La adición es una de las cuatro operaciones básicas que utilizamos de forma habitual y se caracteriza porque nos permite añadir una cantidad a otra. Los términos de la adición son los sumandos y la suma. Para resolver adiciones usamos el algoritmo de la suma que consiste ordenar los sumando de manera que las unidades de mil, las centenas, las decenas y las unidades se encuentren en una misma columna. Si la suma de una columna es un número de dos cifras (mayor a 9), se coloca el valor de la segunda cifra y el valor de la primera se suma al resultado de la siguiente columna a la izquierda. Esta operación cumple varias propiedades como la conmutativa, la asociativa y la del elemento neutro.
SUSTRACCIÓN
La sustracción es una operación matemática que consiste en quitar o restar una cantidad a otra para determinar la diferencia. Esta operación es inversa a la suma y está formada por el minuendo, elsustraendo y la diferencia. El minuendo es la cantidad a la que se le va a restar, el sustraendo es la cantidad que se resta y la diferencia es el resultado de la sustracción. En la sustracciones los números se agrupan en columnas al igual que en la adición. Si el minuendo es mayor al sustraendo restamos de forma convencional. En caso contrario, debemos desagrupar la cifra de la columna siguiente y canjear un valor posicional.
OPERACIONES COMBINADAS
Las operaciones combinadas son aquellas en las que aparecen varias cálculos aritméticos. Para este tipo de problemas resolvemos primero las operaciones que están entre paréntesis y luego resolvemos las operaciones en el orden que aparecen de izquierda a derecha. En caso de que la operación combinada no tenga paréntesis resolvemos de acuerdo al orden que aparecen los términos de izquierda a derecha.
multiplicación
La multiplicación es sumar un mismo números tantas veces como indique otro. Por esta razón, esta operación se encuentra estrechamente relacionada con la adición. De hecho, toda adición iterada (adición que posee todos sus sumandos iguales) puede ser representada a través de la multiplicación. Su elementos principales son los factores y el producto. Los primeros son los números que se multiplican y el segundo corresponde al resultado. Para multiplicaciones de una cifra se ordenan los factores de forma vertical, se multiplica la unidad del segundo factor por la unidad del primero y luego se anota el resultado en la parte inferior, después se multiplica la unidad del segundo factor por la decena del primero y se anota el resultado.
división
La división es una operación matemática que consiste en realizar reparticiones equitativas o formar grupos con la misma cantidad de elementos. Es una operación inversa a la multiplicación y puede considerarse una sustracción sucesiva. Los elementos de la división son el dividendo, el divisor, el cociente y el residuo o resto. El dividendo es la cantidad que se va a repartir, el divisor es la cantidad en la que se va a dividir, el cociente es el resultado y el residuo o resto es la parte que no se puede dividir. Para resolver divisiones buscamos un número que al ser multiplicado por el divisor sea igual o cercano al valor del dividendo.
La división es una de las cuatro operaciones básicas de las matemáticas y consiste en repartir un número en varias partes iguales. Cada vez que compartimos nuestros dulces hacemos una división. Esta operación está muy relacionada con la resta y con la multiplicación. A continuación, aprenderás a hacer divisiones de números con una, dos o tres cifras.
LA DIVISIÓN y su relación con la sustracción
La división es una operación matemática que consiste en realizar reparticiones equitativas o formar grupos con la misma cantidad de elementos. Es una operación inversa a la multiplicación y puede considerarse una sustracción sucesiva.
La división a través de sustracciones sucesivas es una manera fácil de llegar a un resultado. Hay que recordar que la división tiene que ver con la resta y juntas tienen varias aplicaciones.
– Ejemplo:
Si deseamos repartir 8 magdalenas de 2 en 2, ¿cuántas personas tendrán magdalenas?
Este problema lo podemos representar como una resta sucesiva:
Observa que se hicieron 4 restas de 2 hasta llegar a cero (0). Por lo tanto, 4 personas tendrá 2 magdalenas cada una.
Este proceso, también lo podemos representar como una división y decir que 8 ÷ 2 = 4 porque se puede restar 4 veces 2 al número 8.
– Otro ejemplo:
30 ÷ 5 = ?
Restas
30 − 5 = 25
25 − 5 = 2
20 − 5 = 15
15 − 5 = 10
10 − 5 = 0
5 − 5 = 0
Cantidad de veces que se hace la resta
1
2
3
4
5
6
Entonces, 30 ÷ 5 = 6 porque se puede restar 6 veces 5 al 30.
Las divisiones simbólicamente se puede expresar de la siguiente manera:
En todos los casos se lee “treinta entre cinco igual a seis”.
Elementos de la división
Los términos de la división son el dividendo, el divisor, el cociente y el residuo o resto.
El dividendo es la cantidad que se desea repartir en partes iguales; el divisor es la cantidad entre la cual se divide y el cociente es el resultado de la operación. La cantidad que no se logra dividir es el residuo, también llamado resto; y debe ser menor que el divisor.
Divisiones exactas e inexactas
Cuando el residuo es igual a cero, podemos decir que la división se realizó equitativamente sin sobrar elementos, por lo que es exacta; pero si el residuo es distinto de cero, se considera que la división es inexacta por sobrar elementos sin dividir o agrupar.
¿Cómo resolver divisiones?
1. Colocamos a la izquierda al dividendo y dentro de la caja de división colocamos al divisor.
2. Luego, seleccionamos del dividendo una cifra que sea mayor o igual al divisor, para esto se comienza por la cifra de mayor orden. En este caso no hay un número que multiplicado por 5 resulte 3, por lo que seleccionamos una cifra más para dividir, es decir, 35.
3. Luego, buscamos un número que multiplicado por 5 nos de cómo resultado 35 o un número cercano a ese valor. Para esto es necesario emplear las tablas de multiplicación. Se sabe que 5 × 7 = 35, por lo tanto:
4. Encontramos que al multiplicar 5 por 7 da como resultado 35; entonces colocamos el 7 debajo del 5, restamos el producto obtenido de multiplicar el cociente por el divisor y lo escribimos en el resto. En este caso el resto es cero (0), por lo tanto, es una división exacta.
– Otro ejemplo:
1. Colocamos a la izquierda al dividendo y dentro de la caja de división colocamos al divisor.
2. Luego, seleccionamos del dividendo una cifra que sea mayor o igual al divisor, para esto se comienza por la cifra de mayor orden. En este caso no hay un número que multiplicado por 4 resulte 3, por lo que seleccionamos una cifra más para dividir, el 36.
3. Luego, buscamos un número que multiplicado por 4 de cómo resultado 36 o un número cercano a ese valor. Para esto es necesario emplear las tablas de multiplicación. Sabemos que 4 × 9 = 36, por lo tanto:
Encontramos que al multiplicar 4 por 9 da como resultado 36; entonces colocamos el 9 debajo del 4, restamos el producto obtenido de multiplicar el cociente por el divisor y lo escribimos en el resto.
4. Realizamos una nueva selección y repetimos los pasos hasta agotar las cifras del dividendo, en este caso solo nos resta el 5, lo bajamos y colocamos junto al resto obtenido anteriormente. Observa:
5. Buscamos un número que multiplicado por 4 de cómo resultado 5 o un número cercano a ese valor. Para esto es necesario emplear las tablas de multiplicación. Sabemos que 4 × 1 = 4, por lo tanto:
Encontramos que al multiplicar 4 por 1 da como resultado 4; entonces se coloca el 1 en el cociente, restamos el producto obtenido de multiplicar el cociente por el divisor y lo escribimos en el resto. Esto da como resultado 1, por lo tanto; la división es inexacta.
¿Sabías qué?
Al momento de resolver divisiones se busca el número que multiplicado por el divisor es igual al dividendo, de esta manera se obtiene el cociente.
SITUACIONES DE REPARTO EQUITATIVO
Cuando una cantidad de elementos se reparte en grupos iguales, se puede conocer la cantidad de elementos de cada grupo por medio de la división.
Cantidad de elementos ÷ cantidad de grupos = cantidad de elementos por grupo
Por ejemplo, tenemos una canasta con 12 manzanas y debemos repartirlas en 4 canastas equitativamente.
12 manzanas repartidas en 4 canastas corresponden a 3 manzanas por canasta.
12 ÷ 4 = 3
– Otro ejemplo:
25 esferas azules repartidas en 5 partes iguales.
25 esferas azules, repartidas en 5 partes iguales, corresponden a 5 esferas en cada parte.
25 ÷ 5 = 5
Para repartir en partes iguales una cantidad de elementos puedes poner un elemento por grupo hasta que se terminen de repartir todos los elementos.
SITUACIONES DE REPARTO POR MEDIDA
Cuando se conoce la cantidad total de elementos que se repartieron en grupos de medidas iguales se puede obtener la cantidad de grupos por medio de la división.
Cantidad de elementos ÷ cantidad de elementos por grupo = cantidad de grupos
– Ejemplo:
Una maestra de tercer grado ha pedido a sus alumnos que lleven un artículo de periódico para realizar un trabajo en clase. De 24 alumnos que conforman la sección, solo la mitad llevó el artículo. La maestra tuvo que formar grupos de 2 niños para realizar la actividad. ¿Cuántos grupos formó la maestra?
La maestra formó 12 grupos de 2 alumnos cada uno.
24 ÷ 2 = 12
– Otro ejemplo:
En una biblioteca hay 18 libros, en cada tramo caben 6, ¿cuántos tramos se necesitan para guardarlos todos?
Para organizar los 18 libros se necesitan 3 tramos con 6 libros cada uno.
18 ÷ 6 = 3
¿Sabías qué?
A principio del siglo XVII, John Napier diseñó un tablero para multiplicar y dividir conocido como “los huesos de Napier”.
RELACIÓN ENTRE LA MULTIPLICACIÓN Y LA DIVISIÓN
La división es la operación inversa a la multiplicación, pero con la multiplicación se puede comprobar el resultado de una división al multiplicar el cociente obtenido por el divisor, el resultado de esta multiplicación debe ser igual al dividendo. Entonces:
dividendo = cociente × divisor
Si la división es inexacta, se aplica el mismo procedimiento y se le suma el resto o residuo. Ejemplo:
¡A practicar!
1. Resuelve las siguientes divisiones a través de restas sucesivas.
a) 12 ÷ 4
Solución
1
2
3
Cociente
12 − 4 = 8
8 − 4 = 4
4 − 4 = 0
3
12 ÷ 4 = 3
b) 49 ÷ 7
Solución
1
2
3
4
5
6
7
Cociente
49 − 7 = 42
42 − 7 = 35
35 − 7 = 28
28 − 7 = 21
21 − 7 = 14
14 − 7 = 7
7 − 7 = 0
7
49 ÷ 7 = 7
c) 54 ÷ 9
Solución
1
2
3
4
5
6
Cociente
54 − 9 = 45
45 − 9 = 36
36 − 9 = 27
27 − 9 = 18
18 − 9 = 9
9 − 9 = 0
6
54 ÷ 9 = 6
2. Efectúa las siguientes divisiones.
a) 88 ÷ 4
Solución
88 ÷ 4 = 22
b) 25 ÷ 3
Solución
25 ÷ 3 = 8 y resto = 1
c) 41 ÷ 6
Solución
41 ÷ 6 = 6 y resto = 5
3. Escribe y resuelve la división que representa cada situación de reparto equitativo.
a) Julián tiene 16 caramelos y quiere repartirlos por igual entre sus 4 amigos, ¿cuántos caramelos le corresponden a cada uno de sus amigos?
Solución
16 ÷ 4 = 4
A cada amigo le corresponden 4 caramelos.
b) Patricia debe empacar por igual 15 vestidos en 5 cajas. ¿Cuántos vestidos tendrá cada caja?
Solución
15 ÷ 5 = 3
Tendrá 3 vestidos por caja.
c) Leonardo tiene 36 naranjas y debe colocarlas en 6 cestos por igual. ¿Cuántas naranja debe colocar en cada cesto?
Solución
36 ÷ 6 = 6
Debe colocar 6 naranjas por cesto.
4. Escribe y resuelve la división que representa cada situación de reparto por medida.
a) Lucía tiene 45 galletas, si las guarda en pequeñas cajas en las que caben 9 galletas, ¿cuántas cajas necesita?
Solución
45 ÷ 9 = 5
Lucía necesita 5 cajas.
b) Felipe el panadero desea hornear 24 pastelitos, si caben 8 pastelitos en cada bandeja, ¿cuántas bandejas necesitará Felipe?
Solución
24 ÷ 8 = 3
Felipe necesitará 3 bandejas.
c) Alicia tiene 50 libros. Si guarda 10 libros en cada una de las repisas de un mueble. ¿Cuántas repisas del mueble ocupa para guardar todos sus libros?
Solución
50 ÷ 10 = 5
Alicia ocupa 5 repisas del mueble para guardar todos sus libros.
RECURSOS PARA DOCENTES
Artículo “Divisiones por dos o más cifras”
El siguiente material trata sobre las divisiones desde un enfoque del método tradicional y del método del algoritmo desplegado de la división.
En este artículo se explica cómo resolver divisiones a través del método americano, uno de los más usados en países de Centroamérica, México y los Estados Unidos.