CAPÍTULO 3 / EJERCICIOS

FUERZAS Y ENERGÍAS

Fuentes y CLASES DE ENERGÍA

1. Define los siguientes tipos de energía:

Energía térmica:

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

Energía química:

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

Energía radiante:

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

Energía nuclear:

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

Energía eléctrica:

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. Menciona cuatro ejemplos donde estén presentes la energía potencial y la energía cinética:

Energía potencial Energía cinética
 

 

 

 

 

 

 

 

 

 

 

 

Fuerza en máquinas simples

1. Identifica en las siguientes imágenes el tipo de palanca, dependiendo de la carga y el esfuerzo empleado:

________________________________
________________________________
________________________________

2. Identifica cuáles de los siguientes enunciados son verdaderos (V) y cuáles son falsos (F). Justifica todas las respuestas.

  • Una fuerza se define como la acción de un cuerpo en otro cuerpo. Se aplica a través de un contacto directo o mediante una acción remota. (  )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Un plano inclinado es una superficie plana sin elevaciones. Se necesita mayor fuerza para mover un objeto hacia arriba a lo largo de un plano inclinado que para levantarlo en línea recta. (  )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • El momento es la tendencia de una fuerza a mover un cuerpo hacia arriba sin necesidad de apoyo. Para que se desarrolle un momento, la fuerza debe actuar lejos del cuerpo de tal manera que éste no se mueva. Esto ocurre cada vez que se aplica una fuerza en uno de los extremos del cuerpo.(  )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Las palancas cotidianas impiden realizar tareas que serían demasiado pesadas o engorrosas.(  )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Un sistema de fuerzas consiste en aplicar una única fuerza sobre un cuerpo de tal manera que éste experimente un movimiento.(  )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

Corriente eléctrica y circuitos simples

1. Menciona cuatro ejemplos de materiales conductores y materiales aislantes:

Materiales conductores Materiales aislantes
 

 

 

 

 

 

 

 

 

 

 

 

2. A continuación se presentan diferentes definiciones referentes a la corriente eléctrica y los circuitos simples. Escribe el nombre que corresponde a cada una.

  • _____________________: es la fuente de alimentación o de poder dentro de un circuito simple.
  • _____________________: es una parte básica de la naturaleza y una de las formas de energía más utilizadas por el ser humano.
  • _____________________: son extremadamente pequeños, su masa es casi 1000 veces más pequeña que la de un protón.
  • _____________________: son materiales que impiden el libre flujo de electrones de átomo a átomo y de molécula a molécula.
  • _____________________: ocurre simultáneamente con el trueno.
  • _____________________: se produce porque el aire dentro de la iluminación del rayo se calienta tanto que se transforma en plasma durante un corto período de tiempo.
  • _____________________: son materiales que permiten que los electrones fluyan libremente de una partícula a otra.

Calor y transferencia de energía

1. Completa las siguientes oraciones:

  • La conducción ocurre cuando dos objetos a ______________ temperaturas entran en contacto. El calor fluye desde el calentador al objeto más frío hasta que ambos se encuentren a la misma __________________.
  • La ley de la conservación de la _____________ es una ley física que establece que la _______________ no puede ser _________ o destruida, sino que puede ____________ de una forma a otra. Otra manera de establecer esta ley es decir que la energía total de un sistema aislado permanece _______________ o se conserva dentro de un marco de referencia dado.
  • La ___________________ es el estudio de la transferencia de calor y los cambios que resultan de ella.
  • El ___________ es energía transferida entre sustancias o sistemas debido a una _________ de temperatura entre ellos.
  •  La ______________ es una medida objetiva de qué tan caliente o frío es un objeto; es un medio de determinar la energía ____________ contenida dentro del sistema. Se puede medir con un __________ o un calorímetro.

2. Marca con una cruz (X) la respuesta correcta.

Es la escala más común para medir la temperatura.

  1. Faradios. (  )
  2. Newton. (  )
  3. Celsius. (  )

Son muy buenos conductores de calor.

  1. Los materiales plásticos. (  )
  2. Los materiales cerámicos. (  )
  3. Los metales. (  )

Es un método de transferencia de calor que no depende de ningún contacto entre la fuente de calor y el objeto calentado.

  1. Convección.
  2. Radiación.
  3. Conducción.

Es la denominación de la cantidad de calor requerida para aumentar la temperatura de una sustancia en una cantidad determinada.

  1. Caloría.
  2. Temperatura.
  3. Calor específico.

Las pilas

1. Describe brevemente cuáles son las partes de una pila y cómo funcionan.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. Describe tres métodos empleados para el tratamiento y manejo de pilas usadas:

a)

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

b)

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

c)

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

Energía en la naturaleza

  1. Observa, completa y explica el siguiente diagrama de la energía.

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

2. Explica con tus propias palabras cuáles son los problemas más comunes de los ecosistemas agrícolas.

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

CAPÍTULO 4 / TEMA 7

El calor y la temperatura

Los términos calor y temperatura son comunes en nuestro vocabulario ya que nos permiten explicar por qué percibimos lo frío de la nieve o lo caliente del agua hirviendo. Estos conceptos pueden diferenciarse y existen escalas para medirlos.

CALOR Y TEMPERATURA, ¿SON LO MISMO?

VER INFOGRAFÍA

El calor y la temperatura no son lo mismo. El calor es una forma de energía que se transfiere de un material más caliente a otro menos caliente, es decir, es una energía de tránsito. La temperatura, en cambio, es la medida de la cantidad de movimiento de las moléculas de un sistema; es decir, es una medida de la energía térmica. Es sólo una magnitud que miden los termómetros.

¿Qué es la energía térmica?

La energía térmica es la manifestación de la energía en forma de calor, se produce como consecuencia del movimiento de las partículas que conforman un cuerpo. Entonces, a mayor movimiento de partículas más energía térmica contiene el cuerpo.

¿Sabías qué?
El frío no existe. Realmente un cuerpo se siente frío cuando sus partículas tienen baja energía térmica.

EQUILIBRIO TÉRMICO

Al colocar dos cuerpos con diferentes temperaturas dentro de un sistema aislado, el que tiene mayor temperatura cede calor al cuerpo con menor temperatura hasta alcanzar el equilibrio térmico, es decir, hasta que se igualan las temperaturas.

El equilibrio térmico ocurre debido al intercambio de energía térmica de dos cuerpos que se encuentran a diferente temperatura. El cuerpo que tiene mayor energía térmica, es decir una temperatura más alta, transfiere calor al cuerpo con menor energía térmica hasta que ambos llegan a la misma temperatura. En ese momento es alcanzado el equilibrio en el sistema.

¿Sabías qué?
El calentamiento global es un alarmante caso de equilibrio térmico con el agua del planeta, ya que ha provocado que los glaciares empiecen a derretirse.

Ejemplos de equilibrio térmico

 

Cuando un producto se saca de la heladera, al pasar cierto tiempo alcanzará el equilibrio con la temperatura del medio natural.

 

Al salir de una ducha caliente puede sentirse una sensación de frío porque el cuerpo estaba en equilibrio con la temperatura del agua, y luego entra en equilibrio con la temperatura ambiental.

 

 

 

 

 

Al agregar leche fría a una taza de café caliente, el equilibrio térmico se alcanza rápido y el café tendrá una temperatura más baja que al principio.

Para alcanzar el equilibrio térmico, el calor puede ser transferido de un cuerpo a otro de tres maneras distintas:

Conducción

La energía térmica es transferida de un material preferentemente sólido a otro sin transporte de materia. Por ejemplo, podemos calentar un extremo de una barra de metal con fuego y luego de un tiempo veremos que el otro extremo también elevó su temperatura porque el calor es conducido a través de las moléculas que la componen.

Convección

Se transfiere la energía y la materia por una masa fluida. Se produce en materiales que poseen moléculas que se mueven libremente, como el aire o el agua. Por ejemplo, cuando calentamos agua se producen corrientes de convección, es decir, el agua caliente sube y el agua fría baja, lo que genera una corriente.

Radiación

Se transfiere la energía térmica a través de ondas. Es totalmente independiente de la materia y la transferencia puede ocurrir en el vacío. Por ejemplo, cuando colocamos la mano sobre el fuego vamos a sentir el calor porque se transmite por radiación, es decir, a través de las ondas.

Ejemplos de conducción, convección y radiación.

¿EL CALOR SE ABSORBE O SE CEDE?

Cuando refrescamos nuestro cuerpo con botellas de agua fría lo que sucede es que el calor corporal es cedido al de la botella que tiene una temperatura más baja.

El calor fluye desde el cuerpo con mayor temperatura al que tiene menor temperatura, de manera que el primero cede calor, en tanto el segundo absorbe el calor. Por ejemplo, cuando una persona se sumerge en el mar le está cediendo calor al mismo, ya que la temperatura corporal de la persona (37 °C) es mayor que la temperatura del mar (< 30 °C).

¿QUÉ ES LA TERMODINÁMICA?

Es el estudio de la transferencia de calor y los cambios que resultan de ella. La comprensión de la transferencia de calor es crucial para analizar un proceso termodinámico, como los que tienen lugar en los motores térmicos y las bombas de calor.

Existen tres factores que influyen en la manera que un cuerpo cede o absorbe el calor:

  • La variación de la temperatura. Un cuerpo necesita absorber más calor para aumentar su temperatura en 50 °C que para un incremento de sólo 5 °C.
  • La masa del cuerpo. Se necesita más calor para hervir 1 kg de agua que para hervir 200 g de agua.
  • La naturaleza del cuerpo. Al calentar dos cuerpos de igual masa, pero de diferente material, se necesitan cantidades diferentes de calor para elevar su temperatura en igual proporción.

ESCALAS DE TEMPERATURA Y EQUIVALENCIAS

La temperatura es una medida de la energía térmica. Esta magnitud se mide con un termómetro y existen varias unidades de medida para hacerlo:

Grado centígrado o Celsius (°C)

La escala fue propuesta por el físico Anders Celsius en el siglo XVIII. Tomó también el nombre de “centígrados” debido a que la escala es dividida en 100 partes iguales al tomar como referencia los puntos de fusión y ebullición del agua (temperatura a la cual se funde y se hierve).

Grado Fahrenheit (°F)

La escala fue creada por el físico Gabriel Daniel Fahrenheit en el año 1724. Es más utilizada en los países anglosajones y divide en 180 partes iguales a la temperatura entre la cual se funde y se hierve el agua.

Kelvin (K)

La escala fue propuesta por el físico y matemático William Thomson Kelvin en 1848. Es empleada para estudios de termodinámica. El cero se define como el cero absoluto de temperatura, es decir, a -273,15 °C. La magnitud de su unidad, se define como igual a un grado Celsius, es decir, un Kelvin es equivalente a esa temperatura en escala Celsius, la más conocida.

Las equivalencias entre estas escalas son las siguientes:

Fahrenheit a Celsius Celsius a Kelvin Celsius a Fahrenheit
 

Kelvin a Celsius

 

Fahrenheit a Kelvin

 

 Kelvin a Fahrenheit

CONDUCTORES Y AISLANTES TÉRMICOS

Termos

También llamados frascos de vacío o botella de Dewar, son contenedores aislantes creados de tal manera que pueden reducir la transferencia por conducción o convección. De este modo, su contenido mantiene por más tiempo su temperatura en su interior.

Materiales conductores

Son aquellos que permiten la transmisión de calor y se utilizan en la fabricación de hornos y utensilios de cocina, como ollas y sartenes. También se usan en la manufactura de radiadores.

En general, los metales son excelentes conductores de calor, en especial el aluminio, el cobre, el hierro y el oro.
¿Sabías qué?
El sodio, magnesio, potasio y el calcio son metales que se encuentran en la naturaleza y presentan una baja conductividad.
El diamante es el mejor conductor térmico.

Materiales aislantes

Son aquellos que no permiten la fácil transmisión de calor. Son utilizados en la fabricación de los trajes ignífugos que usan los bomberos. Asimismo, se emplean en el recubrimiento de diferentes tipos de construcciones y en la elaboración de termos.

La conductividad térmica es la cualidad que tienen ciertos materiales de traspasar calor a través de ellos. La cantidad de calor necesario por m2 está determinado por el coeficiente de conductividad térmica (λ).

A continuación se muestra una tabla referida a la capacidad de algunos materiales para transmitir el calor.

 

Material λ
Acero 47-58
Agua 0,58
Aire 0,02
Alcohol 0,16
Alpaca 29,1
Aluminio 237
Bronce 116-186
Corcho 0,03-0,04
Material λ
Diamante 2.300
Glicerina 0,29
Hierro 80,2
Ladrillo 0,80
Madera 0,13
Oro 308,2
Tierra húmeda 0,8
Zinc 106-140
RECURSOS PARA DOCENTES

Video “Intercambio de calor”

En este video se explica mediante problemas cómo se intercambia el calor en los cuerpos.

VER

Video “Calorimetría: Cambios de estado”

Este recurso audiovisual detalla cómo un cuerpo cambia de estado físico gracias al aporte de energía calorífica.

VER

Artículo destacado “Capacidad calorífica”

En este artículo se describe con ejemplos la capacidad calorífica como la propiedad de todo cuerpo de absorber, retener y liberar calor.

VER

CAPÍTULO 1 / TEMA 5

TEMPERATURA VS. CALOR

A MENUDO DECIMOS FRASES COMO: ¡HACE MUCHO CALOR! O ¡QUE FRÍO HACE! PARA REFERIRNOS AL AUMENTO O LA DISMINUCIÓN DE LA TEMPERATURA PERO ¿QUÉ ES EL CALOR? ¿Y LA TEMPERATURA? ¿SIGNIFICAN LO MISMO? VEAMOS A CONTINUACIÓN SU RELACIÓN Y SUS DIFERENCIAS.

¿CÓMO LOS DIFERENCIAMOS?

AUNQUE A VECES NOS PAREZCA QUE SON SINÓNIMOS, LA REALIDAD ES QUE SON DOS COSAS DIFERENTES.

¿Sabías qué?
EN CIENCIAS NATURALES, PARA EXPLICAR LOS TEMAS RELACIONADOS CON MATERIA Y ENERGÍA TAMBIÉN USAMOS LA PALABRA “CUERPO” PARA REFERIRNOS A LOS OBJETOS, NO SÓLO AL CUERPO HUMANO.

EL CALOR ES LA ENERGÍA QUE SE TRANSMITE DE UN CUERPO A OTRO Y LA TEMPERATURA PROVOCA LA SENSACIÓN DE QUE ESTÁN FRÍOS O CALIENTES.

EJEMPLO: CUANDO COLOCAMOS UNA OLLA CON AGUA A HERVIR, LO QUE SE TRANSMITE DEL FUEGO AL AGUA ES EL CALOR Y HACE QUE SE ELEVE LA TEMPERATURA DEL AGUA. ESTO SE COMPRUEBA AL COLOCAR UN INSTRUMENTO LLAMADO TERMÓMETRO.

EL TERMÓMETRO ES EL INSTRUMENTO QUE USAMOS PARA MEDIR LA TEMPERATURA. EN ESTE CASO EL ROJO INDICA CALOR Y EL CELESTE FRÍO.
¿Sabías qué?
TODOS LOS OBJETOS A NUESTRO ALREDEDOR ESTÁN HECHOS DE PARTÍCULAS QUE SE MUEVEN Y CHOCAN ENTRE SÍ, CUANTO MÁS SE MUEVEN MÁS CHOCAN.

ENTONCES…

  •    EL CALOR ES ENERGÍA
  •    ESA ENERGÍA VA DE UN CUERPO A OTRO
  •    LA TEMPERATURA MIDE ESA ENERGÍA
¡HAGAMOS UN EXPERIMENTO!

VAMOS A QUITARNOS LOS ZAPATOS Y APOYAMOS NUESTROS PIES EN EL SUELO ¿SENTIMOS FRÍO CIERTO? ESTO SUCEDE PORQUE EL SUELO Y NUESTROS PIES ESTÁN A DIFERENTES TEMPERATURAS. DESPUÉS DE UN RATO COMENZAMOS A SENTIR QUE LA TEMPERATURA ENTRE LOS PIES Y EL SUELO ES LA MISMA ¿POR QUÉ PASA ESTO? ¿EL SUELO AUMENTÓ SU TEMPERATURA O NUESTROS PIES BAJARON LA TEMPERATURA? LAS DOS COSAS. EL AUMENTO Y LA DISMINUCIÓN DE LA TEMPERATURA HASTA LLEGAR AL EQUILIBRIO SE DA POR LA TRANSFERENCIA DE CALOR.

MATERIALES CONDUCTORES Y MATERIALES AISLANTES

COMO EL CALOR ES UNA FORMA DE ENERGÍA, PUEDE VIAJAR A TRAVÉS DE LOS DIFERENTES MATERIALES QUE CONOCEMOS Y EN ALGUNAS OCASIONES LOS MODIFICA, TAL COMO SUCEDE CUANDO COLOCAMOS UN TROZO DE HIELO AL SOL Y SE DERRITE.

ALGUNOS MATERIALES SON CAPACES DE CONDUCIR MEJOR EL CALOR QUE OTROS.

  • MATERIALES CONDUCTORES: SON LOS QUE PERMITEN EL PASO DEL CALOR. COMO POR EJEMPLO LOS MATERIALES METÁLICOS COMO EL ALUMINIO, EL HIERRO Y EL COBRE.
LA ARMADURA DE ESTE CABALLERO ES DE HIERRO, UN BUEN CONDUCTOR DEL CALOR.
  • MATERIALES AISLANTES: SON LOS QUE EVITAN EL PASO DEL CALOR. POR EJEMPLO, EL PLÁSTICO DEL QUE ESTÁN HECHOS LOS JUGUETES.
ESTA TAZA ES DE CERÁMICA. LA CERÁMICA ES UN TIPO DE MATERIAL AISLANTE, POR ESO NO NOS QUEMAMOS CUANDO LA TOMAMOS ENTRE LAS MANOS.

¡A PRACTICAR!

1. ¿CÓMO SE LLAMA EL INSTRUMENTO QUE LA MAMÁ DE LA NIÑA UTILIZA PARA MEDIR SU TEMPERATURA?

____________________.

 

2. ¿FRÍO O CALIENTE? ESCRIBE AL LADO DE CADA SITUACIÓN, “FRÍO” SI ESTÁ RELACIONADO CON TEMPERATURA BAJA O “CALIENTE” SI ESTÁ RELACIONADO CON TEMPERATURA ALTA.

  • PASTEL EN EL HORNO
  • VASO CON HIELO
  • AGUA HIRVIENDO
  • BOMBILLA ENCENDIDA
  • CONO DE HELADO

3. ¿DE QUÉ MATERIAL ESTÁ HECHO? IDENTIFICA EL MATERIAL CON EL QUE SE FABRICÓ LA CACEROLA.

4. TOMA UNA CARTULINA Y REALIZA UN LISTADO DE MATERIALES AISLANTES Y OTRA DE MATERIALES CONDUCTORES QUE PUEDAS IDENTIFICAR EN TU VIDA DIARIA.

5. RESPONDE EN LA LÍNEA DE ABAJO: ¿CÓMO SE LLAMA EL MATERIAL DE ESOS GUANTES? ¿ES AISLANTE O CONDUCTOR?

MATERIAL: _________________        TIPO DE MATERIAL: _________________

 

 

RECURSOS PARA DOCENTES

Infografía “Calor y temperatura”

Material ilustrado con el que se podrá dar a conocer la relación y las diferencias entre el calor y la temperatura.

VER

Infografía “Estados de la materia”

Con esta entretenida infografía se podrá mostrar cómo se dan los cambios de estado según el aumento y la disminución de la temperatura.

VER

Metales, metaloides y no metales

La materia está formada por elementos cuya unidad fundamental es el átomo. Estos elementos se organizan en la tabla periódica y pueden clasificarse como metales, metaloides y no metales. Cada categoría presenta una química muy particular con propiedades características que permiten diferenciarlas.

 

Metales Metaloides No metales
Estado físico Sólidos a temperatura ambiente, excepto el mercurio (Hg) y el francio (Fr), que son líquidos. Sólidos a temperatura ambiente. Sólidos, como el carbono (C); líquidos, como el bromo (Br); y gaseosos, como el oxígeno (O).
Apariencia Tienen brillo metálico. La mayoría son plateados, excepto el cobre (Cu) que es rojizo y el oro (Au) que es amarillo. La mayoría tiene brillo metálico. No tienen brillo metálico. Se presentan de diversos colores: el bromo (Br) es rojo y el azufre (S) es amarillo.
Abundancia en la Tierra Baja. A pesar de que el

79 % de los elementos existentes son metales, en la Tierra éstos son los menos abundantes.

Algunos son abundantes en la corteza terrestre como el silicio (Si), y otros son muy raros de encontrar, como el polonio (Po). Alta. A pesar de que el 21 % de los elementos existentes son no metales, son los más abundantes en nuestro planeta.
Presentes en el cuerpo humano
  • Na y K: ayudan a transportar oxígeno.
  • Ca: fortalece los huesos.
  • Mg: ayuda a la coagulación de la sangre.
  • Fe: asimila el oxígeno en la sangre y produce hemoglobina.
  • Cu: combate la anemia.
  • Zn: ayuda a metabolizar carbohidratos y fortalece el sistema inmune.
Presentes en concentraciones mínimas.
  • O: indispensable para la respiración.
  • C: presente en todas la biomoléculas.
  • H: presente en casi todas las biomoléculas.
  • N: presente en las proteínas y en los ácidos nucleicos.
  • P: presente en los ácidos nucleicos, en el ATP de las moléculas. Forma dientes y huesos.
  • S: forma parte de diversas proteínas.
Propiedades mecánicas Son muy dúctiles y maleables. Son intermedios entre los metales y los no metales. No son dúctiles ni maleables. Gran parte de ellos son duros y quebradizos.
Conductividad  Son buenos conductores de electricidad y calor. Son semiconductores. Son malos conductores de electricidad y calor.
Punto de fusión y ebullición  Relativamente altos. Altos respecto a los no metales. Relativamente bajos.
Capa de valencia Átomos con capa de valencia ocupada con pocos electrones, generalmente dos o tres. Átomos con capa de valencia ocupada con tres electrones. Átomos con capa de valencia ocupada con cuatro o más electrones, excepto el helio y el hidrógeno.
Electronegatividad Baja Intermedia Alta
Reactividad Tiende a perder electrones cuando se combina con otros elementos. Se convierten en cationes. Reactividad química variada. Se pueden comportar como metales o no metales. Tienden a ganar electrones cuando se combinan con otros elementos. Se convierten en aniones.
Ubicación en la tabla periódica
Ejemplos Litio (Li), sodio (Na), cromo (Cr), cobre (Cu), plata (Ag), oro (Au), platino (Pt), calcio (Ca), mercurio (Hg), hierro (Fe) y aluminio (Al), entre otros. Boro (B), silicio (Si), germanio (Ge), arsénico (As), antimonio (Sb), polonio (Po), telurio (Te), astato (At) y selenio (Se). Hidrógeno (H), oxígeno (O), carbono (C), nitrógeno (N), azufre (S), fósforo (P), flúor (F), cloro (Cl), bromo (Br), yodo (I), neón (Ne) y Argón (Ar), entre otros.

 

Cargas eléctricas: positivas y negativas

Las cargas eléctricas son el resultado de la necesidad de dar una explicación a la repulsión y atracción que presentan determinados materiales. Las cargas negativas son los electrones, responsables de los fenómenos eléctricos.

La materia está compuesta por átomos, éstos a su vez poseen partículas subatómicas: protones, neutrones y electrones.

Según la carga de estas partículas se tiene que:

  • Los protones (p+) son positivos.
  • Los electrones (e) son negativos.
  • Los neutrones (n°) son neutros.

La electricidad y los átomos son el conjunto de conceptos que permiten comprender la interacción entre las partículas que se encuentran en los átomos. Los electrones poseen menos masa que los protones y los neutrones, esto les facilita desplazarse y escapar de sus órbitas.

CARGA ELÉCTRICA

Es una propiedad física que poseen las partículas subatómicas, esta propiedad se manifiesta mediante las fuerzas de atracción y de repulsión que presentan dichas partículas. Cuando la materia está cargada eléctricamente sufre la influencia de los campos magnéticos y también puede generarlos.

Con respecto a las cargas, se tiene que cuando se aproximan dos cargas eléctricas del mismo signo, éstas se repelen o rechazan, mientras que si son de signos contrarios se atraerán.

cargas eléctricas y modelo actual del átomo

En los modelos atómicos que se desarrollaron desde principio del siglo XIX y hasta la actualidad se ha tratado de explicar la disposición de las cargas en los átomos y sus interacciones. Actualmente se sabe que los átomos contienen en su núcleo protones y neutrones, cuyas masas son similares. Los electrones se encuentran distribuidos en una nube electrónica alrededor del núcleo.

El ámbar tiene propiedades de atracción eléctrica luego de ser frotado con tela o piel, su nombre en griego antiguo era elektrón, de allí deriva la palabra electricidad.

A principios del siglo XX se estableció que los átomos de un mismo elemento químico poseen el mismo número de protones. La cantidad de protones se representa con la letra Z y se denomina número atómico. Los átomos neutros poseen la misma cantidad de protones que electrones, en dicho caso Z=p+=e.

La suma de protones y neutrones en un átomo se representa con la letra A, que significa número másico o número de masa.

Referencia para ubicar número atómico y número másico.

Cada tabla periódica tiene un cuadro de referencias, hay que ver en dicho cuadro la ubicación de la información para poder leer los datos de cualquier elemento que se encuentre en la tabla.

Dado el elemento oxígeno, se observa que:

Z=8 (el átomo tiene 8 protones y como es un átomo neutro también tiene 8 electrones)

A=16 (el número másico se suele redondear para calcular un número entero de neutrones)

Cálculo de neutrones:

A=P++n°

16 = 8+n°

16-8 =n°

n°= 8

En este caso, el número de neutrones es 8.

Conocer estos números es indispensable para poder identificar la cantidad de partículas subatómicas que se encuentran en cada elemento.

IONES

En ocasiones, los átomos pierden o ganan electrones, cuando esto ocurre se convierte en un ión y deja de ser neutro.

Los iones pueden ser:

  • Positivos: cationes (Ej. Na+)
  • Negativos: aniones (Ej. Cl)

ISÓTOPOS

Son átomos de un mismo elemento que poseen la misma cantidad de protones en su núcleo, pero difieren en la cantidad de electrones, lo que incide en variaciones de la masa atómica. La mayoría de los elementos en la naturaleza poseen varios isótopos. Ejemplo:

En los isótopos, la cantidad de protones es la misma, varía el número de neutrones.

los cuerpos y las cargas eléctricas

La atracción y repulsión se da entre los cuerpos debido a una diferencia en las cantidades de electrones y protones que se encuentran en los mismos. Si hay un exceso de cargas positivas con respecto a las cargas negativas, el cuerpo está cargado positivamente, caso contrario estaría cargado negativamente.

CONDUCTORES Y AISLANTES

Los cables que se utilizan para transporte de energía eléctrica poseen conductores cubiertos por aisladores que por lo general son aislantes termoplásticos.

Los portadores de carga (partículas cargadas eléctricamente que se encuentran libres, con movilidad) determinan el tipo de propiedades eléctricas de un material.

Conductores: materiales en los cuales los portadores de carga se mueven con facilidad, por ejemplo, metales como la plata, el hierro, el agua salada, etc.

El cobre es un excelente conductor, ya que posee muy poca resistencia al flujo eléctrico, lo que disminuye en gran medida las pérdidas de calor.

Aislantes: estos materiales contienen portadores de carga que no se mueven con facilidad. Se denominan también aisladores y algunos de ellos son el vidrio, los plásticos, el agua pura, el azufre, la madera seca, etc.

Semiconductores: materiales que puros son buenos aislantes y en condiciones particulares buenos conductores, como el silicio y el germanio.

Superconductores: a temperatura ambiente son conductores normales, pero a temperaturas muy bajas son excelentes conductores.

a practicar lo aprendido

  1. Indicar si el siguiente par de partículas se atraen o se repelen.

2. Indicar la cantidad de protones, neutrones y electrones de los siguientes elementos:

a) Carbono

b) Flúor

3. Subrayar los cationes:

a) K+1     b) O-2    c) Mg+2     d) F-1

4. Buscar en la sopa de letras cuatro aislantes:

RESPUESTAS

  1. Las partículas se atraen porque poseen distinta carga.
  2. a) Carbono: 6 protones, 6 electrones y 6 neutrones.b) Flúor: 9 protones, 9 electrones y 10 neutrones.
  3. Subrayar o marcar los cationes:a) K+1     b) O-2    c) Mg+2     d) F-1
  4. Pista: puedes encontrar las palabras tanto de izquierda a derecha, como en diagonal y también de arriba hacia abajo o a la inversa. La palabras son: vidrio, madera, azufre y plástico.
¿Sabías qué...?
La masa del electrón es alrededor de 1.800 veces menor que la de protones y neutrones.

La electricidad

El término “electricidad” deriva del griego electrón, que significa “ámbar”, y con este nombre se ha designado a todos los fenómenos físicos relacionados con la atracción de cargas negativas o positivas y resultantes de la presencia de una corriente eléctrica. Esto se debe a que Tales de Mileto, antiguo científico y pensador griego, comprobó que si se frotaba una varilla de ámbar con lana o piel, ésta atraía objetos ligeros que volaban y se adherían a él. Ahora bien, para explicar adecuadamente la mayoría de los fenómenos asociados, debemos incluir lo que se entiende como “magnetismo”. De esta manera, podremos entender el significado de los campos magnéticos, el origen de los rayos que tanto destacan en las tormentas y toda una amplia gama de aplicaciones industriales que conocemos en la actualidad.

La electricidad o energía eléctrica se produce porque la materia que nos rodea está formada por átomos que constan, a su vez, de protones, neutrones y electrones. Los protones y electrones tienen, entonces, una propiedad que se conoce con el nombre de carga eléctrica; ésta puede ser de dos tipos:

• Los protones tienen carga eléctrica positiva.
• Los electrones tienen carga eléctrica negativa.

Normalmente, los átomos de los cuerpos tienen tantos protones como electrones, por lo que tendrán tantas cargas eléctricas positivas como negativas. Ahora bien, estas cargas se contrarrestan unas a otras para que el objeto resulte neutro. No obstante, los átomos pueden ganar o perder electrones y convertirse en iones. De esta forma, los cuerpos neutros pueden adquirir una carga eléctrica.

• Cuando los átomos ganan electrones, el cuerpo adquiere carga eléctrica negativa.
• Cuando los átomos pierden electrones, el cuerpo adquiere carga eléctrica positiva.

Un cuerpo electrizado está cargado positiva o negativamente porque ha perdido o ganado electrones. Por consiguiente, la carga eléctrica es una magnitud física, medible y cuantificable.

La electricidad se puede trasmitir de un punto a otro, conduciéndola a través de distintos objetos o materiales. En otras palabras, las cargas eléctricas pueden desplazarse de un cuerpo a otro dando lugar a lo que se denomina “corriente eléctrica”, que consiste en el desplazamiento ordenado de electrones. Para que se produzca una corriente eléctrica se necesitan:

• Electrones que puedan moverse; por ejemplo, los iones, tanto positivos como negativos, originan corrientes eléctricas.
• Sustancias conductoras por donde puedan desplazarse las cargas móviles, sean sólidas, líquidas o gaseosas.
• Finalmente, generadores y/o dispositivos que, manteniendo el desequilibrio de cargas y aportando la energía necesaria, consiguen el movimiento de dichas cargas. Son generadores las máquinas que existen en las centrales eléctricas, los dínamos que dan luz a una bicicleta o las pilas que permiten el funcionamiento de una linterna.

Si falta alguno de estos elementos, la corriente eléctrica no podrá mantenerse en un circuito. Así, cuando una pila se agota, ya no es capaz de transportar electrones desde sus bornes –éstos son las partes metálicas de una máquina o dispositivo eléctrico donde se produce la conexión con el circuito eléctrico exterior al mismo–; la corriente se interrumpe en el circuito.

En los materiales llamados conductores existen partículas con carga eléctrica negativa que pueden desplazarse. Así pues, los metales son buenos conductores de corriente eléctrica porque disponen de electrones que pueden moverse con libertad a lo largo del metal. Los mejores conductores son la plata, el cobre, el oro, el aluminio, el hierro y el plomo. En otros materiales, llamados aislantes, las cargas no pueden moverse con libertad, por lo que no se produce una corriente eléctrica. La madera, la goma, el plástico y el vidrio son buenos aislantes porque en ellos no hay electrones que tengan libertad para moverse a lo largo del material.

LA ELECTRICIDAD EN EL HOGAR

El uso de la electricidad en la vida moderna es imprescindible. Difícilmente una sociedad puede concebirse sin el uso de la electricidad. De este modo, y a través de la tecnología, la industria eléctrica ha puesto a disposición de las personas el uso de artefactos eléctricos que facilitan las labores del hogar, haciendo la vida más placentera.

Las máquinas o artefactos eléctricos que nos proporcionan comodidad en el hogar, ahorro de tiempo y disminución en la cantidad de quehaceres, se denominan electrodomésticos. Entre los más utilizados pueden citarse la cocina eléctrica, el refrigerador, la tostadora, el microondas, la licuadora y el lavarropas. Existe también otro tipo de artefactos que nos proporcionan entretenimiento y diversión, y que son también herramientas de trabajo y fuentes de información: el televisor, el equipo de sonido, los videojuegos, las computadoras, etc.

LA ELECTRICIDAD EN LA INDUSTRIA

Con todo, la necesidad de aumentar la producción de bienes a un mínimo costo obligó a reemplazar la mano de obra por maquinarias eficientes. Esto pudo llevarse a cabo en forma masiva a raíz del desarrollo de los motores eléctricos. Por ejemplo, en una empresa de bebidas gaseosas podemos observar como las correas transportadoras llevan las botellas a las máquinas tapadoras para ser llenadas y luego son transportadas para ser empacadas; estas máquinas necesitan energía eléctrica para su operación.

LA ELECTRICIDAD EN LA COMUNIDAD

Por otra parte, la electricidad en la comunidad se manifiesta a través del alumbrado público en plazas, parques, autopistas, túneles y carreteras, con el fin de proporcionar seguridad y visibilidad a los peatones y mejor desenvolvimiento del tráfico automotor en horas nocturnas; los semáforos en la vía pública permiten regular y controlar el flujo de vehículos. También en los medios de comunicación apreciamos la importancia de la electricidad, ya que el funcionamiento de la radio, televisión, cine, la emisión de la prensa, entre otros, depende en gran parte de este tipo de energía.

Por lo demás, desde que la electricidad fue descubierta, siempre estuvo al servicio de la medicina a través de los distintos instrumentos y máquinas usadas en esta área (equipos para radiaciones de cobalto, equipos de rayos X, equipos para tomografías, equipos para electrocardiogramas), y ha contribuido a numerosos avances en la ciencia e investigación.

Además, diversas herramientas y maquinarias que funcionan con electricidad son empleadas en nuestra comunidad para reparar o acondicionar nuestras urbanizaciones.

FUENTES DE ENERGÍA EN LA NATURALEZA

En la naturaleza encontramos la electricidad atmosférica, que se manifiesta a través del rayo. Este fenómeno natural contiene gran carga eléctrica y al acercarse a la tierra se transforma en energía calórica y luminosa. Ya conocemos que las nubes están formadas por un número inmenso de pequeñas gotas de agua, que forman grandes masas suspendidas en el aire. El roce de una nube con otra, o con los picos de las grandes montañas, puede hacer que éstas adquieran una carga eléctrica extraordinaria.

La nube cargada de electricidad puede ejercer sobre otras nubes, o sobre las porciones más elevadas del suelo, fenómenos de influencia, haciendo que la atracción entre cargas opuestas produzca una descarga violenta. De este modo se produce el rayo, con la consiguiente manifestación de luminosidad, que es el relámpago, y el ruido producido por la rotura de las capas de aire, que constituye el trueno.

En la naturaleza existen diversas fuentes de energía y, para convertirlas en electricidad, es necesario crear el sistema apropiado para cada fuente. Estas fuentes de energía son de dos tipos: No Renovables, como el petróleo, el gas, el carbón, el uranio, y el plutonio, y Renovables, como el agua, la luz solar, el calor y viento, etc.

A modo de conclusión, podemos decir que, a pesar de no contar aún con la tecnología suficiente para aprovechar todo el caudal energético de la electricidad, vamos camino a ello.

Los enlaces químicos

La energía de un agregado de dos o más átomos puede ser menor que la suma de las energías de esos átomos aislados y de ahí que, siguiendo la tendencia de cualquier sistema a alcanzar su estado de mínima energía, los átomos se unan unos con otros de diversos modos para formar moléculas estables. Así, sólo los gases nobles y los metales en estado de vapor están constituidos por átomos aislados.

Todas las demás sustancias están constituidas por moléculas integradas por un número de átomos que puede ir desde dos hasta cientos de miles (polímeros). En la formación del enlace químico intervienen únicamente los electrones de la última capa, los llamados electrones de valencia, que pueden ser parcialmente compartidos entre dos átomos (enlace covalente) o bien cedidos por uno a otro (enlace electrovalente). Es importante destacar que desde el punto de vista de la teoría química actual el enlace químico tiene carácter unitario, basándose siempre en compartir electrones por pares.

Las moléculas están constituidas por la unión de cierto número de átomos iguales o distintos. Se plantea, pues, la cuestión de saber cuál es el nexo que mantiene a los átomos unidos entre sí para formar moléculas. En todos los casos, este nexo se establece únicamente a partir de los electrones que forman la última capa de los átomos, los llamados electrones de valencia.

Hablaremos de cinco tipos de enlace distintos: iónico o electrovalente, covalente, metálico, de hidrógeno y covalente coordinado.

El fundamento del enlace químico es la Ley Física Fundamental según la cual todo sistema evoluciona hacia su estado de energía más bajo. Esta ley explica, por ejemplo, el hecho de que una bola que se encuentra en un recipiente cóncavo se sitúe en el punto más bajo del mismo o bien que, si dos disoluciones de distinta concentración están separadas por un tabique poroso, la concentración de ambas tienda a igualarse por migración del soluto a través del tabique.

 

Existen cinco tipos de enlaces: iónico o electrovalente, covalente, metálico, de hidrógeno y covalente coordinado.

Para poder aclarar la naturaleza de cada uno de los distintos tipos de enlace listados, antes deberemos explicar algunos conceptos importantes, en particular el concepto de ion, y formular la teoría del octete (u octeto).

Con respecto a la mayor o menor facilidad con que permiten el paso de la corriente eléctrica, los cuerpos se clasifican en:

  • Aislantes
  • Conductores:
    • de primera clase
    • de segunda clase o electrólitos

Los conductores de primera clase son aquellos que, como los metales, no se alteran con el paso de la corriente eléctrica.

Por el contrario, los conductores de segunda clase o electrólitos se descomponen cuando son atravesados por una corriente eléctrica. Los electrólitos son exclusivamente ácidos, bases o sales fundidos o disueltos en agua u otros líquidos.

El primero que formuló una explicación científica coherente de la descomposición de los electrólitos por el paso de una corriente eléctrica (electrólisis) fue Arrhenius, quien, en 1883-1887, propuso su teoría de la disociación electrolítica. Aunque inicialmente fue recibida sin entusiasmo por los medios científicos, esta teoría ha sido una de las más fecundas de la química moderna, ya que sentó las bases para el desarrollo de la electroquímica, que hoy constituye una de las bases de la química industrial.

Teoría de Arrhenius de la disociación electrolítica

Se denomina ion a un átomo o una partícula formada por varios átomos que posee una carga eléctrica debida a un defecto o un exceso de electrones planetarios. Según sea su carga eléctrica, los iones se clasifican en positivos o cationes y negativos o aniones.

De acuerdo con la teoría formulada por Arrhenius:

  1. Los electrólitos, en disolución o fundidos, se disocian parcialmente en iones dotados de carga eléctrica, siendo la carga total de los iones positivos igual a la carga total de los iones negativos; la disolución en su conjunto permanece neutra.
  2. Las sustancias químicamente análogas se disocian en los mismos iones (por ejemplo, el grupo NO3 de los nitratos, PO4 de los fosfatos o Na de las sales sódicas). La carga eléctrica del ion es igual a su valencia y es negativa para los no metales y radicales no metálicos (aniones) y positiva para los metales (cationes).

Así, por ejemplo, al disociarse electrolíticamente el cloruro de hidrógeno (un ácido), el cloruro de calcio (una sal) y el hidróxido de sodio (una base) tendremos respectivamente:

HCl  H+ (1 ion positivo) + Cl- (1 ion negativo)

CaCl2   Ca2+ (1 ion positivo) + 2Cl- (dos iones negativos)

NaOH  Na+ (1 ion positivo) + (OH)- (1 ion negativo)

Los iones positivos son más pequeños que los átomos metálicos de los que proceden (por ejemplo, el radio del ion Na+ es sólo muy poco mayor que la mitad del radio del átomo de sodio), mientras que los iones negativos son siempre mayores que los átomos de los no metales a partir de los que se han formado (por ejemplo, el radio del ion Cl- es casi el doble que el radio del átomo de cloro).

Steve August Arrehnius (1859-1927) fue un reconocido científico sueco.

Ionización

La formación de iones se explica por la cesión o admisión de electrones, generalmente en la capa más externa, por parte de un átomo. Es decir, si un átomo X acepta un electrón se rompe el equilibrio eléctrico en que se encontraba, al pasar a poseer una carga negativa más; tendremos así un ion negativo X-. Si el átomo X hubiera aceptado dos electrones estaríamos ante un ion X2-, etcétera.

Por el contrario, si un átomo X cede un electrón pasará a convertirse en un ion positivo, X+, puesto que su número de cargas negativas será entonces inferior en una unidad al número de cargas positivas del núcleo (protones); en el caso de que cediera dos electrones, se tendría el ion X2+, etcétera.

La ionización no es un fenómeno que pueda producirse únicamente a causa de la disociación de un electrólito en disolución. También por efecto del calor, las radiaciones ionizantes o el choque con otras partículas, un átomo puede perder uno o más electrones o bien absorber electrones extraños. Por ejemplo, en las capas altas de la atmósfera (ionosfera), los átomos del aire son constantemente bombardeados por radiaciones solares de alta energía, las cuales les arrancan electrones. Asimismo, los meteoritos, al atravesar la atmósfera a gran velocidad, producen un calentamiento local del aire, ionizándolo a lo largo de su trayectoria.

Un ion se forma cuando una molécula le “cede” electrones a otra.

Los iones presentes en el aire atraen el polvo y las gotitas de agua, y por esta razón se emplean iones para que actúen como núcleos de condensación con el fin de provocar artificialmente la lluvia. En un proceso esencialmente análogo, en las cámaras de ionización la observación de las trayectorias de las partículas atómicas se basa en la condensación que provocan a su paso.

En determinadas condiciones, un gas puede hallarse completamente ionizado, es decir, con todos sus átomos en defecto de electrones; en ese caso se le denomina plasma. Sin embargo, el propio plasma se encuentra en estado neutro, ya que, al hallarse íntimamente mezclados en todo el espacio ocupado, sus electrones y sus iones positivos compensan sus cargas entre sí.

Teoría del octete

Los gases nobles constituyen el grupo 0 de la Tabla Periódica. Las moléculas de estos gases son monoatómicas, ya que la característica más destacada de estos elementos es que sus átomos carecen prácticamente de capacidad para unirse con otros átomos de su misma o de otra especie.

Todos los gases nobles, a excepción del primer elemento del grupo, el helio, poseen ocho electrones en la última órbita. Este hecho llevó a considerar que ésta era la configuración electrónica más estable. Por ello, Lewis introdujo en 1916 la teoría del octete u octeto: “Cuando los átomos reaccionan entre sí tienden a adquirir la estructura electrónica del gas noble de número atómico más próximo.” Sorprendentemente, esta ingeniosa teoría se ajusta muy bien a la realidad, aunque en el momento en que fue propuesta carecía por completo de verdadera justificación teórica.

Los gases nobles son los elementos que, en las condiciones normales de la Tierra, están formados por un solo tipo de átomos.