nomenclatura vulgar que, en muchos casos, aún se emplea. A medida que fue aumentando el número de compuestos orgánicos conocidos se fue haciendo evidente la necesidad de sistematizar la nomenclatura, de manera que el nombre de un compuesto reflejara su estructura. La nomenclatura actual se basa en la establecida en el Congreso de Química de Ginebra de 1892 (nomenclatura de Ginebra), que ha sido revisada repetidas veces, siendo las últimas reglas las que recomendó en 1957 la Comisión de Nomenclatura de la Unión Internacional de Química Pura y Aplicada (IUPAC). En esta obra seguiremos el sistema de la IUPAC, aunque usaremos nombres vulgares cuando éstos estén muy arraigados.

Los cuatro primeros alcanos tienen nombres especiales (relacionados con su historia); a partir del quinto término se nombran según el prefijo griego o latino correspondiente al número de átomos seguido de la terminación -ano.

Los alcanos de cadena normal se indican colocando una n delante del nombre (n-butano) cuando se los quiere diferenciar de los que tienen el mismo número de átomos de carbono pero cadena ramificada en el primer enlace, a los que se antepone el prefijo iso- (iso-butano).

Los radicales monovalentes que se forman eliminando un átomo de hidrógeno de un carbono extremo de un alcano se denominan radicales alquilo. El nombre de cada radical se obtiene cambiando el sufijo -ano del nombre del alcano por -ilo, o bien por -il si el nombre del radical antecede en el nombre del compuesto (por ejemplo, el radical metilo o metil es CH3).

Para nombrar a los hidrocarburos ramificados se elige la cadena más larga y el compuesto se nombra como derivado de ese alcano de cadena normal. La cadena de carbonos se numera de un extremo a otro, eligiendo empezar por el extremo que permita que los números usados para ubicar las cadenas laterales sean lo más bajos posible. Por ejemplo, el 2-etil-3-metil-pentano sería:

Al examinar las fórmulas de los alcanos se observa que dos cualesquiera de ellos se diferencian en uno o más CH2. Una serie de compuestos en la que, como en las parafinas, los sucesivos términos se diferencian en un CH2 se denomina serie homóloga, denominándose homólogos los términos de la misma.

Los constantes físicas (densidad, solubilidad, punto de fusión, índice de refracción, etc.) de los términos de una misma serie homóloga suelen variar de un modo continuo con el aumento del peso molecular, sobre todo los puntos de fusión y de ebullición.

Propiedades generales de los alcanos

Las propiedades físicas de los alcanos siguen la gradación propia de los términos de una serie homóloga. Los cuatro primeros términos de los alcanos normales son gaseosos, del 5 al 16 son líquidos y los términos superiores, sólidos. Son incoloros e inodoros, insolubles en agua, miscibles entre sí y fácilmente solubles en disolventes orgánicos, tales como éter, sulfuro de carbono, benceno, etc. Fácilmente combustibles, arden con llama tanto más luminosa cuanto mayor es el número de carbonos de su molécula. Son estables y químicamente inertes puesto que a temperatura ambiente no son atacados por los ácidos ni las bases fuertes; ésta es la razón por la que se les denomina también parafinas (poca afinidad). Los halógenos se combinan con ellos por sustitución, formándose el derivado halogenado y el hidrácido correspondiente. Así, el metano reacciona con gas cloro dando cloruro de metilo y cloruro de hidrógeno:

CH4 + Cl2 → CH3Cl + HCl

El proceso puede proseguir hasta la sustitución de todos los hidrógenos por átomos de Cl, formándose tetracloruro de carbono.

El alcano más importante es el metano, que es muy estable, ya que sólo empieza a descomponerse por encima de los 600 °C.

Los alcanos son incoloros, inoloros e insolubles en agua.

Estado natural de los alcanos

Los alcanos son compuestos muy abundantes en la naturaleza. El primer término de la serie, el metano, se desprende en los pantanos como producto de la descomposición de sustancias orgánicas por acción de bacterias anaerobias (es decir, en ausencia de aire); de ahí su antiguo nombre de gas de los pantanos. También se desprende en las minas de carbón (grisú), donde puede provocar peligrosas explosiones. Es el principal componente del gas natural, cada día más utilizado por ser un combustible limpio y de elevado poder calorífico. Los demás alcanos se hallan contenidos en el gas natural y en el petróleo, del que pueden obtenerse muchos hidrocarburos saturados por destilación fraccionada. El propano y el butano son constituyentes del gas natural y del gas de los pozos petrolíferos, de los cuales se pueden separar por fraccionamiento. Se utilizan como combustibles, comercializándose licuados bajo presión en bombonas, a diferencia del gas natural, que se suministra por cañerías.

Compuestos orgánicos

Un conjunto de átomos enlazados de un modo especifico que genera un conjunto de propiedades químicas que caracterizan a una familia de compuestos. Los compuestos que poseen el mismo grupo funcional se concentran en una misma familia y en química orgánica existen decenas de familias. En este artículo analizaremos cada una de las familias de compuestos orgánicos.

Alcanos

Grupo de compuestos formados únicamente por carbonos e hidrógenos unidos mediante enlaces simples, de modo que todos los carbonos de un alcano poseen hibridación sp3. Los representantes más simples de esta familia son el metano, el etano, el propano, y el butano, que son gases empleados como combustibles domésticos e industriales. En la forma general, los alcanos se representan como R-H.

Los compuestos orgánicos están formados por moléculas compuestas por átomos de carbono y oxígeno.
Los compuestos orgánicos están formados por moléculas compuestas por átomos de carbono y oxígeno.

 

Alquenos

Familia de compuestos que contienen un doble enlace entre carbonos, el resto son enlaces simples a otros carbonos e hidrógenos. El eteno, propeno y buteno son ejemplos de alquenos. En forma general, los alquenos se representan como: CnH2n

Cabe señalar que en la formula general, los carbonos con doble enlace pueden estar unidos a un grupo R y a un, o también a dos grupos R o incluso a dos hidrogenos; en este último caso se tratará de la molécula del eteno, un gas que se utiliza para hacer madurar frutos, como anestésicos y también como precursor del polietileno.

Alquinos

Son moléculas que contienen triple enlace de carbonos el resto de los enlaces son simples ya sea entre carbonos o de estos con hidrógenos. Su representación general es: CnH2n-2

Aldehídos

En el extremo de la molécula contiene un carbonilo unido a un hidrogeno. El grupo

carbonilo es un carbón unido a oxigeno mediante un doble enlace (C=O).

Cetonas

También poseen un grupo carbonilo pero éste se encuentra en su interior de la cadena de modo que está directamente unido a dos átomos de carbono a diferencia de los aldehídos en las cetonas el carbono carboxílico no cuenta con uniones a átomos de hidrogeno.

Alcoholes

Se caracterizan por tener un grupo OH hidroxilo unido mediante un enlace simple a un carbono. Se representan en forma general como R-OH.

Seguramente es familiar la palabra alcohol, ya que uno de ellos, el etanol, es el famoso alcohol de farmacia y también el que contienen las bebidas alcohólicas y algunos otros alimentos y medicamentos.

El alcohol que poseen las bebidas alcohólicas es el etanol.
El alcohol que poseen las bebidas alcohólicas es el etanol.

Éteres

Molécula que contiene oxígeno en su estructura, unido mediante enlace simple a dos carbonos de modo que forma parte de una cadena carbonatada. Dicho de otra forma, el oxígeno se encuentra en medio interrumpiendo la cadena de carbonos. Su fórmula general es R-O-R.

Ácidos carboxílicos

Estas moléculas también contienen un grupo carbonilo en el extremo de la molécula que está unido a un grupo hidroxilo. A la combinación entre el grupo carbonilo y el hidroxilo se le conoce como grupo carboxilo y es propio de esta familia de compuestos.