El conjunto de los números enteros surge por la necesidad de expresar cantidades negativas. Aunque los números negativos se usan desde el siglo XV, fue en 1770 cuando Leonardo Euler justificó su uso. Luego fueron legalmente aceptados para crear un conjunto, más completo que los números naturales, denominados números enteros.
¿QUÉ SON LOS NÚMEROS ENTEROS?
Son un conjunto de número que sirven para representar valores positivos y negativos. El conjunto se denota por y es:
El conjunto de los números enteros contiene otros conjuntos numéricos:
Enteros positivos ()
Enteros negativos ()
Números naturales ()
¿Sabías qué?
El conjunto de los números enteros se denota con la letra Z por la palabra Zahlen, que en alemán significa “número”.
¡Es tu turno!
¿Cuáles de estos números son enteros?
+4 −1,5 0 1/3 −3 −8,79 15 +0,5 7/4 −1/8 2 10,8 −9
Solución
Los números de color rojo son los números enteros.
+4 −1,5 0 1/3 −3 −8,79 15 +0,5 7/4 −1/8 2 10,8 −9
Valor absoluto de un número entero
El valor absoluto de un número es igual a la distancia que existe desde cero (0) hasta ese número. Para un número , el valor absoluto se denota como .
– Ejemplo:
Un buzo se encuentra a −7 metros de profundidad. ¿Qué distancia hay desde donde está hasta el nivel del mar?
Para hallar el valor absoluto de −7, debes medir los espacios entre −7 y 0. Por lo tanto, la distancia que hay desde donde está el buzo hasta el nivel del mar es de 7 metros. Matemáticamente se expresa así:
En conclusión, podemos definir el valor absoluto de un número así:
, si
, si
, si
– Ejemplo:
¿Cómo aparecieron los números enteros?
Desde la Antigüedad, hace unos 400 años a. C., el hombre ha buscado la manera de realizar cálculos para sus actividades cotidianas. En un principio, los números naturales eran suficientes para contar. Sin embargo, con el paso de los años, se necesitó un conjunto que incluyera valores negativos para expresar el déficit de una cantidad. Esta necesidad dio origen a los números enteros , que incluye a los números naturales sin el cero, al cero y a los negativos de los números naturales.
REGLA DE LOS SIGNOS
Cuando realizamos operaciones con números enteros es probable que nos cueste identificar el signo que tendrá el resultado. Para esto existe la regla de los signos, la cual se aplica a todas las operaciones básicas: suma, resta, multiplicación y división.
En la suma y la resta
Si sumamos dos números negativos, el resultado será un número negativo.
– Ejemplo:
(−3) + (−9) = −(3 + 9) = −12
(−5) + (−10) = −(5 + 10) = −15
Si sumamos dos números positivos, el resultado será un número positivo.
– Ejemplo:
(+8) + (+6) = +(8 + 6) = +14
(+43) + (+7) = +(43 + 7) = +50
Si sumamos un número positivo y un número negativo, ambos se restan y se mantiene el signo del número mayor.
Si , entonces
Si , entonces
– Ejemplo:
(+18) + (−4) = +(18 − 4) = +14
(−54) + (+20) = −(54 − 20) = −34
En la multiplicación
Si multiplicamos dos números con signos iguales, el resultado será siempre positivo.
– Ejemplo:
(+26) × (+3) = +78
(−10) × (−5) = +50
Si multiplicamos dos números con signos diferentes, el resultado siempre será negativo.
– Ejemplo:
(−8) × (+15) = −120
(+12) × (−9) = −108
En la división
Si dividimos dos números con signos iguales, el resultado será positivo.
– Ejemplo:
(+81) ÷ (+9) = +9
(−322) ÷ (−23) = +14
Si dividimos dos números con signos diferentes, el resultado será negativo.
– Ejemplo:
(+180) ÷ (−5) = −36
(−250) ÷ (+50) = −5
APLICACIÓN DE LOS NÚMEROS ENTEROS
Los números enteros tienen múltiples aplicaciones, algunas de las más comunes son las siguientes:
Expresar temperaturas en diferentes épocas del año, por ejemplo, en algunas ciudades de Argentina, durante el verano la temperatura es de 22 ºC, mientras que durante el invierno llega a −3 ºC.
Indicar la altura a la que se encuentran ciertas regiones respecto al nivel del mar. Las regiones que se encuentran por encima del nivel del mar tienen altura positiva, mientras que las que se localizan por debajo tienen altura negativa, por ejemplo, la ciudad de Lagunillas en Venezuela se ubica a −12 msnm.
Especificar el tiempo antes y después de Cristo. Consideramos negativos los años antes de Cristo (a. C.) y positivos los años después de Cristo (d. C.).
Indicar el saldo en una cuenta bancaria, donde los números positivos representan un saldo a nuestro favor y los negativos representan deudas.
¡A practicar!
1. Resuelve estas operaciones:
5 − 12
Solución
5 − 12 = −7
−13 − 15
Solución
−13 − 15 = −28
2 − 7
Solución
2 − 7 = −5
3 × (−37)
Solución
3 × (−37) = −111
(−2) × (−15)
Solución
(−2) × (−15) = 30
−17 × 18
Solución
−17 × 18 = −306
10 ÷ (−5)
Solución
10 ÷ (−5) = −2
RECURSOS PARA DOCENTES
Artículo “La clasificación de los números”
En este artículo encontrará una descripción general sobre la clasificación de los números, desde los naturales hasta los complejos.
Las operaciones combinadas son expresiones formadas por números que se agrupan de diferentes formas, con cálculos diversos. Estas operaciones pueden emplear símbolos como los paréntesis, que se encargan de unir un grupos de operaciones para ser resueltas primero. Los pasos son muy sencillos, ¡aprende hoy cómo resolver operaciones combinadas!
Recomendaciones para resolver problemas combinados
Para resolver las operaciones combinadas debemos tener en cuenta que:
Para sumar o restar dos números, ambos deben estar “sueltos”, es decir, no se pueden sumar o restar dos números si uno de ellos está unido a otra expresión mediante un símbolo u otro signo como el de la multiplicación.
Los signos de multiplicar generan una unión más fuerte que los de sumar y restar. Cuando dos o más números están unidos por un signo de multiplicación generan una unión inseparable, mientras que los que están unidos por signos de suma y resta se encuentran más “sueltos” en la operación.
Las operaciones combinadas deben resolverse paso a paso. Todo lo que se resuelve en un paso debe copiarse, sin realizar cambios al inicio del siguiente paso.
Antes de comenzar a resolver las operaciones combinadas se deben conocer las propiedades de dichas operaciones para así plantear una estrategia a seguir sin cometer errores.
Siempre se resuelve primero lo que está en el interior del paréntesis, para seguir luego con las multiplicaciones y finalmente con las sumas y restas.
¿Qué más debes saber?
Para ser un experto en resolución de cálculos combinados debes:
Ser prolijo.
Identificar los distintos términos de un ejercicio y el orden de resolución.
Revisar todos los pasos una vez terminado el ejercicio.
Practicar, practicar y practicar.
operaciones combinadas sin PARÉNTESIS
En una operación combinada sin paréntesis tenemos que respetar la jerarquía de los cálculos: primero resolvemos las multiplicaciones y divisiones, luego resolvemos las sumas y restas.
– Ejemplo:
9 − 2 × 4 + 12
Primero resolvemos la multiplicación: 2 × 4 = 8.
9 − 8 + 12
Luego resolvemos las sumas y restas:
9 − 8 + 12 = 13
Finalmente escribimos el resultado:
9 − 2 × 4 + 12 = 13
– Otro ejemplo:
81 ÷ 9 + 7 × 8 − 13 × 5
Realizamos las divisiones y multiplicaciones:
9 + 56 − 65
Resolvemos las sumas y restas:
9 + 56 − 65 = 0
Escribimos la respuestas:
81 ÷ 9 + 7 × 8 − 13 × 5 = 0
¡Es tu turno!
15 + 8 − 2 − 6
Solución
15 + 8 − 2 − 6 = 15
144 ÷ 12 − 4 × 3 − 24 ÷ 8
Solución
144 ÷ 12 − 4 × 3 − 24 ÷ 8 = −3
operaciones combinadas con paréntesis
Los paréntesis indican prioridad al momento de resolver los problemas. Esto significa que primero debemos realizar el cálculo dentro del paréntesis y luego resolver el resto de la cuenta.
– Ejemplo:
(8 − 3) × 2 + 4
Primero resolvemos la resta dentro de los paréntesis: 8 − 3 = 5.
5 × 2 + 4
Luego resolvemos la multiplicación: 5 × 2 = 10.
10 + 4
Finalmente resolvemos la suma y escribimos el resultado:
10 + 4 = 14
Por lo tanto,
(8 − 3) × 2 + 4 = 14
– Otro ejemplo:
28 − (7 + 9) + 3
Resolvemos la operación dentro de los paréntesis: 7 + 9 = 16
28 − 16 + 3
Resolvemos las sumas y restas:
28 − 16 + 3 = 15
Luego escribimos el resultado:
28 − (7 + 9) + 3 = 15
¡Es tu turno!
25 − (3 × 3 + 11) − (2 + 3)
Solución
25 − (3 × 3 +11) − (2 + 3) = 0
36 ÷ 4 + 3 − (9 − 7 + 1) + 4 × 5
Solución
36 ÷ 4 + 3 − (9 − 7 + 1) + 4 × 5 = 29
¿Sabías qué?
Si se suman dos números con diferente signo, la operación a realizar es una resta y se mantiene el signo del número mayor, por ejemplo, −15 + 8 = −7.
Problemas con ejercicios combinados
1. Marta fue a la tienda y compró un par de zapatos por $ 125, 2 pantalones a $ 40 cada uno y 4 camisetas a $ 25 cada una. ¿Cuánto gastó Marta?
Datos
Zapatos comprados: un par a $ 125
Pantalones comprados: 2 a $ 40 cada uno
Camisetas compradas: 4 a $ 25 cada una
Pregunta
¿Cuánto gastó Marta?
Analiza
Si multiplicamos la cantidad de prendas por el costo de cada una y luego sumamos cada resultado tendremos el total de dinero gastado.
2. José ha comprado 18 litros de jugo de naranja. Cada litro cuesta $ 5. Si después de pagar le devuelven $ 10, ¿cuánto dinero entregó al pagar?
Datos
Jugo comprado: 18 litros
Precio del litro de jugo: $ 5
Dinero devuelto: $ 10
Pregunta
¿Cuánto dinero entregó al pagar?
Analiza
El producto de la cantidad de jugo comprado y el precio de cada litro de jugo será igual a la cantidad de dinero que debía pagar. Si a eso le sumamos el dinero devuelto sabremos cuánto pagó.
Calcula
(18 × 5) + 10 = 90 + 10 = 100
Respuesta
José pagó $ 100. Gastó $ 90 en jugo de naranja y le devolvieron $ 10.
3. Pedro compró un lote de 180 donas que debe colocar en cajas de 12 donas. Si venderá cada caja a $ 3, ¿cuánto dinero obtendrá al vender todas las cajas?
Datos
Cantidad de donas: 180
Cantidad de donas por caja: 12
Precio de la caja: $ 3
Pregunta
¿Cuánto dinero obtendrá al vender todas las cajas?
Analiza
Para saber la cantidad de donas que irán en cada caja debemos dividir las 180 donas entre las 12 unidades por caja. Luego multiplicamos esa cantidad por los $ 3 que vale cada una.
Calcula
(180 ÷ 12) × 3 = 15 × 3 = 45
Respuesta
Obtendrá $ 45 al vender todas las cajas.
¡A practicar!
Resuelve las siguientes operaciones combinadas:
6 × 8 − 8 + 12 − 3
Solución
6 × 8 − 8 + 12 − 3 = 49
24 × 4 + 18 ÷ 9 − 26
Solución
24 × 4 + 18 ÷ 9 − 26 = 72
32 − 20 ÷ 5 + 16 × 2
Solución
32 − 20 ÷ 5 + 16 × 2 = 60
85 − 49 + 17 × 3 − 54 ÷ 3
Solución
85 − 49 + 17 × 3 − 54 ÷ 3 = 69
25 + (13 − 8 × 6 + 12) − 16
Solución
25 + (13 − 8 × 6 + 12) − 16 = −14
73 + (48 − 7 × 6) − 21 ÷ 3
Solución
73 + (48 − 7 × 6) − 21 ÷ 3 = 72
3 − 4 × 5 + (35 ÷ 7 + 8)
Solución
3 − 4 × 5 + (35 ÷ 7 + 8) = −4
36 ÷ 4 + 3 − (9 − 7 + 1) + 4 × 5
Solución
36 ÷ 4 + 3 − (9 − 7 + 1) + 4 × 5 = 29
RECURSOS PARA DOCENTES
Artículo “Cálculos combinados”
Con este recurso podrás reforzar el contenido relacionado a las jerarquías en operaciones combinadas.
La adición consiste en combinar, agrupar o sumar números; la sustracción, en cambio, consiste en quitar o restar números a un grupo. Siempre que queramos resolver cualquiera de estas operaciones, debemos considerar el valor posicional de cada una de las cifras de los números. Por otro lado, la adición cumple con ciertas propiedades como la asociativa y la conmutativa que no se pueden aplicar a la sustracción.
Multiplicación
La multiplicación es una operación matemática que consiste en sumar varias veces un mismo número. Los factores son los números que se multiplican o suman reiteradas veces y el producto es el resultado de la multiplicación. La multiplicación sin reagrupación es un método que consiste en multiplicar las unidades, las decenas y las centenas de 2 factores entre sí cuando ninguno de los productos formados supera la decena, mientras que la multiplicación con reagrupación es un procedimiento que podemos utilizar cuando algún producto entre dos cifras es igual o mayor a 10.
División
La división es la operación opuesta a la multiplicación. Sus elementos son el dividendo, el divisor, el cociente y el resto. El dividendo es la cantidad que se quiere repartir; el divisor indica entre cuántas partes se reparte; el cociente es la cantidad que le corresponde a cada parte y también es el resultado de la división; y el resto representa lo que no se puede repartir. Cuando el resto es igual a cero (0) decimos que la división es exacta.
OPERACIONES CON NÚMEROS DECIMALES
Para la adición y sustracción de números decimales procedemos igual que en el caso de los números naturales, pues debemos colocar cada elemento uno sobre otro según su valor posicional, al final nos aseguramos de que la coma esté en la misma columna. En el caso de las multiplicaciones, realizamos la operación tal y como si fuera una de números naturales, luego le colocamos al producto final la coma de acuerdo a los decimales de los factores.
OPERACIONES COMBINADAS
Las operaciones combinadas son aquellas que agrupan diversos cálculos en una sola expresión. Cuando no hay paréntesis debemos seguir un orden de resolución: primero las multiplicaciones y divisiones, luego las sumas y restas. Si la operación combinada tiene paréntesis tenemos que realizar primero los cálculos que están dentro de ellos, es decir, estos tienen prioridad sobre otros.
MÍNIMO COMÚN MÚLTIPLO Y MÁXIMO COMÚN DIVISOR
El mínimo común múltiplo (mcm) y el máximo común divisor (mcd) son operaciones que nos ayudan a simplificar cálculos más complejos. El mcm es el mínimo múltiplo que tienen en común dos o más números y el mcd es el divisor mayor que tienen en común dos o más números. Ambos pueden ser calculados por comparación de múltiplos y divisores o por descomposición de su números en factores primos.
CONVERSIONES DE MEDIDAS
Algunas magnitudes que podemos medir son la longitud, la masa, el volumen y el tiempo. Cada una de ellas tiene una unidad básica de medida pero no son las únicas. Para medir longitudes podemos usar unidades como el metro, el kilómetro o el centímetro; para medir masas usamos unidades como el gramo, el kilogramo o el miligramo; para medir el volumen usamos unidades como el centímetro cúbico o el metro cúbico; y para medir el tiempo usamos unidades como los segundos, los minutos, las horas, los días o los años.
En toda fracción podemos distinguir dos partes principales: el numerador y el denominador, ambos se encuentran separados por una línea horizontal. El denominador indica en cuántas partes se divide la unidad y el numerador señala cuántas de esas partes se han de tomar. Las fracciones se pueden clasificar en propias, impropias y aparentes. Las fracciones propias son aquellas en las que el numerador es menor que el denominador y representan un número menor a uno. Las fracciones impropias son la que tienen el numerador mayor que el denominador y representan a un número mayor a uno. Las fracciones aparentes son aquellas cuyo numerador es múltiplo de su denominador.
FRACCIONES EQUIVALENTES
Decimos que dos o más fracciones son equivalentes cuando todas ellas representan a la misma cantidad. Las fracciones equivalentes se pueden obtener por medio de dos métodos: amplificación y simplificación. Para obtener fracciones equivalentes por amplificación debemos multiplicar al numerador y al denominador de la fracción por un mismo número, distinto de cero. Para obtenerlas por simplificación, debemos dividir al numerador y al denominador de la fracción por un mismo número, distinto de cero y que sea un divisor común entre ambos. Es importante recordar que las fracciones equivalentes se pueden utilizar para sumar y restar fracciones heterogéneas (que tienen distinto denominador).
OPERACIONES CON FRACCIONES
La suma y resta de fracciones depende del tipo de estas. En las fracciones homogéneas (mismo denominador) se suman o restan los numeradores y se conserva el mismo denominador. En las fracciones heterogéneas (diferente denominador) se debe multiplicar el numerador de la primera fracción por el denominador de la segunda y el resultado se suma o se resta al producto del numerador de la segunda fracción por el denominador de la primera, el número obtenido es el numerador de la fracción resultante; luego se multiplican ambos denominadores y el número obtenido corresponderá al denominador de la fracción resultante. Para la multiplicación se multiplican los numeradores y denominadores de forma lineal. Para la división, se debe multiplicar en forma de cruz: el numerador de la primera fracción por el denominador de la segunda es igual al numerador de la fracción resultante y el numerador de la segunda fracción por el denominador de la primera es igual al denominador de la fracción resultante.
FRACCIONES MIXTAS
Una fracción mixta o número mixto es una forma de representar a una cantidad compuesta por una parte entera y una parte fraccionaria. Para graficarla, dividimos al entero en tantas partes como indique el denominador de la parte fraccionaria. Luego, pintamos tantos enteros (completos) como indique el número entero de la fracción mixta. Por último, dibujamos otro entero y pintamos tantas partes de este como indique el numerador de la fracción mixta. Para transformar una fracción mixta a una fracción convencional, lo que se realiza es sumar la parte entera con la parte fraccionaria. Siempre se debe obtener una fracción impropia.
PORCENTAJES
Un porcentaje, al igual que una fracción, es una forma de indicar una parte de un todo. Un porcentaje siempre representa a una fracción decimal cuyo denominador es 100. El símbolo que utilizamos para indicar un porcentaje es %. Para calcular el porcentaje de una cantidad conocida se multiplican ambos valores y se divide entre 100. Para convertir cualquier fracción a porcentaje, debemos dividir el numerador con el denominador, y luego multiplicar dicho resultado por cien. Por otro lado, para convertir un porcentaje a fracción, simplemente colocamos el porcentaje en el numerador y 100 como denominador, posteriormente se realiza una simplificación.
La división es la operación inversa a la multiplicación. Mientras que en la multiplicación buscamos unir cantidades en grupos iguales, en la división buscamos separarlas en grupos iguales. Las divisiones pueden ser de dos tipos: exactas o inexactas. Hoy aprenderás las reglas necesarias para poder resolverlas.
la división y sus elementos
La división es una operación matemática que consiste en repartir una cantidad en partes iguales. Sus elementos son los siguientes:
Dividendo: es el número que se va dividir o repartir.
Divisor: es el número por el que se divide.
Cociente: es el resultado de la división.
Resto: es lo que sobra del dividiendo. No se puede dividir debido a que es un número más pequeño que el divisor.
división exacta
La división exacta es aquella cuyo resto es igual a 0.
– Por ejemplo:
Carlos tiene 20 manzanas y las desea repartir entre 5 personas: Marta, Carla, Lucía, Pedro y Francisco. ¿Cuántas manzanas le corresponden a cada uno?
Como la división es la operación inversa a la multiplicación, podemos preguntarnos ¿qué número multiplicado por 5 da como producto el número 20?
5 × ? = 20
5 × 4 = 20
El factor desconocido será igual al cociente exacto de la división. En este caso es 4, porque ya sabemos que 5 × 4 = 20. Por lo tanto, toda división será exacta cuando el dividendo sea igual al producto entre el divisor y el cociente:
dividendo = divisor × cociente
Podemos comprobar esta relación si realizamos la división:
Por lo tanto, Carlos puede repartir exactamente las 20 manzanas entre 5 personas si a cada una le da 4 manzanas.
división inexacta
La división inexacta es aquella cuyo resto es diferente de 0.
– Por ejemplo:
La maestra quiere repartir 23 lápices entre 4 niños: Lucas, Juan, Carlos y Luis. ¿Cuántos lápices le corresponden a cada uno?
A diferencia de las divisiones exactas, en las inexactas no hay números naturales que multiplicados por el divisor nos den por resultado el dividendo. Pues, 4 × 5 = 20, y su producto es menor al dividendo (23); en cambio, 4 × 6 = 24, y su producto es mayor al dividendo (23). Entonces, consideramos la opción más cercana e inferior al dividendo, es decir, 5; y lo que falte para llegar al dividendo será el resto.
dividendo = divisor × cociente + resto
Comprobamos la relación al realizar la división:
Por lo tanto, la maestra puede dar 5 lápices a cada niño y le sobrarán 3 lápices.
¿Sabías qué?
El signo de división también se puede representar con dos puntos (:). De esta forma, “36 : 9” se lee “36 entre 9”.
¿cómo resolver una división?
1. Observa las dos primeras cifras del dividendo. Si son mayores que el divisor, comienza por ellas.
2. Busca un número que multiplicado por 12 sea igual a 43 o cercano e inferior a él. En este caso: 12 × 3 = 36. Este producto lo restamos a la primeras dos cifras del dividendo: 43 − 36 = 7.
3. Baja la siguiente cifra del dividendo.
4. Repite el proceso anterior. Busca un número que multiplicado por 12 resulte 72 o se acerque a 72. En este caso: 12 × 6 = 72. Luego restamos este producto al 72 obtenido de la resta.
Esta división es exacta porque el resto es igual a cero (0) y podemos comprobarla si al multiplicar el cociente (36) por el divisor (12) el resultado es igual al dividendo (432): 12 × 36 = 432.
Entonces, 432 ÷ 12 = 36 porque 12 × 36 = 432.
– Otro ejemplo:
1. Observa las dos primeras cifras del dividendo, como son menores que el divisor (47 < 64), toma hasta la tercera para iniciar la división.
2. Busca un número que multiplicado por 64 sea igual o cercano a 476.
Como el resto es menor que divisor (28 < 64), queda así. Podemos comprobar esta división si multiplicamos el cociente (7) por el divisor (64) y le sumamos el resto (28). Si el resultado es igual al dividendo, la división está correcta.
64 × 7 + 28 = 476
Entonces, 476 ÷ 64 = 7 y resto = 28.
Fracciones: una división sin resolver
Las divisiones sin resolver se conocen como fracciones. Las fraccione representan una parte de un todo y se caracterizan por tener un numerador y un denominador separados por una raya fraccionaria. El denominador es un número que indica en cuantas partes se divide la unidad, y el numerador es el número que señala cuántas de esas partes se han de tomar.
división entre 10, 100 y 1.000
Las divisiones por la unidad seguida de cero son muy sencillas, solo debes desplazar una coma a la izquierda tantos lugares como ceros acompañen a la unidad. De faltar lugares, añadimos ceros.
– Ejemplo:
1.789 ÷ 10 = 178,9 → Movemos una coma un lugar a la izquierda.
1.789 ÷ 100 = 17,89 → Movemos una coma dos lugares a la izquierda.
1.789 ÷ 1.000 = 1,789 → Movemos una coma tres lugares a la izquierda.
– Otros ejemplos:
275
489
70
6
1.652
3.698
÷ 10
27,5
48,9
7
0,6
165,3
369,8
÷ 100
2,75
4,89
0,7
0,06
16,52
36,98
÷ 1.000
0,275
0,489
0,07
0,006
1,652
3,698
¡A practicar!
1. Resuelve la siguientes divisiones.
27 ÷ 3
Solución
27 ÷ 3 = 9
100 ÷ 9
Solución
100 ÷ 9 = 11 y resto = 1
1.934 ÷ 23
Solución
1.934 ÷ 23 = 84 y resto = 2
2.487 ÷ 16
Solución
2.487 ÷16 = 155 y resto = 7
3.432 ÷ 52
Solución
3.432 ÷ 52 = 66
61.712 ÷ 76
Solución
61.712 ÷ 76 = 812
2. Resuleve la siguientes divisiones por la unidad seguida de cero.
254 ÷ 10
Solución
254 ÷ 10 = 25,4
27 ÷ 10
Solución
27 ÷ 10 = 2,7
2 ÷ 10
Solución
2 ÷ 10 = 0,2
333 ÷ 100
Solución
333 ÷ 100 = 3,33
25 ÷ 1.000
Solución
25 ÷ 1.000 = 0,025
999 ÷ 1.000 =
Solución
999 ÷ 1.000 = 0,999
8.000 ÷ 1.000 =
Solución
8.000 ÷ 1.000 = 8
RECURSOS PARA DOCENTES
Artículo “Propiedades de la división”
Con este artículo podrás estudiar las propiedades adicionales de la división y realizar ejercicios complementarios.
La división es una de las cuatro operaciones básicas de las matemáticas y consiste en repartir un número en varias partes iguales. Cada vez que compartimos nuestros dulces hacemos una división. Esta operación está muy relacionada con la resta y con la multiplicación. A continuación, aprenderás a hacer divisiones de números con una, dos o tres cifras.
LA DIVISIÓN y su relación con la sustracción
La división es una operación matemática que consiste en realizar reparticiones equitativas o formar grupos con la misma cantidad de elementos. Es una operación inversa a la multiplicación y puede considerarse una sustracción sucesiva.
La división a través de sustracciones sucesivas es una manera fácil de llegar a un resultado. Hay que recordar que la división tiene que ver con la resta y juntas tienen varias aplicaciones.
– Ejemplo:
Si deseamos repartir 8 magdalenas de 2 en 2, ¿cuántas personas tendrán magdalenas?
Este problema lo podemos representar como una resta sucesiva:
Observa que se hicieron 4 restas de 2 hasta llegar a cero (0). Por lo tanto, 4 personas tendrá 2 magdalenas cada una.
Este proceso, también lo podemos representar como una división y decir que 8 ÷ 2 = 4 porque se puede restar 4 veces 2 al número 8.
– Otro ejemplo:
30 ÷ 5 = ?
Restas
30 − 5 = 25
25 − 5 = 2
20 − 5 = 15
15 − 5 = 10
10 − 5 = 0
5 − 5 = 0
Cantidad de veces que se hace la resta
1
2
3
4
5
6
Entonces, 30 ÷ 5 = 6 porque se puede restar 6 veces 5 al 30.
Las divisiones simbólicamente se puede expresar de la siguiente manera:
En todos los casos se lee “treinta entre cinco igual a seis”.
Elementos de la división
Los términos de la división son el dividendo, el divisor, el cociente y el residuo o resto.
El dividendo es la cantidad que se desea repartir en partes iguales; el divisor es la cantidad entre la cual se divide y el cociente es el resultado de la operación. La cantidad que no se logra dividir es el residuo, también llamado resto; y debe ser menor que el divisor.
Divisiones exactas e inexactas
Cuando el residuo es igual a cero, podemos decir que la división se realizó equitativamente sin sobrar elementos, por lo que es exacta; pero si el residuo es distinto de cero, se considera que la división es inexacta por sobrar elementos sin dividir o agrupar.
¿Cómo resolver divisiones?
1. Colocamos a la izquierda al dividendo y dentro de la caja de división colocamos al divisor.
2. Luego, seleccionamos del dividendo una cifra que sea mayor o igual al divisor, para esto se comienza por la cifra de mayor orden. En este caso no hay un número que multiplicado por 5 resulte 3, por lo que seleccionamos una cifra más para dividir, es decir, 35.
3. Luego, buscamos un número que multiplicado por 5 nos de cómo resultado 35 o un número cercano a ese valor. Para esto es necesario emplear las tablas de multiplicación. Se sabe que 5 × 7 = 35, por lo tanto:
4. Encontramos que al multiplicar 5 por 7 da como resultado 35; entonces colocamos el 7 debajo del 5, restamos el producto obtenido de multiplicar el cociente por el divisor y lo escribimos en el resto. En este caso el resto es cero (0), por lo tanto, es una división exacta.
– Otro ejemplo:
1. Colocamos a la izquierda al dividendo y dentro de la caja de división colocamos al divisor.
2. Luego, seleccionamos del dividendo una cifra que sea mayor o igual al divisor, para esto se comienza por la cifra de mayor orden. En este caso no hay un número que multiplicado por 4 resulte 3, por lo que seleccionamos una cifra más para dividir, el 36.
3. Luego, buscamos un número que multiplicado por 4 de cómo resultado 36 o un número cercano a ese valor. Para esto es necesario emplear las tablas de multiplicación. Sabemos que 4 × 9 = 36, por lo tanto:
Encontramos que al multiplicar 4 por 9 da como resultado 36; entonces colocamos el 9 debajo del 4, restamos el producto obtenido de multiplicar el cociente por el divisor y lo escribimos en el resto.
4. Realizamos una nueva selección y repetimos los pasos hasta agotar las cifras del dividendo, en este caso solo nos resta el 5, lo bajamos y colocamos junto al resto obtenido anteriormente. Observa:
5. Buscamos un número que multiplicado por 4 de cómo resultado 5 o un número cercano a ese valor. Para esto es necesario emplear las tablas de multiplicación. Sabemos que 4 × 1 = 4, por lo tanto:
Encontramos que al multiplicar 4 por 1 da como resultado 4; entonces se coloca el 1 en el cociente, restamos el producto obtenido de multiplicar el cociente por el divisor y lo escribimos en el resto. Esto da como resultado 1, por lo tanto; la división es inexacta.
¿Sabías qué?
Al momento de resolver divisiones se busca el número que multiplicado por el divisor es igual al dividendo, de esta manera se obtiene el cociente.
SITUACIONES DE REPARTO EQUITATIVO
Cuando una cantidad de elementos se reparte en grupos iguales, se puede conocer la cantidad de elementos de cada grupo por medio de la división.
Cantidad de elementos ÷ cantidad de grupos = cantidad de elementos por grupo
Por ejemplo, tenemos una canasta con 12 manzanas y debemos repartirlas en 4 canastas equitativamente.
12 manzanas repartidas en 4 canastas corresponden a 3 manzanas por canasta.
12 ÷ 4 = 3
– Otro ejemplo:
25 esferas azules repartidas en 5 partes iguales.
25 esferas azules, repartidas en 5 partes iguales, corresponden a 5 esferas en cada parte.
25 ÷ 5 = 5
Para repartir en partes iguales una cantidad de elementos puedes poner un elemento por grupo hasta que se terminen de repartir todos los elementos.
SITUACIONES DE REPARTO POR MEDIDA
Cuando se conoce la cantidad total de elementos que se repartieron en grupos de medidas iguales se puede obtener la cantidad de grupos por medio de la división.
Cantidad de elementos ÷ cantidad de elementos por grupo = cantidad de grupos
– Ejemplo:
Una maestra de tercer grado ha pedido a sus alumnos que lleven un artículo de periódico para realizar un trabajo en clase. De 24 alumnos que conforman la sección, solo la mitad llevó el artículo. La maestra tuvo que formar grupos de 2 niños para realizar la actividad. ¿Cuántos grupos formó la maestra?
La maestra formó 12 grupos de 2 alumnos cada uno.
24 ÷ 2 = 12
– Otro ejemplo:
En una biblioteca hay 18 libros, en cada tramo caben 6, ¿cuántos tramos se necesitan para guardarlos todos?
Para organizar los 18 libros se necesitan 3 tramos con 6 libros cada uno.
18 ÷ 6 = 3
¿Sabías qué?
A principio del siglo XVII, John Napier diseñó un tablero para multiplicar y dividir conocido como “los huesos de Napier”.
RELACIÓN ENTRE LA MULTIPLICACIÓN Y LA DIVISIÓN
La división es la operación inversa a la multiplicación, pero con la multiplicación se puede comprobar el resultado de una división al multiplicar el cociente obtenido por el divisor, el resultado de esta multiplicación debe ser igual al dividendo. Entonces:
dividendo = cociente × divisor
Si la división es inexacta, se aplica el mismo procedimiento y se le suma el resto o residuo. Ejemplo:
¡A practicar!
1. Resuelve las siguientes divisiones a través de restas sucesivas.
a) 12 ÷ 4
Solución
1
2
3
Cociente
12 − 4 = 8
8 − 4 = 4
4 − 4 = 0
3
12 ÷ 4 = 3
b) 49 ÷ 7
Solución
1
2
3
4
5
6
7
Cociente
49 − 7 = 42
42 − 7 = 35
35 − 7 = 28
28 − 7 = 21
21 − 7 = 14
14 − 7 = 7
7 − 7 = 0
7
49 ÷ 7 = 7
c) 54 ÷ 9
Solución
1
2
3
4
5
6
Cociente
54 − 9 = 45
45 − 9 = 36
36 − 9 = 27
27 − 9 = 18
18 − 9 = 9
9 − 9 = 0
6
54 ÷ 9 = 6
2. Efectúa las siguientes divisiones.
a) 88 ÷ 4
Solución
88 ÷ 4 = 22
b) 25 ÷ 3
Solución
25 ÷ 3 = 8 y resto = 1
c) 41 ÷ 6
Solución
41 ÷ 6 = 6 y resto = 5
3. Escribe y resuelve la división que representa cada situación de reparto equitativo.
a) Julián tiene 16 caramelos y quiere repartirlos por igual entre sus 4 amigos, ¿cuántos caramelos le corresponden a cada uno de sus amigos?
Solución
16 ÷ 4 = 4
A cada amigo le corresponden 4 caramelos.
b) Patricia debe empacar por igual 15 vestidos en 5 cajas. ¿Cuántos vestidos tendrá cada caja?
Solución
15 ÷ 5 = 3
Tendrá 3 vestidos por caja.
c) Leonardo tiene 36 naranjas y debe colocarlas en 6 cestos por igual. ¿Cuántas naranja debe colocar en cada cesto?
Solución
36 ÷ 6 = 6
Debe colocar 6 naranjas por cesto.
4. Escribe y resuelve la división que representa cada situación de reparto por medida.
a) Lucía tiene 45 galletas, si las guarda en pequeñas cajas en las que caben 9 galletas, ¿cuántas cajas necesita?
Solución
45 ÷ 9 = 5
Lucía necesita 5 cajas.
b) Felipe el panadero desea hornear 24 pastelitos, si caben 8 pastelitos en cada bandeja, ¿cuántas bandejas necesitará Felipe?
Solución
24 ÷ 8 = 3
Felipe necesitará 3 bandejas.
c) Alicia tiene 50 libros. Si guarda 10 libros en cada una de las repisas de un mueble. ¿Cuántas repisas del mueble ocupa para guardar todos sus libros?
Solución
50 ÷ 10 = 5
Alicia ocupa 5 repisas del mueble para guardar todos sus libros.
RECURSOS PARA DOCENTES
Artículo “Divisiones por dos o más cifras”
El siguiente material trata sobre las divisiones desde un enfoque del método tradicional y del método del algoritmo desplegado de la división.
En este artículo se explica cómo resolver divisiones a través del método americano, uno de los más usados en países de Centroamérica, México y los Estados Unidos.
Una fracción está formada por dos términos principales: el numerador y el denominador. Estos son números enteros que están separados por una línea horizontal denominada raya divisoria o raya fraccionaria. Una fracción es la división de un entero o una unidad en partes iguales. El numerador indica las partes a considerar de esa división y el denominador indica las partes en las que se dividió el entero o unidad. Estos números son más antiguos que lo que se piensa y están relacionados con la división.
Fracciones diversas
De acuerdo a la relación que exista entre el numerador y el denominador, las fracciones pueden ser propias o impropias. Las fracciones propias son aquellas en las que el numerador es menor que el denominador, contrario a las fracciones impropias, en las que el numerador es mayor que el denominador. Por otro lado, si comparamos dos o más fracciones, estas pueden ser homogéneas o heterogéneas. Las fracciones homogéneas son las que poseen el mismo denominador, las heterogéneas, en cambio, presentan diferentes denominadores.
Gráficas de fracciones
Las fracciones suelen expresarse en gráficos para interpretar de manera más sencilla los datos. La forma para representar estos gráficos dependen del tipo de fracción. Si la fracción es propia elegimos cualquier figura, la dividimos en partes iguales según el denominador y señalamos las partes que indique el numerador. Cuando se trata de una fracción impropia dividimos una figura geométrica en las partes que señale el denominador, pero debido a que en este tipo de fracción el numerador es mayor que el denominador, serán necesarias más de una figuras.
Orden de fracción
Las fracciones presentan un sentido de orden, es decir, hay fracciones que son mayores o menores que otras. Una herramienta muy útil para reconocer este orden es la recta numérica. Se trata de un gráfico en forma de línea horizontal en el que los números están ordenados de menor a mayor. Para ubicar fracciones propias en la recta numérica dividimos la unidad en segmentos iguales según indique el denominador y la fracción se ubicaría en el número de segmento indicado por el numerador. Las fracciones impropias, por su parte, deben ser transformadas en números mixtos.
Problemas con fracciones
Las fracciones, además de ayudarnos a resolver problemas que impliquen proporciones, nos permiten resolver las operaciones básicas matemáticas como la adición, la sustracción, la multiplicación y al división. En el caso de la adición y la sustracción de fracciones debemos tener en cuenta su tipo: si las fracciones son homogéneas sumamos o restamos los numeradores y colocamos el denominador, si son heterogéneas usamos el método de cruz para resolverlas. Las multiplicaciones se resuelven de forma lineal, al multiplicar los numeradores y los denominadores.
Las fracciones, a diferencia de los números enteros, permiten expresar proporciones de algo. Son útiles en la vida cotidiana y se usan con más frecuencia de lo que piensas. Frases como “un cuarto de kilo” o “un tercio de taza” son algunos ejemplos. En matemática son tan relevantes que forman su propio conjunto de números: los racionales.
Partes de una fracción
Una fracción resulta de dividir un número entero en partes iguales. En matemática es representada por dos números enteros ,denominados términos, que están separados por una línea horizontal, denominada raya de división o raya fraccionaria.
Los números que componen a una fracción se denominan numerador y denominador. El primero está ubicado en la parte superior de la raya de división y el segundo está en la parte inferior de esta. El numerador indica el número de partes que se han tomado de un entero, mientras que el denominador representa el número de partes en que se ha dividido el entero.
Podemos expresar las fracciones con una línea divisoria horizontal o diagonal. En este sentido, a la fracción también la podríamos expresar como 1/2.
Para entender el significado de la fracción anterior imaginemos que una pizza representa el “todo”, es decir, sería el entero que queremos dividir, el denominador de una fracción representa el número de partes que se ha dividido el entero, lo que nos permite concluir que la pizza se ha dividido en dos parte. Por otro lado, el numerador representa el número de partes que se ha tomado, en este ejemplo es 1, lo que quiere decir que 1/2 de pizza sería una de las dos porciones de la pizza.
¿Sabías qué?
El denominador de una fracción nunca es igual a cero (0).
Como ya sabemos, el denominador indica en cuántas partes se dividió un número entero. Cada una de esas partes recibe un nombre, por ejemplo, si dividimos en dos son medios, si dividimos en tres son tercios, si dividimos en cuatro son cuartos y así hasta el número once, a partir de ese número añadimos el sufijo –avos al número: onceavos, doceavos, treceavos y así sucesivamente.
Esta tabla muestra el nombre de cada una de las partes en las que se puede dividir un entero hasta el cien:
Partes que se divide del entero
Nombre
2
Medios
3
Tercios
4
Cuartos
5
Quintos
6
Sextos
7
Séptimos
8
Octavos
9
Novenos
10
Décimos
11
Onceavos
12
Doceavos
13
Treceavos
14
Catorceavos
15
Quinceavos
16
Dieciseisavos
17
Diecisieteavos
18
Dieciochoavos
19
Diecinueveavos
20
Veinteavos
30
Treintavos
40
Cuarentavos
50
Cincuentavos
60
Sesentavos
70
Setentavos
80
Ochentavos
90
Noventavos
100
Centavo
Para leer una fracción primero indicamos el número del numerador y luego las partes en las que está dividido el entero de acuerdo a la tabla anterior. Por ejemplo, se lee como “un medio”. Observemos otros ejemplos:
a) se lee “dos tercios”.
b) se lee “seis octavos”.
c) se lee “quince treintavos”.
d) se lee “doce veintitresavos”.
e) se lee “treinta y dos cuarentavos”.
f) se lee “noventa y siete centavos”.
¿Sabías qué?
Los centavos también son llamados céntimos.
Origen muy antiguo
Las antiguas civilizaciones como la babilónica, la egipcia y la griega usaban las fracciones en sus cálculos. Cada una tenía una manera particular de expresarlas y no fue sino hasta el siglo XIII cuando el matemático italiano Leonardo Fibonacci difundió el uso de la línea horizontal, símbolo que se emplea en la actualidad para separar el numerador y denominador en una fracción.
Relación de las fracciones y la división
Las fracciones representan porciones de un todo, es por ello que de alguna manera están estrechamente relacionadas con la división. De hecho, toda fracción es una división sin resolver, es decir; es equivalente a . Por lo tanto, es igual a .
En algunas ocasiones podemos expresar operaciones en forma de fracción, pero también podemos hacerlo como división y resolver la misma.
¿Sabías qué?
Existen fracciones que están formadas por una parte entera y una fraccionaria, a ellas se las conoce como fracciones mixtas.
Aplicación en la vida cotidiana de las fracciones
El ser humano siempre ha tenido la necesidad de contar, medir y repartir; razón por la que inventó los números. Las fracciones no están lejos de esta realidad y son usadas para entender porciones de cosas.
Están presentes en recetas de cocinas, en mediciones de telas y de volúmenes de productos (como en las gaseosas de medio litro o 1/2 L). Hay autos donde los indicadores del nivel de gasolina son expresados en fracciones para saber si el tanque está lleno, tiene la mitad o un cuarto de su capacidada.
Incluso, están presentes en algunas monedas como el dólar, donde existe una denominación llamada “centavo de dólar”, es decir, si el valor de un dólar lo pudiéramos dividir en 100 partes iguales, una de esas partes sería el centavo.
En resumen, las fracciones permiten expresar cantidades cotidianas de manera más sencilla.
¡A practicar!
1. ¿Cómo se leen las siguientes fracciones?
a)
Solución
Cinco tercios.
b)
Solución
Un centavo.
c)
Solución
Veintitrés cuarentavos.
d)
Solución
Tres medios.
e)
Solución
Dos quintos.
f)
Solución
Doce onceavos.
g)
Solución
Siete décimos.
h)
Solución
Once sextos.
i)
Solución
Trece cuartos.
j)
Solución
Cincuenta y ocho séptimos.
2. ¿Cómo se escriben en número estas fracciones?
a) Nueve décimos.
Solución
b) Catorce novenos.
Solución
c) Setenta y tres centavos.
Solución
d) Ochenta y ocho novenos.
Solución
RECURSOS PARA DOCENTES
Video “Fracciones decimales”
Este video ayuda a entender la relación entre las fracciones y los números decimales así como la manera en transformar una fracción en decimal.
En el presente tomo de la Enciclopedia Matemáticas Primaria tendrás acceso a información más detallada sobre las fracciones, así como la posibilidad de obtener diferentes recursos educativos sobre este tema.
La matemática presenta cuatro operaciones básicas: adición o suma, sustracción o resta, multiplicación y división. La adición consiste en combinar dos o más números para obtener un total. Esta operación emplea el símbolo “+” y tiene dos elementos: los sumandos, que son los números que se van a sumar, y la suma, que consiste en el resultado en sí. La sustracción, por su parte, es una operación que consiste en quitar una cantidad a otra, por esto es considerada como la operación inversa a la adición, y emplea el símbolo “−”. Los elementos de una resta son: el minuendo que es el número al que se le va a quitar la cantidad, el sustraendo que es el número que resta y la diferencia que es el resultado de la operación.
Multiplicación y división
La multiplicación y la división son otras operaciones fundamentales de la matemática. Se dice que la multiplicación es una suma abreviada porque permite sumar tantas veces un número como indique otro, a menudo se usa la equis (x) para indicar esta operación pero también se usa el punto (·). Está formada por los factores, que son los números que se multiplican y por el producto que es el resultado de dicha operación. Por otro lado, la división es la operación opuesta a la multiplicación y consiste en repartir grupos de elementos en partes iguales. Su símbolo es “÷” y sus elementos principales son: el dividendo, que es el número que se reparte; el divisor, que es el número que indica las partes en las que se va a dividir el dividendo; el cociente, que es el resultado; y el resto, que es la cantidad que no se puede dividir.
Operaciones combinadas
Las operaciones combinadas son aquellas en las que aparecen dos o más operaciones matemáticas. Aunque pueden incluir símbolos como los paréntesis, corchetes y llaves, cuando se aplican a números naturales estos símbolos no son necesarios. Para resolver cálculos combinados de suma y resta, se resuelven los números de izquierda a derecha en función de la operación que se indique. Cuando existan operaciones combinadas que además de suma o resta incluyan multiplicación, división o ambas, se resuelven las multiplicaciones y divisiones primero para luego sumar o restar de la manera mencionada anteriormente.
Hay ocasiones en las que pueden aparecer varias operaciones matemáticas en un mismo problema: estas expresiones se conocen como operaciones combinadas. Para resolverlas, es importante que tengas buenas bases en las propiedades de la suma, la resta, la multiplicación y la división, así como también que sepas priorizar entre ellas.
¿Qué es una operación combinada?
Es una expresión que contiene dos o más operaciones matemáticas, como la suma, la resta, la división y la multiplicación. Algunas veces puede aparecer con paréntesis para separar términos dentro de la expresión.
Para estos problemas se deben tener en cuenta dos cosas:
La regla de los signos.
La prioridad de operaciones, lo que significa que hay operaciones que deben resolverse antes que otras.
Ley de los signos en suma y resta
Para resolver operaciones combinadas es indispensable comprender ciertos criterios que cumplen los números en relación a su signo, a estos criterios se los conoce como “ley de los signos”. A continuación, te mostramos aquellos orientados únicamente a operaciones de suma y resta.
Cuando se suman números positivos, el resultado es otro número con signo positivo:
10 + 13 = 23
Cuando se suman números negativos, se mantiene el signo negativo y suman los números:
(−3) + (−2) = −5
Cuando se tienen números con diferente signo, se restan y se coloca el signo que corresponda al número mayor:
15 − 3 = 12 → El número mayor es 15 y como no tiene signo se entiende que es positivo, ya que por convención los números que no presentan signo se asumen como números positivos, así que al resultado no se le coloca signo.
3 − 7 = −4 → El número mayor es el 7 y, por tener el signo menos, el resultado debe ser negativo.
¿Sabías qué?
El símbolo “÷” algunas veces es reemplazado por dos puntos “:” para indicar una división.
Ejercicios combinados de sumas y restas
Las operaciones combinadas de sumas y restas con números naturales son fáciles de reconocer porque no llevan paréntesis. En los ejercicios de este tipo, la resolución se hace de izquierda a derecha en el orden en que aparecen los números.
– Por ejemplo:
458 − 352 + 157 − 235 + 784 − 568
Primero debes resolver los dos primeros términos: 458 − 352 = 106, y colocar el resultado como reemplazo de esos números. Luego escribe los números siguientes con sus signos:
106 + 157 − 235 + 784 − 568
Suma el resultado anterior con el siguiente término:
106 + 157 − 235 + 784 − 568
Como el resultado de 106 + 157 es igual a 263, sustituye esos números y anota los números siguientes:
263 − 235 + 784 − 568
Debido a que el número que le sigue a 263 está precedido por un signo menos, la operación a realizar es una resta, es decir, 263 − 235, cuyo resultado es 28. Anota este resultado y resuelve con el número siguiente:
28 + 784 − 568
De 28 + 784 resulta 812, entonces, escribe este resultado junto con el último número que queda y resuelve:
812 − 568 = 244
Con esta última operación obtendrás el resultado del ejercicio. También puedes escribir la solución de esta forma:
458 − 352 + 157 − 235 + 784 − 568 = 244
Ejercicios combinados de multiplicación y división
Los ejercicios combinados que involucran multiplicación y división sin paréntesis se resuelven en este orden:
Realiza las multiplicaciones y las divisiones primero.
Realiza las sumas y restas de la manera en la que fue explicado en el punto anterior.
– Por ejemplo:
112 + 3 x 15 − 85
Resuelve primero la multiplicación 3 x 15:
112 + 3 x 15 − 85
Como 3 x 15 = 45, coloca el 45 como reemplazo de la expresión y respeta el orden de los demás números:
112 + 45 − 85
Ahora tenemos una operación combinada de suma y resta que puedes solucionar de izquierda a derecha como se explicó anteriormente:
112 + 45 − 85
157 − 85 = 72
El resultado es el siguiente:
112 + 3 x 15 − 85 = 72
– Otro ejemplo:
21 + 25 ÷ 5 − 12 + 8 x 6
Primero debes identificar los números que multiplican y dividen:
21 + 25 ÷ 5 − 12 + 8 x 6
Resuelve las operaciones de multiplicación y división y reemplaza por sus respectivos resultados. El orden y los signos del resto de los números se mantiene. Recuerda que 25 ÷ 5 = 5 y que 8 x 6 = 48. Al sustituir estos números queda:
21 + 5 − 12 + 48
Ya puedes resolver la operación combinada de suma y resta de la manera explicada anteriormente:
21 + 5 − 12 + 48
26 − 12 + 48
14 + 48 = 62
Expresa el resultado de la siguiente manera:
21 + 25 ÷ 5 − 12 + 8 x 6 = 62
¡A practicar!
1. Resuelve las siguientes operaciones combinadas de sumas y restas sin paréntesis:
a) 115 − 94 + 525 − 32 =
Solución
514
b) 350 − 257 − 50 + 117 =
Solución
160
c) 450 − 358 + 15 + 452 − 527 + 13 =
Solución
45
d) 1.975 − 1.875 + 252 =
Solución
352
e) 759 − 651 + 875 − 532=
Solución
451
2. Resuelve las siguientes operaciones combinadas con multiplicaciones y divisiones sin paréntesis:
a) 14 − 6 x 3 − 11 =
Solución
−15
b) 28 − 12 ÷ 3 + 10 =
Solución
34
c) 42 + 5 x 5 − 48 + 42 ÷ 6 =
Solución
26
d) 272 − 105 + 6 x 6 − 15 + 2 x 2 =
Solución
192
e) 3.615 ÷ 15 + 9 − 90 + 5 x 2 =
Solución
170
RECURSOS PARA DOCENTES
Artículo “Ley de los signos: suma y resta”
Este artículo explica la ley de los signos para la suma y la resta. También muestra ejemplos de ejercicios para cada caso.
Este artículo ayuda a ampliar el conocimiento sobre los números negativos y algunas de sus aplicaciones. También incluye una serie de ejercicios para resolver.