CAPÍTULO 2 / TEMA 6 (REVISIÓN)

OPERACIONES NUMÉRICAS | ¿qué aprendimos?

ADICIÓN

La adición es una de las cuatro operaciones básicas que utilizamos de forma habitual y se caracteriza porque nos permite añadir una cantidad a otra. Los términos de la adición son los sumandos y la suma. Para resolver adiciones usamos el algoritmo de la suma que consiste ordenar los sumando de manera que las unidades de mil, las centenas, las decenas y las unidades se encuentren en una misma columna. Si la suma de una columna es un número de dos cifras (mayor a 9), se coloca el valor de la segunda cifra y el valor de la primera se suma al resultado de la siguiente columna a la izquierda. Esta operación cumple varias propiedades como la conmutativa, la asociativa y la del elemento neutro.

La propiedad conmutativa explica que no importa cómo ordenemos los sumandos, el resultado es siempre el mismo.

SUSTRACCIÓN

La sustracción es una operación matemática que consiste en quitar o restar una cantidad a otra para determinar la diferencia. Esta operación es inversa a la suma y está formada por el minuendo, el sustraendo y la diferencia. El minuendo es la cantidad a la que se le va a restar, el sustraendo es la cantidad que se resta y la diferencia es el resultado de la sustracción. En la sustracciones los números se agrupan en columnas al igual que en la adición. Si el minuendo es mayor al sustraendo restamos de forma convencional. En caso contrario, debemos desagrupar la cifra de la columna siguiente y canjear un valor posicional.

Una forma de comprobar una sustracción es sumar el sustraendo y la diferencia, el resultado debe ser igual al minuendo.

OPERACIONES COMBINADAS

Las operaciones combinadas son aquellas en las que aparecen varias cálculos aritméticos. Para este tipo de problemas resolvemos primero las operaciones que están entre paréntesis y luego resolvemos las operaciones en el orden que aparecen de izquierda a derecha. En caso de que la operación combinada no tenga paréntesis resolvemos de acuerdo al orden que aparecen los términos de izquierda a derecha.

Los cálculos mentales permiten resolver operaciones sin usar herramientas como un lápiz, una hoja o una calculadora.

multiplicación

La multiplicación es sumar un mismo números tantas veces como indique otro. Por esta razón, esta operación se encuentra estrechamente relacionada con la adición. De hecho, toda adición iterada (adición que posee todos sus sumandos iguales) puede ser representada a través de la multiplicación. Su elementos principales son los factores y el producto. Los primeros son los números que se multiplican y el segundo corresponde al resultado. Para multiplicaciones de una cifra se ordenan los factores de forma vertical, se multiplica la unidad del segundo factor por la unidad del primero y luego se anota el resultado en la parte inferior, después se multiplica la unidad del segundo factor por la decena del primero y se anota el resultado.

Al multiplicar un número por la unidad seguida de cero se añade a la derecha de este la misma cantidad de ceros que acompañen a la unidad.

división

La división es una operación matemática que consiste en realizar reparticiones equitativas o formar grupos con la misma cantidad de elementos. Es una operación inversa a la multiplicación y puede considerarse una sustracción sucesiva. Los elementos de la división son el dividendo, el divisor, el cociente y el residuo o resto. El dividendo es la cantidad que se va a repartir, el divisor es la cantidad en la que se va a dividir, el cociente es el resultado y el residuo o resto es la parte que no se puede dividir. Para resolver divisiones buscamos un número que al ser multiplicado por el divisor sea igual o cercano al valor del dividendo.

Cada vez que compartimos alimentos hacemos una división, por ejemplo, esta pizza se dividió en 6 porciones, lo que es igual a 1 ÷ 6.

CAPÍTULO 4 / TEMA 2

rADICALES

Seguramente ya conoces qué es la potenciación, pero ¿sabías que hay otro tipo de operación muy relacionada con ella? Esta es la radicación y consiste en encontrar un número que al multiplicarse por sí mismo tenga como producto otro número determinado. La radicación es la operación inversa a la potenciación. Hoy aprenderás qué es y cómo calcularla.

¿Qué es la radicación?

Es una operación en la que hallamos raíces de orden n de un determinado número. La raíz n-ésima de un número a es igual a un número b que elevado a la n resulta en a.

\boldsymbol{\sqrt[n]{a} = b\; \; \Leftrightarrow \; \; b^{n}=a}

Ejemplo:

\boldsymbol{\sqrt[3]{8} = 2}\; \; porque\; \; \boldsymbol{ 2^{3}= 2\times 2\times 2 = 8}

\boldsymbol{\sqrt[3]{27} = 3}\; \; porque\; \; \boldsymbol{ 3^{3} = 3\times 3\times 3 =27}

Como ves, la radicación y la potenciación tienen mucho en común, incluso en sus elementos. De modo que también podemos expresar a un radical como una potencia de exponente fraccionario.

\boldsymbol{\sqrt[n]{a^{x}} = a^{\frac{x}{n}}}

Ejemplo:

\boldsymbol{\sqrt[3]{8} = 8^{\frac{1}{3}}}

\boldsymbol{\sqrt[3]{27} = 27^{\frac{1}{3}}}

Relación entre potenciación y radicación

Existe una gran relación complementaria entre la potenciación y la radicación, y la podemos observar con la semejanza que existe entre los elementos que la componen.

  • Al exponente de la potencia se lo llama índice de radical.
  • Al resultado denominado potencia se lo llama raíz.
  • A la base de la potencia se la llama radicando.

Elementos de los radicales

Al igual que en la potenciación, aquí existen 3 elementos a definir que son los que componen la radicación:

  • Índice (n): orden de la raíz que se aplica al radicando. Indica cuántas veces multiplicamos un número por sí mismo para obtener el radicando.
  • Radicando (a): número sometido a la raíz del orden determinado por el índice.
  • Raíz (b): resultado de la radicación, el cual elevado al orden de la raíz da como resultado el radicando.

¿Sabías qué?
Si el radicando es un número negativo, y el índice es par, no podrá aplicarse la operación de radicación porque el resultado no pertenecerá a los reales.

Raíces cuadradas y cúbicas

De la misma manera que en la potenciación, cuando el índice de la raíz es n = 2 y n = 3 merece una distinción. Por lo tanto, a estos los vamos a denominar como raíz cuadrada y cúbica, respectivamente.

La raíz cuadrada es aquella cuyo índice es 2. No es necesario escribir el índice de la raíces cuadradas. Por ejemplo:

\boldsymbol{\sqrt[2]{9}=\sqrt{9}}     Se lee “raíz cuadrada de nueve”.

La raíz cúbica es aquella cuyo índice es 3. Por ejemplo:

\boldsymbol{\sqrt[3]{8}}     Se lee “raíz cúbica de 8”.

Para encontrar la solución de un radical se debe pensar: ¿qué número habrá que elevar al índice n para que el resultado sea el valor del radicando? Ese número será el resultado denominado como raíz. Por ejemplo, para resolver √9 se debe pensar: ¿qué número debo elevar al cuadrado (n = 2) para que el resultado sea 9?. La respuesta es 3.

Solución de raíces

La solución de una raíz depende principalmente del radicando y del índice de la raíz. En algunas ocasiones puede tener una o dos soluciones y, en otros casos, puede que no tenga solución.

  • Radicando mayor que cero con n par.

Hay dos soluciones: una positiva y una negativa.

\boldsymbol{\sqrt{4}=\pm 2}\; \; porque \; \; \boldsymbol{(-2)^{2}=4\; \; y\; \; 2^{2}=4}

  • Radicando mayor que cero con n impar.

Hay una solución positiva.

\boldsymbol{\sqrt[3]{125}=5}\; \; porque \; \; \boldsymbol{5^{3}=5\times 5\times 5=125}

  • Radicando menor que cero con n par.

No tiene solución dentro de los números reales.

\boldsymbol{\sqrt{-9}=}no \; existe \; en\; \mathbb{R}

  • Radicando menor que cero con n impar.

Hay una sola negativa.

\boldsymbol{\sqrt[3]{-64} = -4} \; \; porque\; \; \boldsymbol{(-4)^{3}= -4\times -4\times -4 = -64}

[/su_note]

– Ejemplos de raíces:

\boldsymbol{\sqrt{4} = 2}

\boldsymbol{\sqrt{9} = 3}

\boldsymbol{\sqrt[3]{1}=1}

\boldsymbol{\sqrt[3]{27}=3}

\boldsymbol{\sqrt[4]{16}=2}

¿Sabías qué?
Cuando el índice de potencia es una fracción se puede expresar como un radical. Por ejemplo: 91/3 3√9

¡A practicar!

¿Cuál es el resultado de los siguientes ejercicios?

  • \boldsymbol{\sqrt{25}}

Solución

\boldsymbol{\sqrt{25}=5}\; \; porque \; \; \boldsymbol{5^{2}= 5\times 5 = 25}

  • \boldsymbol{\sqrt[3]{64}}

Solución

\boldsymbol{\sqrt[3]{64}= 4}\; \; porque \; \; \boldsymbol{4^{3}=4\times 4\times 4=64}

  • \boldsymbol{\sqrt[5]{-32}}

Solución

\boldsymbol{\sqrt[5]{-32}=-2} \; \; porque\; \; \boldsymbol{(-2)^{5}=-2\times -2\times -2\times -2\times -2=-32}

La radicación es la operación opuesta a la potenciación y consiste en hallar raíces de orden n de un determinado número. Consta de tres elementos llamados índice, radicando y raíz. El símbolo usado para mostrar esta operación se lo conoce como raíz o radical y el primero en utilizarlo fue el matemático Christoph Rudolff en 1525.

Raíces exactas e inexactas

La raíz cuadrada exacta es aquella que tiene como radicando un cuadrado perfecto, mientras que la raíz cuadrada inexacta es la que no tiene como radicando un cuadrado perfecto.

Cuadrados perfectos

Un cuadrado perfecto resulta de multiplicar un número por sí mismo dos veces. Estos números los podemos ordenar en un cuadrado, por ejemplo, 9 es un cuadrado perfecto porque lo podemos escribir como 3 x 3 y lo ordenamos como:

En esta tabla verás la relación de los diez primeros cuadrados perfectos con sus raíces:

Cuadrado perfecto Raíz cuadrada exacta
1^{2}=1 \sqrt{1}=1
2^{2}=4 \sqrt{4}=2
3^{2}=9 \sqrt{9}=3
4^{2}=16 \sqrt{16}=4
5^{2}=25 \sqrt{25}=5
6^{2}=36 \sqrt{36}=6
7^{2}=49 \sqrt{49}=7
8^{2}=64 \sqrt{64}=8
9^{2}=81 \sqrt{81}=9
10^{2}=100 \sqrt{100}=10

Pero no todos los números tienen raíces cuadradas exactas. En esos casos, calculamos la raíz cuadrada entera y luego contamos el resto. Por ejemplo, 55 no tiene raíz cuadrada exacta porque 72 = 49 y 82 = 64.

Por aproximación o tanteo, decimos que la raíz cuadrada entera de 55 es 7 y el resto lo obtenemos por la resta 55 − 49 = 6.

Entonces, \sqrt{55} = 5\; \; y\; resto \; 6.

¡A practicar!

1. ¿Qué tipo de raíz dará como resultado cada uno de los siguientes ejercicios?

  • \sqrt{121}

Solución
Raíz exacta.
  • \sqrt{13}

Solución
Raíz inexacta.
  • \sqrt{125}

Solución
Raíz inexacta.
  • \sqrt{70}

Solución
Raíz inexacta

2. Completa.

  • 5^{2}=\underline{\: \: \: \: \: \: }\Leftrightarrow \sqrt{25}=\underline{\: \: \: \: \: \: }
Solución

5^{2}=\boldsymbol{25}\Leftrightarrow \sqrt{25}=\boldsymbol{5}

  • 10^{2}=\underline{\: \: \: \: \: \: }\Leftrightarrow \sqrt{100}=\underline{\: \: \: \: \: \: }
Solución

10^{2}=\boldsymbol{100}\Leftrightarrow \sqrt{100}=\boldsymbol{10}

  • 12^{2}=\underline{\: \: \: \: \: \: }\Leftrightarrow \sqrt{144}=\underline{\: \: \: \: \: \: }
Solución

12^{2}=\boldsymbol{144}\Leftrightarrow \sqrt{144}=\boldsymbol{12}

  • 13^{2}=\underline{\: \: \: \: \: \: }\Leftrightarrow \sqrt{169}=\underline{\: \: \: \: \: \: }
Solución

13^{2}=\boldsymbol{169}\Leftrightarrow \sqrt{169}=\boldsymbol{13}

3. Resuelve las siguientes raíces cuadradas.

  • \sqrt{400}
Solución

\sqrt{400}=\boldsymbol{20}

  • \sqrt{70}
Solución

\sqrt{70}= \boldsymbol{8} \; y \; resto\; \boldsymbol{6}

  • \sqrt{625}
Solución

\sqrt{625}=\boldsymbol{25}

  • \sqrt{17}
Solución

\sqrt{17}= \boldsymbol{4}\; y\; resto \; \boldsymbol{1}

  • \sqrt{81}
Solución

\sqrt{81}=\boldsymbol{9}

RECURSOS PARA DOCENTES

Artículo “La radicación”

En es artículo encontrará los aspectos inherentes a la radicación y encontrará una introducción a las propiedades de radicación y potenciación.

VER

Artículo “Cálculo de una raíz cuadrada”

Este recurso le permitirá profundizar sobre las raíces cuadradas y cómo calcularla paso a paso sin calculadora.

VER

CAPÍTULO 2 / TEMA 4

fracciones

SI TIENES UN ALFAJOR Y DESEAS COMPARTIRLO CON UN AMIGO ¿CÓMO LO REPARTES? LO PARTES A LA MITAD ¿CIERTO? ES NORMAL QUE DIVIDAMOS ALIMENTOS PARA COMPARTIR Y PARA ESTOS CASOS USAMOS UN TIPO ESPECIAL DE NÚMEROS: LAS FRACCIONES. SON MÁS COMUNES DE LO QUE PIENSAS Y HOY APRENDERÁS A REPRESENTARLAS.

¿EN CUÁNTOS PEDAZOS ESTÁ CORTADO ESTE PASTEL? PARA RESPONDER ESTA PREGUNTA SOLO TENEMOS QUE CONTAR DE 1 EN 1: 1, 2, 3, …¡ESTÁ CORTADA EN 10 PEDAZOS! ESOS SON NÚMEROS NATURALES. PERO SI COMEMOS UNA DE ESAS PARTES ¿CÓMO REPRESENTARÍAS ESA CANTIDAD? EN ESTE CASO TENEMOS QUE USAR FRACCIONES: NÚMEROS QUE NOS AYUDAN A EXPRESAR PARTES DE UN TODO.

LA FRACCIÓN Y SUS ELEMENTOS

UNA FRACCIÓN ES UN NÚMERO QUE REPRESENTA LA PARTE O LAS PARTES QUE SE HAN TOMADO DE UN TODO CUANDO EL TODO ESTÁ DIVIDIDO EN PARTES IGUALES.

– EJEMPLO 1:

¿EN CUÁNTAS PARTES ESTÁ DIVIDIDA ESTA FIGURA?, ¿CUÁNTAS PARTES ESTÁN PINTADAS?

ESTE CUADRADO ESTÁ DIVIDIDO EN 4 PARTES IGUALES. UNA SOLA PARTE ESTÁ PINTADA.

¿QUÉ NÚMERO USARÍAS PARA REPRESENTAR QUE UNA PARTE SE HA TOMADO DE 4 PARTES IGUALES? PARA ESO ESTÁN LAS FRACCIONES, LAS CUALES SIEMPRE TIENEN DOS ELEMENTOS: UN NUMERADOR Y UN DENOMINADOR.

  • EL NUMERADOR ES IGUAL A LA CANTIDAD DE PARTES QUE SE TOMARON DEL TODO.
  • EL DENOMINADOR ES IGUAL A LA CANTIDAD DE PARTES EN LAS QUE SE HA DIVIDO EL ENTERO.

AMBOS ELEMENTOS SE COLOCAN UNO SOBRE OTRO CON UNA RAYA EN EL MEDIO, OBSERVA:

EN ESTE EJEMPLO, EL 1 ES EL NUMERADOR PORQUE REPRESENTA LA CANTIDAD DE PARTES QUE SE TOMARON DEL TODO Y EL 4 ES EL DENOMINADOR PORQUE REPRESENTA LA CANTIDAD DE PARTES EN LA QUE SE DIVIDIÓ AL TODO.


– EJEMPLO 2:

¿EN CUÁNTAS PARTES SE DIVIDIÓ EL CÍRCULO?

EN 5 PARTES. EL DENOMINADOR ES 5.

 

¿CUÁNTAS PARTES ESTÁN PINTADAS?

2 PARTES ESTÁN PINTADAS. EL NUMERADOR ES 2.

 

¿QUÉ FRACCIÓN REPRESENTA ESTE GRÁFICO?

\boldsymbol{\frac{2}{5}}

 


– EJEMPLO 3:

¿EN CUÁNTAS PARTES SE DIVIDIÓ EL RECTÁNGULO?

EN 8 PARTES. EL DENOMINADOR ES 8.

 

¿CUÁNTAS PARTES ESTÁN PINTADAS?

3 PARTES ESTÁN PINTADAS. EL NUMERADOR ES 3.

 

¿QUÉ FRACCIÓN REPRESENTA ESTE GRÁFICO?

\boldsymbol{\frac{3}{8}}


LAS FRACCIONES SON MUY UTILIZADAS EN LA VIDA COTIDIANA. EXISTEN SITUACIONES COMUNES DONDE PODEMOS ENCONTRARLAS, POR EJEMPLO, CUANDO PEDIMOS MEDIO KILOGRAMO DE PAN O CUANDO COMEMOS PIZZA. IMAGINA QUE LA PIZZA ES EL TODO Y ESTÁ PICADA EN 4 PARTES IGUALES; SI NOS COMEMOS UN TROZO ES IGUAL A DECIR QUE NOS COMIMOS 1/4 DE PIZZA.
¿SABÍAS QUÉ?
LAS FRACCIONES TAMBIÉN SE PUEDEN REPRESENTAR CON UNA DIAGONAL, ES DECIR, \boldsymbol{\frac{1}{4}} ES IGUAL A 1/4.

¿CÓMO GRAFICAR FRACCIONES?

SI QUEREMOS GRAFICAR UNA FRACCIÓN COMO \boldsymbol{\frac{5}{6}} DEBEMOS SEGUIR ESTOS PASOS:

1. DIBUJAMOS UNA FIGURA GEOMÉTRICA. POR EJEMPLO, UN RECTÁNGULO.

2. DIVIDIMOS EL RECTÁNGULO EN TANTAS PARTES COMO INDIQUE EL DENOMINADOR. EN ESTE CASO EL DENOMINADOR ES 6, ASÍ QUE LO DIVIDIMOS EN 6 PARTES IGUALES.

3. PINTAMOS LA CANTIDAD DE PARTES QUE INDIQUE EL NUMERADOR. AQUÍ PINTAMOS 5 PARTES. ¡ESE SERÁ EL GRÁFICO DE LA FRACCIÓN!

¡ES TU TURNO!

GRAFICA ESTAS FRACCIONES. DIBUJA UN CÍRCULO COMO EL TODO.

  • \boldsymbol{\frac{1}{3}}
SOLUCIÓN

  • \boldsymbol{\frac{3}{4}}
SOLUCIÓN

  • \boldsymbol{\frac{4}{6}}
SOLUCIÓN

FRACCIONES IGUALES A LA UNIDAD

TODA FRACCIÓN QUE TENGA EL NUMERADOR IGUAL A SU DENOMINADOR SERÁ IGUAL A 1. EJEMPLO:

ESTE GRÁFICO REPRESENTA A LA FRACCIÓN \boldsymbol{\frac{3}{3}} QUE ES IGUAL A 1.

ESTE GRÁFICO REPRESENTA A LA FRACCIÓN \boldsymbol{\frac{6}{6}} QUE ES IGUAL A 1.

¿CÓMO LEER FRACCIONES?

LAS FRACCIONES SE LEEN DIFERENTES A LOS NÚMEROS NATURALES. ES IMPORTANTE QUE SIGAMOS ESTOS PASOS:

  1. LEEMOS EL NUMERADOR COMO CUALQUIER NÚMERO NATURAL.
  2. LEEMOS EL DENOMINADOR DE ACUERDO A LA SIGUIENTE TABLA:
DENOMINADOR SE LEE
2 MEDIOS
3 TERCIOS
4 CUARTOS
5 QUINTOS
6 SEXTOS
7 SÉPTIMOS
8 OCTAVOS
9 NOVENOS
10 DÉCIMOS

– EJEMPLOS:

\boldsymbol{\frac{2}{3}} SE LEE “DOS CUARTOS”.

 

\boldsymbol{\frac{4}{10}} SE LEE “CUATRO DÉCIMOS”.

 

\boldsymbol{\frac{5}{7}} SE LEE “CINCO SÉPTIMOS”.

 

\boldsymbol{\frac{1}{8}} SE LEE “UN OCTAVO”.

LAS PARTES DE UN TODO

CADA PARTE DE UN TODO SE PUEDE REPRESENTAR POR MEDIO DE UNA FRACCIÓN. SEGÚN EL DENOMINADOR CADA PORCIÓN TENDRÁ UN NOMBRE DISTINTO. OBSERVA ESTA IMAGEN CON UN TODO DIVIDIDO DE 1 A 10 PARTES IGUALES.

¡A PRACTICAR!

1. ¿QUÉ FRACCIÓN REPRESENTAN ESTOS GRÁFICOS?

A. 

SOLUCIÓN
 

B. 

SOLUCIÓN
 

C. 

SOLUCIÓN
 

D. 

SOLUCIÓN

2. ¿CÓMO SE LEEN LAS SIGUIENTES FRACCIONES:

  • \frac{2}{10}
SOLUCIÓN
DOS DÉCIMOS.
  • \frac{1}{10}
SOLUCIÓN
UN DÉCIMO.
  • \frac{1}{4}
SOLUCIÓN
UN CUARTO.
  • \frac{4}{5}
SOLUCIÓN
CUATRO QUINTOS.
  • \frac{3}{6}
SOLUCIÓN
TRES SEXTOS.
RECURSOS PARA DOCENTES

Artículo “Fracciones”

En el siguiente artículo podrás encontrar un abordaje de las fracciones con diferentes estrategias didácticas.

VER

CAPÍTULO 2 / TEMA 3

¿QUÉ ES LA MULTIPLICACIÓN?

CUANDO UNA CANTIDAD SE REPITE VARIAS VECES PODEMOS ACUDIR A UNA OPERACIÓN BÁSICA DE LAS MATEMÁTICAS: LA MULTIPLICACIÓN. ESTA ES IGUAL A UNA SUMA RESUMIDA Y LA USAMOS CADA VEZ COMPRAMOS VARIOS PRODUCTOS IGUALES, POR EJEMPLO, 4 HELADOS A $ 2 ES IGUAL A 4 × 2 Y SE LEE “CUATRO POR DOS”.

TANTA VECES TANTO

SI TENEMOS LA MISMA CANTIDAD DE ELEMENTOS EN VARIOS GRUPOS PODEMOS SABER LA CANTIDAD TOTAL SI CONTAMOS CUÁNTOS GRUPOS HAY Y LUEGO CONTAMOS CUÁNTO HAY EN CADA GRUPO.

– EJEMPLO 1:

¿CUÁNTOS GRUPOS HAY?, ¿CUÁNTAS CEREZAS HAY EN CADA GRUPOS?, ¿CUÁNTAS CEREZAS HAY EN TOTAL?

  • HAY 3 GRUPOS.
  • HAY 2 CEREZAS EN CADA GRUPO.
  • HAY 6 CEREZAS EN TOTAL PORQUE 2 + 2 + 2 = 6

PODEMOS DECIR QUE:

3 VECES 2 ES IGUAL A 6


– EJEMPLO 2:

¿CUÁNTOS GRUPOS HAY?, ¿CUÁNTAS PALETAS HAY EN CADA GRUPO?, ¿CUÁNTAS PALETAS HAY EN TOTAL?

  • HAY 2 GRUPOS.
  • HAY 4 PALETAS EN CADA GRUPO.
  • HAY 8 PALETAS EN TOTAL PORQUE 4 + 4 = 8

PODEMOS DECIR QUE:

2 VECES 4 ES IGUAL A 8

¡ES TU TURNO!

¿CUÁNTOS GRUPOS HAY?, ¿CUÁNTAS BANANAS HAY EN CADA GRUPO?, ¿CUÁNTAS BANANAS HAY EN TOTAL?

SOLUCIÓN
  • HAY 3 GRUPOS.
  • HAY 3 BANANAS EN CADA GRUPO.
  • HAY 9 BANANAS EN TOTAL PORQUE 3 + 3 + 3 = 9

ASÍ QUE:

3 VECES 3 ES IGUAL A 9

LA MULTIPLICACIÓN Y SUS ELEMENTOS

CUANDO SABEMOS LA CANTIDAD DE GRUPOS Y LA CANTIDAD DE ELEMENTOS EN CADA GRUPO PODEMOS HACER UNA OPERACIÓN LLAMADA MULTIPLICACIÓN. LA USAMOS CADA VEZ QUE LA CANTIDAD DENTRO DE CADA GRUPO SEA LA MISMA. LA MULTIPLICACIÓN ESTÁ FORMADA POR FACTORES Y UN PRODUCTO.

¿SABÍAS QUÉ?
EL SIGNO DE MULTIPLICACIÓN ES × Y SE LEE “POR”.

– EJEMPLO 1:

¿CUÁNTAS FRESAS HAY EN TOTAL?

LA CANTIDAD TOTAL DE FRESAS EN ESTA IMAGEN LA PODEMOS REPRESENTAR ASÍ:

3 + 3 + 3 + 3 = 12

4 VECES 3 ES IGUAL A 12

O COMO UNA MULTIPLICACIÓN:

4 × 3 = 12

  • EL 4 REPRESENTA LA CANTIDAD DE GRUPOS. ES UN FACTOR.
  • EL 3 REPRESENTA LA CANTIDAD DE FRESAS EN CADA GRUPO. ES UNA FACTOR.
  • EL 12 REPRESENTA EL TOTAL DE FRESAS. ES EL PRODUCTO O RESULTADO.

RESPUESTA: HAY 12 FRESAS.


– EJEMPLO 2:

¿CUÁNTAS LAZOS HAY EN TOTAL?

4 + 4 + 4 + 4 = 16

4 VECES 4 ES IGUAL A 16

4 × 4 = 16

RESPUESTA: HAY 16 LAZOS.

LA MULTIPLICACIÓN ES UNA OPERACIÓN QUE SE UTILIZA PARA ABREVIAR SUMAS REPETIDAS. LA SUMA 4 + 4 ES IGUAL QUE 2 × 4, YA QUE SON 2 VECES LAS QUE SE REPITE EL 4. POR EJEMPLO, SI TENEMOS 5 CAJAS DE ALFAJORES CON 9 EN CADA UNA. LA SUMA REPETIDA SERÍA: 9 + 9 + 9 + 9 + 9 Y EN MULTIPLICACIÓN 9 × 5. AMBAS EXPRESIONES DARÁN EL MISMO RESULTADO: 45 ALFAJORES EN TOTAL.

EL ORDEN DE LOS FACTORES NO MODIFICA EL PRODUCTO

NO IMPORTA EN QUÉ ORDEN ESCRIBAS LOS FACTORES EN UNA MULTIPLICACIÓN, EL RESULTADO SIEMPRE SERÁ EL MISMO. EJEMPLO:

3 × 4 = 12 PORQUE 4 + 4 + 4 = 12

4 × 3 = 12 PORQUE 3 + 3 + 3 + 3 = 12

EL DOBLE

EL DOBLE DE UNA CANTIDAD ES IGUAL A ESA CANTIDAD MULTIPLICADA POR 2.

– EJEMPLO 1:

SI TENEMOS 5 MANZANAS, ¿CUÁL ES EL DOBLE?

PRIMERO DIBUJAMOS LAS 5 MANZANAS:

COMO DEBEMOS SABER EL DOBLE, REPETIMOS EL CONJUNTO PARA TENERLO 2 VECES:

CONTAMOS LAS MANZANAS O REPRESENTAMOS COMO UNA MULTIPLICACIÓN:

5 + 5 = 10

2 VECES 5 ES IGUAL A 10

2 × 5 = 10

LUEGO RESPONDEMOS:

EL DOBLE DE 5 MANZANAS SON 10 MANZANAS.


– EJEMPLO 2:

¿CUÁL ES EL DOBLE DE 8?

COMO YA SABEMOS EL PROCESO, BASTA CON QUE SUMEMOS DOS VECES EL MISMO NÚMERO (8) O QUE MULTIPLIQUEMOS 8 POR 2.

8 + 8 = 16

2 × 8 = 16

EL DOBLE DE 8 ES 16.


– EJEMPLO 3:

¿CUÁL ES EL DOBLE DE 7?

7 + 7 = 14

2 × 7 = 14

EL DOBLE DE 7 ES 14.

LAS TABLAS DE MULTIPLICAR

SON UN RECURSO EXPRESADO EN UNA CUADRÍCULA DONDE PODEMOS VER LA RELACIÓN DE LOS PRODUCTOS ENTRE DOS FACTORES. LAS TABLAS DE MULTIPLICAR MUESTRAN DE FORMA RESUMIDA EL RESULTADO DE LAS MULTIPLICACIONES.

¡CONSTRUYAMOS LA TABLA DEL 2!

EN CADA CUADRO HAY 2 PELOTAS.

2 × 1 = 2
2 × 2 = 4
2 × 3 = 6
2 × 4 = 8
2 × 5 = 10
2 × 6 = 12
2 × 7 = 14
2 × 8 = 16
2 × 9 = 18

OBSERVA LOS PRODUCTOS (2, 4, 6, 8, 10, …). TODOS AUMENTAN DE 2 EN 2.

¡ES TU TURNO!

CONSTRUYE LA TABLA DE MULTIPLICAR DEL 3.

EN CADA CUADRO HAY 3 NUECES.

3 × 1 = 3
SOLUCIÓN
3 × 1 = 3
3 × 2 = 6
3 × 3 = 9
3 × 4 = 12
3 × 5 = 15
3 × 6 = 18
3 × 7 = 21
3 × 8 = 24
3 × 9 = 27

UNA GRAN HERRAMIENTA

PARA HACER CÁLCULOS DE MULTIPLICACIONES SE IDEARON LAS TABLAS DE MULTIPLICAR, QUE NO SON MÁS QUE UN ATAJO PARA REALIZAR SUMAS LARGAS DE FORMA RÁPIDA. LA FORMA MÁS COMÚN DE REPRESENTAR LAS TABLAS DE MULTIPLICACIÓN ES, COMO SU NOMBRE LO INDICA, A TRAVÉS DE TABLAS. NORMALMENTE SE MUESTRAN LAS TABLAS DEL 1 AL 10 Y CADA UNA DE ELLAS INDICA LAS MULTIPLICACIONES DEL NÚMERO QUE REPRESENTAN DEL 1 AL 10 O DEL 0 AL 10.

 

¡A PRACTICAR!

1. OBSERVA LOS GRUPOS. RESUELVE COMO SUMA REPETIDA, TANTAS VECES TANTO Y MULTIPLICACIÓN.

SOLUCIÓN

5 + 5 + 5 = 15

3 VECES 5 ES IGUAL A 15

3 × 5 = 15

SOLUCIÓN

2 + 2 + 2 + 2 = 8

4 VECES 2 ES IGUAL A 8

4 × 2 = 8

SOLUCIÓN

4 + 4 + 4 + 4 = 16

4 VECES 4 ES IGUAL A 16

4 × 4 = 16

 

2. RESPONDE:

  • ¿CUÁL ES EL DOBLE DE 9?
SOLUCIÓN
18
  • ¿CUÁL ES EL DOBLE DE 2?
SOLUCIÓN
4
  • ¿CUÁL ES EL DOBLE DE 6?
SOLUCIÓN
12
RECURSOS PARA DOCENTES

Artículo “Trucos para aprender las tablas de multiplicar”

En el siguiente artículo encontrarás un conjuntos de consejos para aprender las tablas de multiplicar.

VER

CAPÍTULO 2 / TEMA 2

sustracción

LA RESTA O SUSTRACCIÓN ES LA OPERACIÓN INVERSA A LA SUMA. EN ESTE CÁLCULO “QUITAMOS” UNA CANTIDAD A OTRA, POR EJEMPLO, SI TENEMOS 8 CARAMELOS Y NOS COMEMOS 3, AL FINAL TENDREMOS SOLO 5. AUNQUE TIENE MUCHA RELACIÓN CON LA SUMA, NO CUMPLE CON LAS MISMAS PROPIEDADES. EN ESTE ARTÍCULO APRENDERÁS CÓMO RESTAR NÚMEROS DE HASTA TRES CIFRAS.

LA SUSTRACCIÓN Y SUS ELEMENTOS

LA SUSTRACCIÓN ES UNA OPERACIÓN QUE CONSISTE EN RESTAR O QUITAR UNA CANTIDAD LLAMADA SUSTRAENDO A OTRA LLAMADA MINUENDO.

– EJEMPLO:

MARÍA TENÍA 10 MAGDALENAS Y REGALÓ 8 MAGDALENAS A SUS AMIGOS, ¿CUÁNTAS MAGDALENAS LE QUEDARON?

ESTE PROBLEMA LO SOLUCIONAMOS POR MEDIO DE UNA SUSTRACCIÓN. AL MINUENDO 10 LE “QUITAMOS” EL SUSTRAENDO 8 (10 − 8). POR ESTO, LA RESTA O DIFERENCIA ES 2.

UNA DE LAS FORMAS MÁS SENCILLAS DE HACER RESTAS DE PEQUEÑAS CANTIDADES ES CON LOS DEDOS O CON PALITOS. POR EJEMPLO, SI DESEAS RESTARLE 4 A 9, DEBES TOMAR 9 PALITOS, LUEGO QUITAS 4 PALITOS Y LA CANTIDAD DE PALITOS QUE TE QUEDEN SERÁ LA DIFERENCIA O RESTA. LO REPRESENTAMOS ASÍ: 9 − 4 = 5. SEGURO TIENES PALITOS EN TU CASA. ¡INTÉNTALO!

 

RESTA CON TABLAS POSICIONALES

ES UNA MANERA DE REPRESENTAR LAS RESTAS O SUSTRACCIONES. CONSISTE EN COLOCAR EN COLUMNAS LAS UNIDADES, LAS DECENAS Y LAS CENTENAS DE CADA NÚMERO. POR EJEMPLO:

COMO VES, PRIMERO RESTAMOS LA UNIDADES (9 − 8 = 1) Y LUEGO LAS DECENAS (4 − 0 = 4).

¡ES TU TURNO!

REALIZA LAS SIGUIENTES RESTAS:

  • 79 − 6
  • 36 − 4
  • 25 − 2
SOLUCIÓN

¿SABÍAS QUÉ?
SI NO HAY UN NÚMERO EN LA CASILLA DE LAS DECENAS O CENTENAS SE ENTIENDE QUE HAY UN CERO. 

RESTAS PRESTANDO

CUANDO LA UNIDAD DEL MINUENDO ES MENOR QUE LA DEL SUSTRAENDO TENEMOS QUE “PRESTAR” UNA DECENA. SI SUCEDE CON LA DECENA DEL MINUENDO, PRESTAMOS UNA CENTENA. LOS PASOS SON LOS SIGUIENTES:

1. COLOCAMOS EL MINUENDO SOBRE EL SUSTRAENDO. DIBUJAMOS LA LÍNEA Y EL SIGNO “MENOS”.

 

2. COMO A 3 NO SE LE PUEDE RESTAR 7, PRESTAMOS UNA DECENA A LA POSICIÓN DE LAS UNIDADES. DE ESTE MODO, EL 3 SE TRANSFORMA EN 13. COMO 6 PRESTÓ UNA DECENA, LO TACHAMOS Y AHORA SE CONVIERTE EN 5.

 

3. RESTAMOS LAS UNIDADES. TENEMOS QUE 13 − 7 = 6.

 

4. RESTAMOS LA DECENAS. TENEMOS QUE 5 − 2 = 3.

 

– OTROS EJEMPLOS:

 

TAMBIÉN PUEDE OCURRIR CON LAS CENTENAS. OBSERVA:

PROPIEDADES DE LA SUSTRACCIÓN

LA SUSTRACCIÓN NO CUMPLE CON LAS MISMAS PROPIEDADES DE LA ADICIÓN. LA SUSTRACCIÓN NO CUMPLE CON LA PROPIEDAD CONMUTATIVA, NI CON LA PROPIEDAD ASOCIATIVA.

ELEMENTO NEUTRO

LA RESTA DE CUALQUIER NÚMERO CON CERO DA COMO RESULTADO EL NÚMERO INICIAL.

¿CÓMO COMPROBAR UNA RESTA?

CON LA SUMA DEL SUSTRAENDO Y LA DIFERENCIA O RESTA.

¡ES TU TURNO!

REALIZA ESTAS RESTAS Y LUEGO COMPRUEBA EL RESULTADO.

  • 966 − 82
SOLUCIÓN
966 − 82 = 884

COMPROBACIÓN:

82 + 884 = 966

  • 32 − 27
SOLUCIÓN
32 − 27 = 5

COMPROBACIÓN:

27 + 5 = 32

LA RESTA NO TIENE LAS MISMAS PROPIEDADES DE LA SUMA YA QUE SU OPERACIÓN ES LA INVERSA. LA RESTA NO ES CONMUTATIVA PORQUE SI CAMBIAMOS DE POSICIÓN EL SUSTRAENDO Y EL MINUENDO SU RESULTADO NO VA A SER UN NÚMERO NATURAL. LA RESTA NO ES ASOCIATIVA PORQUE AL CAMBIAR EL ORDEN DE LAS CANTIDADES CAMBIA SU RESULTADO.

¡PRACTIQUEMOS LO APRENDIDO!

1. JOSÉ QUIERE COMPRAR UNOS INSTRUMENTOS QUE CUESTAN $ 257. SI HA AHORRADO $ 129, ¿CUÁNTO DINERO LE FALTA  PARA PODER COMPRAR LOS INSTRUMENTOS?

  • DATOS

PRECIO DE LOS INSTRUMENTOS: $ 257

DINERO AHORRADO: $ 129

  • PREGUNTA

¿CUÁNTO DINERO LE FALTA A JOSÉ PARA PODER COMPRAR LOS INSTRUMENTOS?

  • ANALIZA

TENEMOS QUE HACER UNA RESTA. EL MINUENDO ES 257 Y EL SUSTRAENDO ES 129. RESTAMOS PRIMERO LAS UNIDADES, LUEGO LAS DECENAS Y LAS CENTENAS.

  • CALCULA

  • RESPUESTA

A JOSÉ LE FALTAN $ 128 PARA PODER COMPRAR LOS INSTRUMENTOS.

 


2. UNA ESCUELA PLANIFICA UN VIAJE ESCOLAR. EN TOTAL VAN 240 PERSONAS ENTRE ESTUDIANTES Y PROFESORES. SI HAY 25 PROFESORES, ¿CUÁNTOS ESTUDIANTES VAN AL VIAJE?

  • DATOS

TOTAL DE ESTUDIANTES Y PROFESORES: 240

TOTAL DE PROFESORES: 25

  • PREGUNTA

¿CUÁNTOS ESTUDIANTES VAN AL VIAJE?

  • ANALIZA

TENEMOS QUE HACER UNA RESTA. EL MINUENDO ES 240 Y EL SUSTRAENDO ES 25. RESTAMOS PRIMERO LAS UNIDADES, LUEGO LAS DECENAS Y LAS CENTENAS.

  • CALCULA

  • RESPUESTA

VIAJAN 215 ESTUDIANTES.

 


3. A UN MUSEO ASISTIERON 389 PERSONAS EN UN DÍA. SI DURANTE LA MAÑANA SOLO FUERON 19 PERSONAS, ¿CUÁNTAS PERSONAS FUERON EN LA TARDE?

  • DATOS

ASISTENTES EN UN DÍA: 389

ASISTENTES DE LA MAÑANA: 19

  • PREGUNTA

¿CUÁNTAS PERSONAS FUERON EN LA TARDE?

  • ANALIZA

TENEMOS QUE HACER UNA RESTA. EL MINUENDO ES 389 Y EL SUSTRAENDO ES 19. RESTAMOS PRIMERO LAS UNIDADES, LUEGO LAS DECENAS Y LAS CENTENAS.

  • CALCULA

  • RESPUESTA

EN LA TARDE FUERON 370 PERSONAS AL MUSEO.

 


4. EL SEÑOR PEDRO TIENE 436 MANZANAS VERDES Y ROJAS PARA VENDER. 184 MANZANAS SON VERDES Y LAS DEMÁS SON ROJAS. ¿CUÁNTAS MANZANAS SON ROJAS?

  • DATOS

CANTIDAD DE MANZANAS: 436

CANTIDAD DE MANZANAS VERDES: 184

  • PREGUNTA

¿CUÁNTAS MANZANAS SON ROJAS?

  • ANALIZA

DEBEMOS RESTAR ESTAS CANTIDADES. 436 ES EL MINUENDO Y 184 ES EL SUSTRAENDO.

  • CALCULA

  • RESPUESTA

252 MANZANAS SON ROJAS.

 


LA SUSTRACCIÓN ES UNA OPERACIÓN QUE CONSISTE EN RESTAR O QUITAR UNA CANTIDAD LLAMADA SUSTRAENDO A OTRA LLAMADA MINUENDO. LAS PODEMOS REPRESENTAR DE MANERA HORIZONTAL O DE MANERA VERTICAL POR MEDIO DE UNA TABLA POSICIONAL. EL SIGNO MENOS (−) ES UN POCO MÁS LARGO QUE EL GUIÓN (-) Y UN POCO MÁS CORTO QUE LA RAYA (—).

¡A PRACTICAR!

1. RESUELVE LAS SIGUIENTES RESTAS:

  • 48 − 12
SOLUCIÓN
48 − 12 = 36 
  • 589 − 354
SOLUCIÓN
589 − 354 = 235
  • 16 − 14
SOLUCIÓN
16 − 14 = 2
  • 708 − 573
SOLUCIÓN
708 − 573 = 135
  • 86 − 45
SOLUCIÓN
86 − 45 = 41
  • 78 − 28
SOLUCIÓN
78 − 28 = 50
  • 337 − 182
SOLUCIÓN
337 − 182 = 155

 

 

2. ¿QUÉ NÚMERO FALTA?

  • ____ − 342 = 484
SOLUCIÓN
826 − 342 = 484
  • ____ − 182 = 155
SOLUCIÓN
337 − 182 = 155
  • ____ − 82 = 464
SOLUCIÓN
546 − 82 = 464
  • ____ − 6 = 315
SOLUCIÓN
321 − 6 = 315
  • ____ − 14 = 313
SOLUCIÓN
327 − 14 = 313
  • ____ − 317 = 227
SOLUCIÓN
544 − 317 = 227

 

3. COLOREA EL DIBUJO SEGÚN EL RESULTADO DE LAS SUMAS Y RESTAS.

 

RECURSOS PARA DOCENTES

Artículo “Resta de números naturales”

Con el siguiente artículo podrás ampliar las estrategias de enseñanza para la resta de números naturales.

VER

CAPÍTULO 2 / TEMA 1

ADICIÓN

MUCHAS VECES NECESITAMOS AGRUPAR OBJETOS, POR EJEMPLO, LAS TARJETAS DE UN COMPAÑERO CON LAS NUESTRAS, PERO ¿CÓMO SABER CUÁNTAS HAY AL FINAL? PARA ESTO USAMOS UNA OPERACIÓN LLAMADA ADICIÓN O SUMA QUE CONSISTE EN UNIR CANTIDADES. SEGURO LA USAS DIARIAMENTE. HOY APRENDERÁS CUÁLES SON SUS PROPIEDADES Y CÓMO CALCULARLA.

LA ADICIÓN Y SUS ELEMENTOS

LA ADICIÓN ES UNA OPERACIÓN MATEMÁTICA QUE UNE DOS O MÁS CANTIDADES. EN ESA UNIÓN SE FORMA OTRA CANTIDAD LLAMADA SUMA. SUS ELEMENTO SON LOS SUMANDOS Y LA SUMA TOTAL.

– EJEMPLO:

JOSÉ Y CARLOS COMPRARON PALETAS PARA TODOS SUS AMIGOS. SI JOSÉ COMPRÓ 4 PALETAS Y CARLOS COMPRÓ 5 PALETAS, ¿CUÁNTAS PALETAS COMPRARON EN TOTAL?

ESTE PROBLEMA SE RESUELVE CON UNA SUMA. LOS SUMANDOS SON 4 Y 5 Y LA SUMA TOTAL ES LA UNIÓN DE ESAS DOS CANTIDADES, ES DECIR, 9.

LA SUMA ES UNA DE LAS PRIMERAS OPERACIONES MATEMÁTICAS QUE APRENDEMOS PORQUE ES UNA DE LAS MÁS USADAS EN LA VIDA COTIDIANA. DESDE LA ANTIGÜEDAD SE HAN AGRUPADO NÚMEROS PARA SABER CANTIDADES. INICIAMOS A SUMAR CON LOS DEDOS, PERO CUANDO LAS CIFRAS SON MAYORES TENEMOS QUE USAR LOS SÍMBOLOS DE LOS NÚMEROS Y SUS VALORES EN TABLAS POSICIONALES.

SUMA CON TABLA DE VALORES

ES UNA MANERA SENCILLA DE REPRESENTAR LAS SUMAS. AQUÍ DEBEMOS COLOCAR EN COLUMNAS LAS UNIDADES, LAS DECENAS Y LAS CENTENAS DE CADA NÚMERO.

– EJEMPLO:

¡ES TU TURNO!

REALIZA LAS SIGUIENTES SUMAS:

  • 15 + 14
  • 45 + 2
  • 45 + 51
SOLUCIÓN

 

SUMA CON LLEVADAS

A VECES LA SUMA DE LAS UNIDADES DE LOS SUMANDOS PUEDE SER MAYOR A 10, EN ESE CASO SEGUIMOS ESTOS PASOS:

1. SUMAMOS LAS UNIDADES Y COLOCAMOS EL 1 EN LA COLUMNA DE LAS DECENAS.

2. SUMAMOS LAS DECENAS CON EL 1 QUE SE COLOCÓ ANTES.

 

– EJEMPLOS:

 

TAMBIÉN PUEDE OCURRIR CON LAS CENTENAS. OBSERVA:

 

NUESTRO SISTEMA DE NUMERACIÓN SOLO TIENE DIEZ DÍGITOS: 0, 1, 2, 3, 4, 5, 6, 7, 8 Y 9. CON ELLOS FORMAMOS TODOS LOS NÚMEROS QUE EXISTEN Y CADA CIFRA TENDRÁ UN VALOR DIFERENTE SEGÚN EL LUGAR QUE OCUPE DENTRO DEL NÚMERO. POR EJEMPLO, EN EL NÚMERO 25, EL 2 VALE 20 Y EL 5 VALE 5, PERO EN EL NÚMERO 52, EL 5 VALE 50 Y EL 2 VALE 2.

PROPIEDADES DE LA ADICIÓN

PROPIEDAD CONMUTATIVA

EN UNA SUMA DE DOS CANTIDADES, SI CAMBIAMOS EL ORDEN DE LOS SUMANDOS EL RESULTADO ES EL MISMO.

PROPIEDAD ASOCIATIVA

EN UNA SUMA DE TRES SUMANDOS, SI CAMBIAMOS LA AGRUPACIÓN DE LOS SUMANDOS EL RESULTADO ES EL MISMO.

ELEMENTO NEUTRO

LA SUMA DE CUALQUIER NÚMERO CON CERO DA COMO RESULTADO SU NÚMERO INICIAL.

DESCOMPOSICIÓN ADITIVA

SE TRATA DE REPRESENTAR UN NÚMERO COMO LA SUMA DE OTROS. EN ESTE CASO CONSIDERAMOS LOS VALORES POSICIONALES. RECUERDA QUE:

  • 1 UNIDAD = 1 UNIDAD
  • 1 DECENA = 10 UNIDADES
  • 1 CENTENA = 100 UNIDADES

– EJEMPLO 1:

EL NÚMERO 156 TIENE:

  • 1 CENTENA = 1 × 100 = 100
  • 5 DECENAS = 5 × 10 = 50
  • 6 UNIDADES = 6 × 1 = 6

DESCOMPOSICIÓN ADITIVA:

156 = 100 + 50 + 6

 

– EJEMPLO 2:

EL NÚMERO 84 TIENE:

  • 8 DECENAS = 8 × 10 = 80
  • 4 UNIDADES = 4 × 1 = 4

DESCOMPOSICIÓN ADITIVA:

84 = 80 + 4

¡ANTES DE LAS CALCULADORAS!

DESDE HACE MILES DE AÑOS EL SER HUMANO HA NECESITADO CONTAR, ¡Y CLARO! SUMAR. AL PRINCIPIO LO HACÍA CON LOS DEDO, CON PALOS O CON PIEDRAS. TAMBIÉN HACÍAN NUDOS EN CUERDAS PARA CONTAR CANTIDADES. PERO UNO DE LOS MÁS IMPORTANTES INVENTOS FUE EL ÁBACO: UN HERRAMIENTA QUE HACE CÁLCULOS MANUALES POR MEDIO DE CONTADORES O ESFERAS QUE REPRESENTAN CANTIDADES.

¡PRACTIQUEMOS LO APRENDIDO!

1. PARA UN TORNEO DE BALONCESTO SE INSCRIBIERON 78 NIÑOS DE PRIMERO GRADO Y 81 NIÑOS DE SEGUNDO GRADO, ¿CUÁNTO NIÑOS SE INSCRIBIERON EN TOTAL?

  • DATOS

NIÑOS DE PRIMERO GRADO: 78

NIÑOS DE SEGUNDO GRADO: 81

  • PREGUNTA

¿CUÁNTOS NIÑOS SE INSCRIBIERON EN TOTAL?

  • ANALIZA

HAY QUE HACER UNA SUMA. PARA ESTO COLOCAMOS LOS SUMANDOS UNO SOBRE Y OTRO. SUMAMOS PRIMERO LAS UNIDADES Y LUEGO LAS DECENAS.

  • CALCULA

  • RESPUESTA

SE INSCRIBIERON 159 NIÑOS PARA EL TORNEO.


2. EN UN DÍA, UNA LIBRERÍA VENDIÓ 45 LÁPICES AMARILLOS Y 82 LÁPICES ROJOS, ¿CUÁNTOS LÁPICES SE VENDIERON ESE DÍA?

  • DATOS

LÁPICES AMARILLOS VENDIDOS: 45

LÁPICES ROJOS VENDIDOS: 82

  • PREGUNTA

¿CUÁNTOS LÁPICES SE VENDIERON ESE DÍA?

  • ANALIZA

HAY QUE HACER UNA SUMA. PARA ESTO COLOCAMOS LOS SUMANDOS UNO SOBRE Y OTRO. SUMAMOS PRIMERO LAS UNIDADES Y LUEGO LAS DECENAS.

  • CALCULA

  • RESPUESTA

SE VENDIERON 127 LÁPICES ESE DÍA.


3. ANTONIO TIENE 3 PAQUETES CON CARAMELOS. EN EL PRIMERO HAY 29 CARAMELOS, EN EL SEGUNDO HAY 8 Y EN EL TERCERO HAY 2. ¿CUÁNTOS CARAMELOS TIENE ANTONIO?, ¿CUÁL ES LA SOLUCIÓN MÁS FÁCIL PARA ESTE PROBLEMA?

  • DATOS

CANTIDAD DE CARAMELOS EN PAQUETE 1: 29

CANTIDAD DE CARAMELOS EN PAQUETE 2: 8

CANTIDAD DE CARAMELOS EN PAQUETE 3: 2

  • PREGUNTA

¿CUÁNTOS CARAMELOS TIENE ANTONIO?, ¿CUÁL ES LA SOLUCIÓN MÁS FÁCIL PARA ESTE PROBLEMA?

  • ANALIZA

EN ESTE CASO UTILIZAMOS LA PROPIEDAD ASOCIATIVA. AGRUPAMOS LOS PRIMEROS DOS TÉRMINOS Y LUEGO SUMAMOS EL TERCERO. LUEGO AGRUPAMOS EL SEGUNDO Y EL TERCER TÉRMINO Y SUMAMOS EL PRIMERO. AL COMPARAR LAS DOS OPCIONES VEREMOS CUÁL ES LA MÁS FÁCIL.

  • CALCULA

  • RESPUESTA

ANTONIO TIENE 39 CARAMELOS.

ES MÁS FÁCIL SUMAR 8 + 2 = 10 Y LUEGO SUMARLE 29.


4. CAROLINA DEBE PAGAR $ 134 EN EL SUPERMERCADO. SI SOLO TIENE BILLETES DE $ 100, $ 10 Y $ 1, ¿CUÁNTOS BILLETES DE CADA DENOMINACIÓN TIENE QUE USAR PARA PAGAR LA CUENTA?

  • DATOS

PAGO QUE TIENE QUE HACER CAROLINA: $ 134

BILLETES QUE TIENE CAROLINA: $ 100, $ 10 Y $ 1

  • PREGUNTA

¿CUÁNTOS BILLETES DE CADA DENOMINACIÓN TIENE QUE USAR PARA PAGAR LA CUENTA?

  • ANALIZA

HAY DE HACER UNA DESCOMPOSICIÓN ADITIVA DE 134. DE ESTE MODO TENDREMOS UNA SUMA DE VALORES QUE REPRESENTAN LA MISMA CANTIDAD. TENEMOS QUE VER LA CANTIDAD DE UNIDADES (QUE VALEN 1), DECENAS (QUE VALEN 10) Y CENTENAS (QUE VALEN 100) HAY EN LA SUMA.

  • CALCULA

EL NÚMERO 134 TIENE:

  • 1 CENTENA = 1 × 100 = 100
  • 3 DECENAS = 3 × 10 = 30
  • 4 UNIDADES = 4 × 1 = 4

DESCOMPOSICIÓN ADITIVA:

134 = 100 + 30 + 4

COMO YA VIMOS, 100 = 1 VEZ 100, 30 = 3 VECES 10 Y 4 = A VECES 1.

  • RESPUESTA

CAROLINA TIENE QUE USAR 1 BILLETE DE $ 100, 3 BILLETE DE $ 10 Y 4 BILLETES DE $ 1.


¡A PRACTICAR!

1. RESUELVE LAS SUMAS. COMPRUEBA LA PROPIEDAD CONMUTATIVA.

  • 15 + 10 =
SOLUCIÓN

15 + 10 = 25

10 + 15 = 25

  • 60 + 20 =
SOLUCIÓN

60 + 20 = 80

20 + 60 = 80

  • 48 + 2 =
SOLUCIÓN

48 + 2 = 50

2 + 48 = 50

 

2. RESUELVE LAS SUMAS. COMPRUEBA LA PROPIEDAD ASOCIATIVA.

  • 40 + 25 + 10 =
SOLUCIÓN

(40 + 25) + 10 = 65 + 10 = 75

40 + (25 + 10) = 40 + 35 = 75

  • 15 + 60 + 10 =
SOLUCIÓN

(15 + 60) + 10 = 75 + 10 = 85

15 + (60 + 10) = 15 + 70 = 85

  • 40 + 14 + 20 =
SOLUCIÓN

(40 + 14) + 20 = 54 + 20 = 74

40 + (14 + 20) = 40 + 34 = 74

 

3. REALIZA LA DESCOMPOSICIÓN ADITIVA DE LOS SIGUIENTES NÚMEROS.

  • 189
SOLUCIÓN
189 = 100 + 80 + 9
  • 74
SOLUCIÓN
74 = 70 + 4
  • 123
SOLUCIÓN
123 = 100 + 20 + 3
RECURSOS PARA DOCENTES

Artículo “Propiedades de la suma”

Este recurso te permitirá ampliar la información sobre las propiedades de la adición.

VER

Artículo “Cómo enseñar a sumar y a restar”

Con este artículo obtendrás algunas orientaciones y ejemplos prácticos de gran utilidad al momento de enseñar estas operaciones matemáticas.

VER