Los compuestos químicos pueden clasificarse en dos grandes grupos: compuestos orgánicos y compuestos inorgánicos. Cada grupo presenta un conjunto de características muy particulares que hacen posible diferenciarlos fácilmente. A continuación se comparan estos dos tipos de compuestos.
Compuestos orgánicos
Compuestos inorgánicos
Base de construcción
Átomo de carbono.
Mayoría de los elementos conocidos.
Tipo de enlace
Enlace covalente.
Predomina el enlace iónico.
Isómeros
La mayoría presenta isómeros.
Muy pocos presentan isómeros, son raros.
Formación estructural
Átomos organizados en largas cadenas basadas en carbono, sobre las que se insertan otros elementos.
No es común la formación de cadenas.
Tipo de estructura
Complejas, de alto peso molecular.
Simples, de bajo peso molecular.
Solubilidad
La mayoría son insolubles en agua y solubles en solventes apolares.
La mayoría son solubles en agua e insolubles en solventes apolares.
La materia tiene propiedades características y no características. Las primeras son particulares para cada sustancia ya que dependen de la naturaleza del átomo que la constituye, por lo que permiten identificar sustancias. Entre las propiedades características de la materia están el punto de fusión y el punto de ebullición.
Punto de fusión
Punto de ebullición
¿Qué es?
Temperatura a la cual una sustancia cambia de estado sólido a líquido.
Temperatura a la cual una sustancia cambia de estado líquido a gaseoso.
Condición
Presión = 1 atm.
Presión = 1 atm.
Tipo de magnitud
Constante física.
Constante física.
Fases en equilibrio
Sólida y líquida.
Líquido y gaseoso.
¿Qué sucede durante el equilibrio?
La temperatura permanece constante a pesar de que el tiempo de calentamiento aumenta.
La temperatura permanece constante a pesar de que el tiempo de calentamiento aumenta.
¿De qué depende?
Tipo de enlace químico, polaridad e intensidad de las fuerzas de atracción intermolecualres.
Principalmente de la presión atmosférica. También influye el tipo de enlace, polaridad e intensidad de las fuerzas de atracción intermolecualres.
Los enlaces químicos son las interacciones que existen entre los átomos que conforman una molécula. Estas interacciones son de naturaleza variable, es decir, no son iguales para todos los compuestos y depende de las características propias de cada átomo que forma el enlace. Los enlaces químicos pueden ser iónicos o covalentes.
Enlace iónico
Enlace covalente
Tipo de unión
Por electrones transferidos.
Por electrones compartidos.
Átomos implicados
Metálicos con no metálicos.
No metálicos con no metálicos.
Atracción entre:
Iones (átomos con carga positiva o cationes, y átomos con carga negativa o aniones).
La principal dificultad de las definiciones de ácido y base de Brönsted y Lowry es que solo pueden aplicarse a reacciones que implican la transferencia de un protón, por lo que para que una sustancia pueda actuar como un ácido en el sentido de la definición de Brönsted-Lowry debe contener en su molécula un átomo de hidrógeno ionizable.
Sin embargo, hay muchas reacciones en las que una sustancia que de acuerdo con la teoría de Brönsted-Lowry no sería un ácido se comporta realmente como tal en el sentido más clásico del término (el de formador de sales). Así, por ejemplo, en ausencia de disolvente y, por lo tanto, sin que exista transferencia de protones, el dióxido de carbono, CO2, reacciona con un óxido básico como el óxido de calcio, CaO, para formar una sal:
CaO + CO2 CaCO3
El problema estriba esencialmente en el injustificado papel especial que la teoría de Brönsted-Lowry otorga al protón. Para superar esta dificultad, Lewis propuso en 1923 un innovador concepto de ácido y base. El nuevo punto de vista no tuvo apenas eco en el mundo científico hasta que el propio Lewis volvió a presentar sus ideas más ampliamente desarrolladas en 1938. De acuerdo con esta teoría, un ácido es toda sustancia (molecular o iónica) que puede aceptar un par de electrones, y una base toda sustancia que puede ceder un par de electrones. En otras palabras, un ácido debe tener su octeto de electrones incompleto y una base debe poseer un par de electrones solitarios. Entonces, la unión de un ácido y una base corresponde a la formación de un enlace covalente dativo o coordinado.
El concepto de base propuesto por Lewis coincide esencialmente con el de Brönsted-Lowry, ya que para que una sustancia pueda aceptar un protón (es decir, comportarse como base en el sentido de Brönsted-Lowry) debe poseer un par de electrones no compartidos. Por ejemplo, la molécula de agua, H2O, y el ion cloruro, Cl–, que pueden aceptar un protón, tienen las siguientes estructuras electrónicas:
o sea, que poseen un par de electrones no compartidos que pueden emplear para aceptar un protón, formando, respectivamente, el ion H3O+ y la molécula HCl:
Evidentemente, tanto el agua como el ion cloruro pueden comportarse como bases de Lewis cediendo un par de electrones no compartidos a un ácido. Vemos, pues, que, respecto al concepto de base de la teoría de Brönsted-Lowry, el concepto propuesto por Lewis no amplía de forma significativa el número de compuestos que pueden ser considerados como bases.
Sin embargo, el caso es radicalmente distinto para el concepto de ácido. Para empezar, hay sustancias que son ácidos de acuerdo con la definición de Brönsted-Lowry y que no lo son en el sentido de Lewis. Por ejemplo, para Lewis el HCl no es realmente un ácido sino la combinación de un ácido (H+) y una base (Cl–); ya vimos que el ion Cl– es una base tanto según la definición de Brönsted-Lowry como de Lewis y ahora justificaremos que el ion H+ es un ácido en el sentido de Lewis mediante la reacción:
H+ + H2O H3O+
En la que el H+ acepta un par de electrones de la molécula de agua para formar un ion H3O+, y se comporta por lo tanto, como un ácido. También deben ser considerados como ácidos en el sentido de Lewis los cationes metálicos, que aceptan pares de electrones al hidratarse o solvatarse. Y, volviendo a la reacción que escribimos más arriba entre el dióxido de carbono y el óxido de calcio:
CaO + CO2 CaCO3
También aquí debemos considerar que el CO2 es un ácido en el sentido de Lewis, ya que en esta reacción el átomo de carbono del CO2 acepta en covalencia dativa un par de electrones cedidos por el átomo de oxígeno del CaO:
El modelo de Lewis se utiliza en química orgánica para explicar el comportamiento catalítico de algunos compuestos que son ácidos de Lewis, pero, en general, cuando se estudian reacciones que tienen lugar en disolución acuosa o simplemente que implican una transferencia de protones, la generalización propuesta por Lewis resulta innecesaria y los químicos razonan en estos casos a partir de los conceptos de Arrhenius o de Brönsted-Lowry.
Gilbert N. Lewis (1875-1946)
Físico y químico estadounidense. Fue profesor en la Universidad de California, en la que introdujo la termodinámica como asignatura a principios de siglo. Publicó un libro de texto en 1923 que llegó a ser un libro clásico sobre termodinámica que incluía todos los avances del momento. Estudió el enlace covalente y, en 1926, propuso el nombre de fotón para el cuanto de energía electromagnética.
Una reacción-ácido base se puede observar en la vida cotidiana, como es el caso de los antiácidos que son usados para tratar la acidez en algunas personas. Su principio es sencillo, comúnmente son compuestos básicos que sirven para neutralizar la acidez de los jugos gástricos, por esta razón las reacciones ácido-base son conocidas también como reacciones de neutralización.
Conceptos básicos
Reacción química
Proceso en el cual una o varias sustancias (denominadas reactivos o reactantes) sufren una transformación en su estructura molecular y en los enlaces, de manera que originan otras sustancias diferentes o productos.
Ácido
Compuesto químico que al disolverse en agua origina un incremento en la concentración de los iones de hidrógeno.
El fisicoquímico Gilbert N. Lewis, por su parte, lo define de manera más amplia como aquella especie química capaz de aceptar un par de electrones de otra especie.
Los ácidos tienen un sabor es agrio, un ejemplo es el jugo de limón que contiene ácido cítrico, de hecho, la palabra ácido proviene del término latino acidus que significa “ágrio”.
Base
A lo largo de la historia se han realizado numerosos esfuerzos para definir a estos compuestos. Una de las definiciones más recientes es la de Lewis, que lo describe como aquella sustancia capaz de donar un par de electrones.
Las bases son resbalosas al tacto y su sabor es amargo, un ejemplo se observa en el jabón que es un tipo de base.
Reacciones ácido-base
De la misma forma en la que se han planteado diferentes definiciones para los ácidos y para las bases con el paso del tiempo, también han surgido descripciones alternativas para las reacciones de ácido-base. Uno de los primeros en estudiar a este tipo de reacciones fue el químico sueco Svante Arrhenius, quién sostenía que eran reacciones en las que los ácidos formaban cationes de hidrógeno H+ (que luego se demostró que no existen de forma aislada sino en la forma de H3O+ o ión hidronio) y las bases formaban aniones OH–.
Definición según Svante Arrhenius
Es aquella reacción química producida entre un ácido y una base para formar una sal y agua.
Cumple la siguiente forma: Ácido + base-→ sal + agua
Por ejemplo: HCl + NaOH → NaCl +H2O
Aunque la definición de Arrhenius era sencilla, tenía sus limitaciones, por ejemplo se cumplía solamente en una solución acuosa. Por esta razón, los científicos Johannes Nicolaus Brønsted y Thomas Martin Lowry plantearon una definición en función de la capacidad que tienen las bases de aceptar protones y los ácidos de cederlos, desde este punto de vista se consideran tanto al concepto planteado por Arrehnius como a las reacciones de ácido-base en soluciones no acuosas.
Definición según Johannes Nicolaus Brønsted y Thomas Martin Lowry
Reacción química en la que se elimina un catión hidrógeno del ácido el cual se adiciona posteriormente a la base.
Como fórmula general se tiene: AH + B → base conjugada + ácido conjugado
Dónde:
AH = ácido B = base
Base conjugada: ión o molécula que resulta del ácido y cede el protón.
Ácido conjugado: ión o molécula resultante de la base que gana el protón.
Por ejemplo: CH3COOH(ácido) + H2O(base)→ CH3COO−(base conjugada) + H3O+(ácido conjugado)
Posteriormente, el fisicoquímico estadounidense Gilbert N. Lewis no se fundamentó ni en la ionización en un medio acuoso planteada por Arrhenius ni en la transferencia de protones de Brønsted-Lowry, sino que por su parte analizó la transferencia de electrones que se produce en las reacciones de ácido-base. En este sentido, se define a la base como el compuesto capaz de donar un par electrónico y al ácido como el compuesto capaz de recibirlo. A través de este planteamiento se pudieron incluir sustancias que anteriormente no se consideraban en las definiciones anteriores.
Definición según Lewis
Reacción química que se produce como producto de la donación del par electrónico de la base al ácido. El resultado es un enlace covalente entre los dos compuestos.
Tiene por fórmula general: A + :B → A–—B+
Dónde:
A = ácido de Lewis
B = base de Lewis
A-—B+ = compuesto resultante
Por ejemplo: AlCl3 (ácido) + :NH3 (base)→ [Al(NH3)Cl3]
El pH
Permite indicar el grado de acidez o basicidad de soluciones acuosas, sus siglas provienen del fránces pouvoir hydrogène que significa “poder del hidrógeno” debido a que mide la concentración de iones de hidrógeno en dichas disoluciones.
Las sustancias con pH menor a 7 se consideran ácidas, por el contrario de las que tienen un pH superior a 7 que son consideradas como alcalinas.
La energía de un agregado de dos o más átomos puede ser menor que la suma de las energías de esos átomos aislados y de ahí que, siguiendo la tendencia de cualquier sistema a alcanzar su estado de mínima energía, los átomos se unan unos con otros de diversos modos para formar moléculas estables. Así, sólo los gases nobles y los metales en estado de vapor están constituidos por átomos aislados.
Todas las demás sustancias están constituidas por moléculas integradas por un número de átomos que puede ir desde dos hasta cientos de miles (polímeros). En la formación del enlace químico intervienen únicamente los electrones de la última capa, los llamados electrones de valencia, que pueden ser parcialmente compartidos entre dos átomos (enlace covalente) o bien cedidos por uno a otro (enlace electrovalente). Es importante destacar que desde el punto de vista de la teoría química actual el enlace químico tiene carácter unitario, basándose siempre en compartir electrones por pares.
Las moléculas están constituidas por la unión de cierto número de átomos iguales o distintos. Se plantea, pues, la cuestión de saber cuál es el nexo que mantiene a los átomos unidos entre sí para formar moléculas. En todos los casos, este nexo se establece únicamente a partir de los electrones que forman la última capa de los átomos, los llamados electrones de valencia.
Hablaremos de cinco tipos de enlace distintos: iónico o electrovalente, covalente, metálico, de hidrógeno y covalente coordinado.
El fundamento del enlace químico es la Ley Física Fundamental según la cual todo sistema evoluciona hacia su estado de energía más bajo. Esta ley explica, por ejemplo, el hecho de que una bola que se encuentra en un recipiente cóncavo se sitúe en el punto más bajo del mismo o bien que, si dos disoluciones de distinta concentración están separadas por un tabique poroso, la concentración de ambas tienda a igualarse por migración del soluto a través del tabique.
Para poder aclarar la naturaleza de cada uno de los distintos tipos de enlace listados, antes deberemos explicar algunos conceptos importantes, en particular el concepto de ion, y formular la teoría del octete (u octeto).
Con respecto a la mayor o menor facilidad con que permiten el paso de la corriente eléctrica, los cuerpos se clasifican en:
Aislantes
Conductores:
de primera clase
de segunda clase o electrólitos
Los conductores de primera clase son aquellos que, como los metales, no se alteran con el paso de la corriente eléctrica.
Por el contrario, los conductores de segunda clase o electrólitos se descomponen cuando son atravesados por una corriente eléctrica. Los electrólitos son exclusivamente ácidos, bases o sales fundidos o disueltos en agua u otros líquidos.
El primero que formuló una explicación científica coherente de la descomposición de los electrólitos por el paso de una corriente eléctrica (electrólisis) fue Arrhenius, quien, en 1883-1887, propuso su teoría de la disociación electrolítica. Aunque inicialmente fue recibida sin entusiasmo por los medios científicos, esta teoría ha sido una de las más fecundas de la química moderna, ya que sentó las bases para el desarrollo de la electroquímica, que hoy constituye una de las bases de la química industrial.
Teoría de Arrhenius de la disociación electrolítica
Se denomina ion a un átomo o una partícula formada por varios átomos que posee una carga eléctrica debida a un defecto o un exceso de electrones planetarios. Según sea su carga eléctrica, los iones se clasifican en positivos o cationes y negativos o aniones.
De acuerdo con la teoría formulada por Arrhenius:
Los electrólitos, en disolución o fundidos, se disocian parcialmente en iones dotados de carga eléctrica, siendo la carga total de los iones positivos igual a la carga total de los iones negativos; la disolución en su conjunto permanece neutra.
Las sustancias químicamente análogas se disocian en los mismos iones (por ejemplo, el grupo NO3 de los nitratos, PO4 de los fosfatos o Na de las sales sódicas). La carga eléctrica del ion es igual a su valencia y es negativa para los no metales y radicales no metálicos (aniones) y positiva para los metales (cationes).
Así, por ejemplo, al disociarse electrolíticamente el cloruro de hidrógeno (un ácido), el cloruro de calcio (una sal) y el hidróxido de sodio (una base) tendremos respectivamente:
HCl H+ (1 ion positivo) + Cl- (1 ion negativo)
CaCl2 Ca2+ (1 ion positivo) + 2Cl- (dos iones negativos)
NaOH Na+ (1 ion positivo) + (OH)- (1 ion negativo)
Los iones positivos son más pequeños que los átomos metálicos de los que proceden (por ejemplo, el radio del ion Na+ es sólo muy poco mayor que la mitad del radio del átomo de sodio), mientras que los iones negativos son siempre mayores que los átomos de los no metales a partir de los que se han formado (por ejemplo, el radio del ion Cl- es casi el doble que el radio del átomo de cloro).
Ionización
La formación de iones se explica por la cesión o admisión de electrones, generalmente en la capa más externa, por parte de un átomo. Es decir, si un átomo X acepta un electrón se rompe el equilibrio eléctrico en que se encontraba, al pasar a poseer una carga negativa más; tendremos así un ion negativo X-. Si el átomo X hubiera aceptado dos electrones estaríamos ante un ion X2-, etcétera.
Por el contrario, si un átomo X cede un electrón pasará a convertirse en un ion positivo, X+, puesto que su número de cargas negativas será entonces inferior en una unidad al número de cargas positivas del núcleo (protones); en el caso de que cediera dos electrones, se tendría el ion X2+, etcétera.
La ionización no es un fenómeno que pueda producirse únicamente a causa de la disociación de un electrólito en disolución. También por efecto del calor, las radiaciones ionizantes o el choque con otras partículas, un átomo puede perder uno o más electrones o bien absorber electrones extraños. Por ejemplo, en las capas altas de la atmósfera (ionosfera), los átomos del aire son constantemente bombardeados por radiaciones solares de alta energía, las cuales les arrancan electrones. Asimismo, los meteoritos, al atravesar la atmósfera a gran velocidad, producen un calentamiento local del aire, ionizándolo a lo largo de su trayectoria.
Los iones presentes en el aire atraen el polvo y las gotitas de agua, y por esta razón se emplean iones para que actúen como núcleos de condensación con el fin de provocar artificialmente la lluvia. En un proceso esencialmente análogo, en las cámaras de ionización la observación de las trayectorias de las partículas atómicas se basa en la condensación que provocan a su paso.
En determinadas condiciones, un gas puede hallarse completamente ionizado, es decir, con todos sus átomos en defecto de electrones; en ese caso se le denomina plasma. Sin embargo, el propio plasma se encuentra en estado neutro, ya que, al hallarse íntimamente mezclados en todo el espacio ocupado, sus electrones y sus iones positivos compensan sus cargas entre sí.
Teoría del octete
Los gases nobles constituyen el grupo 0 de la Tabla Periódica. Las moléculas de estos gases son monoatómicas, ya que la característica más destacada de estos elementos es que sus átomos carecen prácticamente de capacidad para unirse con otros átomos de su misma o de otra especie.
Todos los gases nobles, a excepción del primer elemento del grupo, el helio, poseen ocho electrones en la última órbita. Este hecho llevó a considerar que ésta era la configuración electrónica más estable. Por ello, Lewis introdujo en 1916 la teoría del octete u octeto: “Cuando los átomos reaccionan entre sí tienden a adquirir la estructura electrónica del gas noble de número atómico más próximo.” Sorprendentemente, esta ingeniosa teoría se ajusta muy bien a la realidad, aunque en el momento en que fue propuesta carecía por completo de verdadera justificación teórica.