CAPÍTULO 6 / TEMA 3

PROBABILIDAD

Si lanzas un dado, ¿cuáles son los posibles resultados? ¡6! Esto es así porque los dados tienen 6 caras; no obstante, no sabemos con certeza cuál de esos números saldrá. Esto es lo que se conoce como experimento aleatorio, y gracias a la probabilidad podemos medir la posibilidad de que este ocurra o no ocurra.

Los juegos de azar son aquellos cuyo resultado es aleatorio y dependen principalmente de la casualidad, sin que la habilidad del jugador sea un factor importante. La mayoría de estos involucra apuestas y mientras menor sea la probabilidad de ganar, mayor será el premio obtenido. El bingo, la ruleta y las quinielas son algunos ejemplos de juegos de azar.

VER INFOGRAFÍA

experimento determinista y aleatorio

Todos los fenómenos que ocurren en nuestra vida pueden ser catalogados como deterministas o aleatorios.

Los experimentos o fenómenos deterministas son los que suceden con seguridad, es decir, al repetirlos en las mismas condiciones se obtiene el mismo resultado; por ejemplo:

  • El agua se congela a 0 °C.
  • Al multiplicar 2 × 2 el resultado es 4.

Los experimentos o fenómenos aleatorios suceden al azar, no es posible predecir su resultado; por ejemplo:

  • Sacar una carta de un mazo de naipes.
  • Lanzar una moneda.
Lanzar un dado es un experimento aleatorio que podrías analizar por medio de cálculos de probabilidad. Aquí las variables aleatorias pueden tomar dos o más valores que no se pueden anticipar con certeza. Por ejemplo, al arrojar un dado los posibles resultados son 1, 2, 3, 4, 5 y 6. Sabemos qué valores pueden salir, pero no podemos asegurar cuál de ellos será.

TIPOS DE EVENTOS aleatorios

Los eventos aleatorios pueden ser seguros, posiblesimposibles. 

  • Los eventos imposibles no pueden ocurrir nunca; por ejemplo, lanzar un dado y que salga el número mayor a 7.
  • Los eventos posibles ocurren algunas veces; por ejemplo, lanzar un dado y que salga el número 3.
  • Los eventos seguros ocurren siempre y coinciden con el espacio muestral; por ejemplo, lanzar un dado y que salga un número menor a 7.

¿Qué es el espacio muestral?

Es el conjunto que contiene a todos los resultados posibles de un experimento aleatorio. Lo representamos con E. Se denomina “suceso elemental” a cada uno de los posibles resultados. Por ejemplo:

Experimento Espacio muestral
Lanzar un dado E = {1, 2, 3, 4, 5, 6}
Lanzar una moneda E = {cara, cruz}

PROBABILIDAD DE UN EVENTO

La probabilidad de un resultado o acontecimiento es la proporción de las veces en que ocurrirán. En otras palabras, la probabilidad es el mecanismo matemático a través del cual pueden estudiarse sucesos aleatorios, es decir, operaciones cuyos resultados no pueden ser anticipados con seguridad, como el lanzamiento de un dado, la tirada de ruleta o un juego de cartas.

En los casos donde las posibilidades de obtener uno u otro resultado no son iguales, se analizan las probabilidades por medio de la definición del matemático francés Pierre de Laplace: La probabilidad de un acontecimiento es igual al cociente entre el número de casos favorables y el número de casos igualmente posibles”.

P=\frac{casos \: favorables}{casos\: posibles}

– Ejemplo 1:

En un bolillero hay 24 bolas, 20 rojas y 4 azules, ¿cuál es la probabilidad de extraer una bola roja?,

Casos favorables Casos posibles Casos favorables/Casos posibles
20 24 20/24 = 5/6

La probabilidad de que salga una bola roja es de 5/6.

Podemos expresar la probabilidad como una fracción, un número decimal o porcentaje. Por lo tanto, para este caso podemos decir que:

P = 5/6

P = 0,83

P = 83,33 %

¿Sabías qué?
Para transformar la probabilidad en fracción a porcentaje basta con multiplicar el cociente entre el numerador y el denominador por 100.

– Ejemplo 2:

Al lanzar un dado, ¿cuál es la probabilidad de obtener un número mayor que 4?

Casos favorables Casos posibles Casos favorables/Casos posibles
2

{5, 6}

6

{1, 2, 3, 4, 5, 6}

2/6 = 1/3

La probabilidad de obtener un número mayor que 4 es de 1/3. También podemos expresarlo de la siguiente manera:

P = 1/3

P = 0,33

P = 33,33 %

Baraja francesa

Es un conjunto de cartas divididas en cuatro palos: corazones, picas, tréboles y rombos. De cada palo hay 13 cartas, por lo tanto, el mazo está formado por 52 cartas totales. Los corazones y los rombos son de color rojo, y los tréboles y las picas son de color negro. Estos naipes son ampliamente utilizados en juegos de mesa y azar. Si tuviésemos que sacar una carta del mazo sin ver tendríamos las siguientes probabilidades:

Evento Probabilidad (fracción) Probabilidad (número decimal) Probabilidad (porcentaje)
Sacar una carta de corazones 13/52 = 1/4 0,25 25 %
Sacar el 4 de tréboles 1/52 0,02 2 %
Sacar una carta con dos palos 0 0 0 %
Sacar una carta roja 26/52 = 1/2 0,5 50 %

árbol de probabilidades

Los diagramas de árbol se utilizan en matemática principalmente para identificar formas de agrupar elementos o para indicar los factores que conforman un determinado número. Sin embargo, también pueden aplicarse a experimentos probabilísticos de distinto tipo en la que las formas de ordenar se llamarán “casos posibles”.

– Ejemplo:

Si lanzamos una moneda tres veces, ¿cuántos resultados posibles tendríamos?

En este diagrama de árbol observamos que hay 8 casos posibles u 8 posibles combinaciones de resultados si lanzamos una moneda tres veces.

– Ejemplo 2:

Observa de nuevo el diagrama, ¿cuál es la probabilidad de obtener tres veces cara al lanzar una moneda tres veces seguidas?

Para responder esta pregunta debemos ver todas las posibles opciones. Como solo una cumple este requerimiento y los posibles casos son 8, decimos que la probabilidad de obtener tres veces cara al lanzar una moneda tres veces seguidas es:

P = 1/8

P = 0,125

P = 12,5 %

¡A practicar!

Expresa en fracción, número decimal y porcentaje la probabilidad de que ocurran los siguientes eventos:

  • Lanzar un dado y que salga un número impar.
Solución

P = 3/6 = 1/2

P = 0,5

P = 50 %

  • Sacar una carta con número par de un grupo de 10 cartas numeradas del 1 al 10.
Solución

P = 5/10 = 1/2

P = 0,5

P = 50 %

  • Sacar una bola verde de una urna que tiene 3 bolas rojas, 5 bolas verdes y 3 bolas amarillas.
Solución

P= 5/11

P = 0,45

P = 45,5 %

  • Sacar una carta de tréboles de un mazo de baraja francesa.
Solución

P = 13/52 = 1/4

P = 0,25

P = 25 %

RECURSOS PARA DOCENTES

Artículo “Probabilidad”

Con este artículo se podrá profundizar sobre el concepto de probabilidad. Además hay algunos ejercicios para poner en práctica lo aprendido.

VER

CAPÍTULO 8 / TEMA 5 (REVISIÓN)

estadística y probabilidad │ ¿QUÉ APRENDIMOS?

recolección y conteo de datos

La recolección y conteo de datos es el procedimiento que se lleva a cabo para la obtención de información o respuesta de diferentes variables. Los datos pueden clasificarse como cualitativos cuando expresan cualidades o cuantitativos cuando expresan cantidades. Los datos cuantitativos se diferencian en continuos si tienen cualquier valor dentro de un intervalo; y discretos si solo ciertos valores están en un intervalo.

Los términos “niño” y “adulto” son datos cualitativos sobre una persona, mientras que la estatura, como “1,65 metros” o “1,2 metros” son datos cuantitativos.

gráficos estadísticos

Los gráficos estadísticos son una herramienta fundamental para lograr la correcta interpretación de los datos recolectados, ya que ofrecen un gran recurso visual. Existen diversos tipos de estos como el gráfico de barras, el poligonal o el circular. Los elementos principales de cada uno de estos son el título, el cuerpo y la escala.

Los gráficos de barras representan variables cualitativas o cuantitativas discretas, los poligonales representan magnitudes y frecuencias de diferentes variables y los circulares expresan porcentajes y proporciones de una variable en particular.

medidas de tendencia central

Las medidas de tendencia central se utilizan para poder representar una distribución de datos en un solo valor característico. Para esto puede calcularse la moda (Mo), la mediana (Md) o la media (\fn_phv \small \overline{x}). Estas estimaciones pueden hacerse a partir de la organización de todos los datos.

La moda es el valor de más frecuencia, la mediana es el valor central de la distribución de todos los datos y la media se calcula como la sumatoria de todos los valores dividido entre la cantidad total.

eventos y probabilidad

Los eventos aleatorios pueden ser seguros o imposibles, por ejemplo, al lanzar un moneda es seguro que saldrá cara o sello, pero es imposible que salga una tercera opción. La probabilidad de que ocurra un evento se mide al dividir la cantidad de casos favorables entre la cantidad de casos posibles, así, la probabilidad de que salga cara al lanzar una moneda es de 1/2. La probabilidad también se puede expresar como porcentaje. Por otro lado, los diagramas de Venn también nos ayudan a determinar visualmente probabilidades.

En los juegos de azar la suerte tiene un papel importante, no siempre el que tiene mejor habilidad gana.

CAPÍTULO 3 / TEMA 3

multiplicación y división de fracciones

Luego de la suma y la resta, la multiplicación y la división son las operaciones básicas más importantes. Estas se aplican a una amplia gama de números y las fracciones no son la excepción. Las reglas para resolver problemas de este tipo son muy sencillas. ¡Aprende cómo hacerlo!

¿Cómo se multiplican las fracciones?

Para multiplicar fracciones lo único que debemos hacer es multiplicar todos los numeradores y denominadores de forma lineal. Luego, si es necesario, simplificamos hasta su fracción irreducible.

\frac{a}{b} y \frac{c}{d} ∈ \mathbb{Q}, se tiene que

 

\frac{a}{b}\times \frac{c}{d}=\frac{a\times c}{b\times d}

– Ejemplo:

\frac{2}{3}\times \frac{9}{4}\times \frac{1}{3}=\frac{2\times 9\times 1}{3\times 4\times 3}=\frac{18}{36}=\boldsymbol{\frac{1}{2}}

-\frac{6}{5}\times \frac{3}{2}=\frac{-6\times 3}{5\times 2}=\frac{-18}{10}=\boldsymbol{-\frac{9}{5}}

¿Cómo simplificar una fracción?

Simplificar una fracción significa que tenemos que transformarla en otra equivalente e irreducible. Para esto, tenemos que dividir sucesivamente tanto el numerador como el denominador entre sus divisores comunes. Por ejemplo:

VER INFOGRAFÍA

Una manera simple de resolver problemas es por medio de la simplificación de sus factores. Observa que si multiplicamos dos fracciones y el numerador de la primera es igual al denominador de la segunda, cancelamos ambos factores. Esto sucede porque todo número sobre él mismo resultará en 1, y el producto de todo número con el 1 será igual al mismo número.

Fracción de un entero

Todo número entero puede ser representado como una fracción con denominador igual a 1.

5=\frac{5}{1}

123=\frac{123}{1}

Problemas de multiplicación

1. Carmen vende rosquillas en cajas de una docena. Si Laura le pide \frac{5}{6} de una caja, ¿cuántas rosquillas debe venderle Carmen?

  • Datos

Cantidad de rosquillas en una caja: 1 docena = 12 rosquillas

Pedido de Laura: \frac{5}{6} de una caja

  • Reflexión

Para saber la cantidad de rosquillas que Carmen debe vender solo tenemos que multiplicar la cantidad de rosquillas en una caja (12) por la fracciones que se desea (5/6).

  • Cálculo

12\times \frac{5}{6}=\frac{12}{1}\times \frac{5}{6}=\frac{12\times 5}{1\times 6}=\frac{60}{6}=\boldsymbol{10}

  • Respuesta

Carmen debe venderle a Laura 10 rosquillas.


2. En un club hay 72 chicos que practican algún deporte. Tres cuartas partes practican baloncesto, la tercera parte del resto practica natación y los demás practican fútbol. Responde:

  1. ¿Cuántos chicos practican baloncesto?
  2. ¿Cuántos practican natación?
  3. ¿Cuántos practican fútbol?
  4. ¿Qué fracción del total representan los chicos que juegan baloncesto, natación y fútbol?
  • Datos

Total de chicos: 72

Chicos que practican baloncesto: \frac{3}{4} del total de chicos

Chicos que practican natación: \frac{1}{3} del resto de los que practican baloncesto

Chicos que practican fútbol: ?

  • Reflexión
  1. Para saber la cantidad de chicos que practican baloncesto tenemos que multiplicar la cantidad de chicos (72) por la fracción (3/4) que representan los que practican ese deporte.
  2. La diferencia o resta entre el total de chicos y los que practican baloncesto (72 − a) tenemos que multiplicarla por la fracción que representa a los que juegan natación (1/3).
  3. La cantidad de chicos que practican fútbol será igual a la resta entre el total de chicos y los que practican natación y baloncesto (c = 72 − (a + b)).
  4. Con la cantidad de chicos que juega cada deporte, basta con considerarlos como numeradores con denominador igual a 72. Si la suma de todas las fracciones es igual a 1, entonces todas las fracciones serán correctas.
  • Cálculo

a. Chicos que practican baloncesto:

72 \times \frac{3}{4}=\frac{72}{1}\times \frac{3}{4}=\frac{72\times 3}{4}=\frac{216}{4}=\boldsymbol{54}

b. Chicos que practican natación:

– Restamos la cantidad de chicos que practican natación al total de chicos:

72-54=\boldsymbol{18}

– Luego calculamos la cantidad:

18\times \frac{1}{3}=\frac{18}{1}\times \frac{1}{3}=\frac{18\times 1}{1\times 3}=\frac{18}{3}=\boldsymbol{6}

c. Chicos que practican fútbol:

72-(54+6)=72-60=\boldsymbol{12}

d. Fracciones por deporte:

– Baloncesto:

\frac{54}{72}=\frac{3}{4}

– Natación:

\frac{6}{72}=\frac{1}{12}

– Fútbol:

\frac{12}{72}=\frac{1}{6}

* Todas las fracciones fueron simplificadas.

Podemos comprobar por medio de una suma:

\frac{54}{72}+\frac{6}{72}+\frac{12}{72}=\frac{72}{72}=\boldsymbol{1}

Como la suma de las fracciones es igual a 1, entonces son correctas.

  • Respuestas

a. ¿Cuántos chicos practican baloncesto?

54 chicos practican baloncesto.

b. ¿Cuántos practican natación?

6 chicos practican natación.

c. ¿Cuántos practican fútbol?

12 chicos practican fútbol.

d. ¿Qué fracción del total representan los chicos que juegan baloncesto, natación y fútbol?

\frac{3}{4} del total practica baloncesto.

\frac{1}{12} del total practica natación.

\frac{1}{6} del total practica fútbol.

¿Sabías qué?
El tratado de matemática chino más antiguo es el Chou Pei Suan Ching. En él hay varios problemas de divisiones de fracciones que debían ser llevadas a fracciones de igual denominador para ser resueltas.

¿cómo se dividen las fracciones?

La división de dos fracciones es igual a la multiplicación de la primera por la inversa de la segunda.

\frac{a}{b} y \frac{c}{d} ∈ \mathbb{Q}, se tiene que

 

\frac{a}{b}\div \frac{c}{d}=\frac{a}{b}\times \frac{d}{c}=\frac{a\times d}{b\times c}

– Ejemplo:

\frac{36}{5}\div \frac{9}{8}=\frac{36}{5}\times \frac{8}{9}=\boldsymbol{\frac{32}{5}}

\frac{4}{10}\div \frac{8}{15}=\frac{4}{10}\times \frac{15}{8}=\frac{60}{80}=\boldsymbol{\frac{3}{4}}

La sandía o patilla es una fruta de gran tamaño y muy rica en agua, ¿cuántas partes de ella ves en la imagen? ¡Hay media sandía de un lado y un cuarto de sandía del otro lado! Cuando nos referimos a la mitad de algo usamos la fracción 1/2 y la mitad de esa mitad se representa con la fracción 1/4. Estas divisiones de fracciones las vemos a diario en los mercados y las verdulerías.

Método de la doble c

Este es un método alternativo para resolver divisiones de fracciones. Consiste en dibujar una línea curva grande, similar a la letra “c”, que una el numerador de la fracción de arriba con el denominador de la fracción de abajo. Después hacemos una “c” más pequeña que una el denominador de la fracción de arriba y el numerador de la fracción de abajo.

Por ejemplo, al hacer por medio de este método la división \frac{2}{3}\div\frac{5}{6} podemos representarlo así:

Problemas de división

1. Luis es jardinero. Él utiliza dos quintos de litro de agua para regar una planta. Si tiene una tanque con 45 litros de agua, ¿cuántas plantas puede regar?

  • Datos

Agua gastada en una planta: \frac{3}{5} litros

Agua en el tanque: 45 litros

  • Reflexión

Si dividimos los litros de agua que tiene el tanque entre los litros de agua que gasta Luis por planta sabremos cuántas plantas podrá regar. Para esto, multiplicamos la primera fracción (45 = 45/1) por la inversa de la segunda fracción (5/3).

  • Cálculo

45\div \frac{3}{5}=\frac{45}{1}\times \frac{5}{3}=\frac{45\times 5}{1\times 3}=\frac{225}{3}=\boldsymbol{75}

  • Respuesta

Luis podrá regar 75 plantas.


2. Carla organiza una fiesta para 12 personas. Si tiene 3 pizzas y media para ese día y cada una está cortada en 6 porciones, ¿le alcanzará para que cada persona coma 2 porciones?

  • Datos

Cantidad de invitados: 12

Cantidad de pizzas: 3\frac{1}{2}

Cantidad de porciones por cada pizza: 6

  • Reflexión
  1. Primero tenemos que saber la cantidad de porciones totales que tenemos. Si cada pizza tiene 6 porciones debemos hacer una división entre la cantidad de pizzas (3 y 1/2) y las porciones de esta (1/6). Primero dividimos 3 entre 1/6 y luego 1/2 entre 1/6.
  2. Luego de saber el total de porciones debemos comparar con lo deseado. Para que 12 invitados coman 2 porciones, deberían haber 24 porciones totales de pizza. Si el resultado obtenido en a) es menor que 24, las 3 pizzas y media no alcanzarán, pero si el resultado obtenido es igual o mayor a 24, las pizzas sí serán suficientes para que todos coman 2 porciones.
  • Cálculo

a. Porciones totales:

– Dividimos las pizzas entre 1/6:

3\div \frac{1}{6}=\frac{3}{1}\times \frac{6}{1}=\boldsymbol{18}

\frac{1}{2}\div \frac{1}{6}=\frac{1}{2}\times \frac{6}{1}=\frac{6}{2}=\boldsymbol{3}

– Sumamos las porciones:

18+3=\boldsymbol{21}

b. Comparamos:

21 < 24

  • Respuesta

Las 3 pizzas y media no serán suficientes para que los 12 invitados coman 2 porciones.


3. Pablo compró tres cuartos de kilogramo de helado, pero pidió que se lo separaran en envases de un octavo de kilogramos para repartirlo entre sus sobrinos. ¿Para cuántos sobrinos le alcanzará el helado?

  • Datos

Helado comprado: \frac{3}{4} kg

Peso de helado en los envases repartidos: \frac{1}{8} kg

  • Reflexión

Si dividimos la cantidad de helado comprado entre lo que cabe en cada envase en el que se repartió, sabremos la cantidad de envases que usó y, por lo tanto, la cantidad de sobrinos a los que podrá darle un envase de helado.

  • Cálculo

\frac{3}{4}\div \frac{1}{8}=\frac{3}{4}\times \frac{8}{1}=\frac{24}{4}=\boldsymbol{6}

  • Respuesta

A Pablo le alcanzará para darle helado a 6 de sus sobrinos.

En la tienda, venden cartones con una docena de huevos. Si Marcos solo necesita 1/4 de docena para preparar una receta de un postre, ¿cuántos huevos debe comprar? ¡Muy sencillo! Tenemos que multiplicar la docena de huevos por la fracción deseada, entonces: 12 × 1/4 = 3. Así que Marcos solo tiene que comprar 3 huevos para hacer su postre.

¡A practicar!

Resuelve los siguientes ejercicios:

  • \frac{\frac{12}{35}}{\frac{4}{21}}
Solución
\frac{\frac{12}{35}}{\frac{4}{21}}=\boldsymbol{\frac{9}{5}}
  • \frac{5}{6}\times \frac{10}{8}
Solución
\frac{5}{6}\times \frac{10}{8}=\boldsymbol{\frac{25}{24}}
  • \frac{6}{4}\div \frac{1}{2}
Solución
\frac{6}{4}\div \frac{1}{2}\frac{6}{4}\div \frac{1}{2}=\boldsymbol{3}
  • \frac{\frac{6}{5}}{\frac{7}{15}}
Solución
\frac{\frac{6}{5}}{\frac{7}{15}}=\boldsymbol{\frac{18}{7}}
  • \frac{8}{3}\times \frac{3}{8}
Solución
\frac{8}{3}\times \frac{3}{8}=\boldsymbol{1}
  • \frac{30}{6}\div \frac{2}{5}
Solución
\frac{30}{6}\div \frac{2}{5}=\boldsymbol{\frac{25}{2}}
  • \frac{\frac{8}{18}}{\frac{4}{9}}
Solución
\frac{\frac{8}{18}}{\frac{4}{9}}=\boldsymbol{1}

RECURSOS PARA DOCENTES

Tarjeta Educativa “Multiplicación de Fracciones”

La tarjeta tiene material adicional sobre multiplicación de fracciones y sus propiedades.

VER

Tarjeta Educativa “División de Fracciones”

La tarjeta tiene material adicional sobre división de fracciones y sus propiedades.

VER

Artículo “Multiplicación y división de fracciones”

Este recurso cuenta con una serie de ejemplos prácticos y ejercicios útiles sobre multiplicación y división de fracciones.

VER

CAPÍTULO 1 / TEMA 3

CONJUNTO DE LOS NÚMEROS RACIONALES

El conjunto de los números racionales está conformado por todos aquellos números que pueden ser expresados como una división. Entran en este grupo algunos números decimales y las fracciones. Tienen gran aplicación cotidiana para representar partes de un entero o porciones de una totalidad.

No podemos usar los números enteros para resolver todas las operaciones entre ellos. Por ejemplo, si cortamos una tabla de 1 metro en 2 partes iguales, ¿cuánto mide cada pedazo? La división 1 ÷ 2 no tiene solución dentro de los números enteros, por tal motivo, usamos el conjunto de los números racionales, en el que esta división se representa como 1/2.

¿Sabías qué?
La primera civilización en utilizar los números racionales fueron los egipcios.

¿QUÉ SON LOS NÚMEROS RACIONALES?

Son todos aquellos números que pueden representarse a través de una fracción. De ahí su nombre “racionales”, pues a las fracciones también se las conocen como “razones”.

El conjunto de los números racionales se denota con la letra \mathbb{Q}, que alude al término quotient que significa “cociente”, ya que todo número racional puede ser representado como una fracción con cociente igual a un número decimal.

VER INFOGRAFÍA

Los números racionales como subconjunto de los números reales

Los números racionales (\mathbb{Q}), en conjunto con los números enteros (\mathbb{Z}) y los irracionales (\mathbb{I}), conforman el conjunto de los números reales (\mathbb{R}), donde se encuentran todos los números naturales y decimales.

ELEMENTOS DE LOS NÚMEROS RACIONALES

Los números racionales se forman al dividir dos números enteros que dan como resultado un número decimal. Los números racionales son todos los números del tipo \frac{a}{b} donde a es el numerador y b es el denominador. Ambos elementos, a y b, son número enteros y b es distinto de cero.

Número irracionales

Toda fracción es un número racional. Sin embargo, no todo número decimal pertenece al conjunto de los números racionales, porque no todos tienen una fracción equivalente. Tal es el caso de los decimales no periódicos, los cuales pertenecen al conjunto de los números irracionales, denotados con la letra \mathbb{I}. En esta categoría se encuentran, por ejemplo, \sqrt{7}, \pi o cualquier número con decimales infinitos.

orden de los números racionales

Comparar racionales permite establecer una relación de orden en \mathbb{Q}. Cuando los racionales tienen igual denominador, será mayor aquel con mayor numerador. Por ejemplo, entre \frac{8}{3} y \frac{2}{3}\frac{8}{3} es mayor porque 8 > 2.

Cuando los racionales tienen denominadores diferentes tenemos que convertirlos en fracciones equivalentes de igual denominador y luego comparar. También podemos usar la siguiente regla:

Si \frac{a}{b} y \frac{c}{d} ∈ \mathbb{Q}, con b y d positivos

Se cumple que:

Si  a\times d> b\times c,  entonces   \frac{a}{b}> \frac{c}{d}

Si  a\times d< b\times c,  entonces   \frac{a}{b}< \frac{c}{d}

– Ejemplo:

\frac{8}{5}> \frac{6}{7}   porque  8\times 7> 5\times 6

\frac{4}{7}< \frac{3}{5}  porque  4\times 5< 7\times 3

Fracciones negativas

Si el numerador o el denominador de una fracción es un número negativo podemos escribir el signo “−” antes de la fracción.

\frac{-a}{b}=-\frac{a}{b}

\frac{a}{-b}=-\frac{a}{b}

Las fracciones negativas, al estar más a la izquierda en la recta numérica, son menores que las fracciones positivas.

REPRESENTACIÓN GRÁFICA

Los números racionales se suelen utilizar para expresar partes de una totalidad. Por ejemplo, “un 1/4 de la población mundial utiliza Internet” o “un 1/3 de la población vive en situación de pobreza”, o bien “un 1/2 de los habitantes del planeta son mujeres”. En general, resulta más representativo hablar de fracciones de un total que solo indicar la cantidad de personas.

Para graficar números racionales tenemos que identificar primero qué tipo de fracción es. Si la fracción es propia, es decir, si tiene el numerador menor al denominador, basta con dividir una figura geométrica en tantas partes como indique el denominador y colorear las partes que indique el denominador. Por ejemplo:

\boldsymbol{1=}

\boldsymbol{\frac{2}{2}=}

\boldsymbol{\frac{2}{3}=}

\boldsymbol{\frac{2}{4}=}

\boldsymbol{\frac{2}{5}=}

 

\boldsymbol{\frac{2}{6}=}

\boldsymbol{\frac{2}{7}=}

\boldsymbol{\frac{2}{8}=}

\boldsymbol{\frac{2}{9}=}

\boldsymbol{\frac{2}{10}=}

 

Si la fracción es impropia tenemos que dividir la figura en tantas partes como muestre el denominador y repetirla hasta que se coloreen todas las partes que señale el numerador. Estas fracciones siempre tendrán más de un entero, así que también podemos convertir la fracción impropia en número mixto y seguir los pasos anteriores. Por ejemplo:

\frac{20}{9}=2\frac{2}{9}=

\frac{10}{8}=1\frac{2}{8}=

Fracciones y porcentajes

Los gráficos circulares o de sectores son ampliamente utilizados en estadística y otras áreas en las que son una herramienta de gran utilidad para expresar partes de un todo, por lo que las fracciones son necesarias para determinar las porciones de colores. No obstante, es mucho más práctico hacer estos gráficos con datos mostrados en porcentajes: una forma de representar a una fracción decimal, cuyo denominador es 100.

Convertir fracciones en porcentajes es muy sencillo, solo tenemos que dividir el numerador entre el denominador y después multiplicar por 100 %. Por ejemplo, 1/4 es igual a 25 % porque 1 ÷ 4 = 0,25 y 0,25 × 100 % = 25 %.

¡A practicar!

1. Señala cuáles números son racionales y cuáles son irracionales.

  • \frac{4}{5}
Solución
Es un número racional.
  • \sqrt{2}
Solución
Es un número irracional.
  • \frac{\pi }{3}
Solución
Es un número irracional.
  • \frac{1}{4}
Solución
Es un número racional.

2. Ordena de menor a mayor los siguientes número racionales.

  • \frac{8}{5}\frac{6}{7}\frac{2}{9}\frac{1}{2}
Solución
\frac{2}{9} < \frac{1}{2} < \frac{6}{7} < \frac{8}{5}
  • \frac{10}{3}\frac{6}{8}\frac{2}{3}\frac{5}{2}
Solución
\frac{2}{3} < \frac{6}{8} < \frac{5}{2} < \frac{10}{3}

  • -\frac{8}{4}\frac{3}{7}1\frac{2}{5}
Solución
-\frac{8}{4} < \frac{2}{5} < \frac{3}{7} < 1

3. ¿Qué fracción representan estos gráficos?

Solución
\frac{7}{3}
Solución
\frac{2}{9}
Solución
\frac{8}{5}
Solución
\frac{4}{10}
RECURSOS PARA DOCENTES

Artículo “¿Cómo transformar un número decimal a fracción?”

En este artículo hallará el método y la explicación para obtener la fracción generatriz de un número decimal.

VER

Artículo “La recta numérica”

En este recurso encontrará un método para representar números racionales en la recta real.

VER

Artículo “La clasificación de los números”

En este artículo encontrará la clasificación de los diferentes conjuntos numéricos, a fin de identificar en qué categoría o a qué subconjunto pertenecen los números racionales.

VER

CAPÍTULO 2 / TEMA 8 (REVISIÓN)

OPERACIONES | ¿qué aprendimos?

ADICIÓN Y SUSTRACCIÓN

La adición consiste en combinar, agrupar o sumar números; la sustracción, en cambio, consiste en quitar o restar números a un grupo. Siempre que queramos resolver cualquiera de estas operaciones, debemos considerar el valor posicional de cada una de las cifras de los números. Por otro lado, la adición cumple con ciertas propiedades como la asociativa y la conmutativa que no se pueden aplicar a la sustracción.

Un ejemplo de la adición por reagrupación es la suma de dinero. Si tienes $ 1.324 y luego te dan $ 3.984, tienes en total  $ 1.324 + $ 3.984 = $ 5.318.

Multiplicación

La multiplicación es una operación matemática que consiste en sumar varias veces un mismo número. Los factores son los números que se multiplican o suman reiteradas veces y el producto es el resultado de la multiplicación. La multiplicación sin reagrupación es un método que consiste en multiplicar las unidades, las decenas y las centenas de 2 factores entre sí cuando ninguno de los productos formados supera la decena, mientras que la multiplicación con reagrupación es un procedimiento que podemos utilizar cuando algún producto entre dos cifras es igual o mayor a 10.

La multiplicación por reagrupación es útil en muchas situaciones cotidianas, como saber la cantidad de butacas que hay en el cine. Si cuentas las que hay en una fila (6) y las multiplicas por la cantidad de filas (3) tienes que 6 x 3 = 18. Así que hay 18 butacas.

División

La división es la operación opuesta a la multiplicación. Sus elementos son el dividendo, el divisor, el cociente y el resto. El dividendo es la cantidad que se quiere repartir; el divisor indica entre cuántas partes se reparte; el cociente es la cantidad que le corresponde a cada parte y también es el resultado de la división; y el resto representa lo que no se puede repartir. Cuando el resto es igual a cero (0) decimos que la división es exacta.

El cociente de una división también puede ser un número decimal, por ejemplo, si deseamos repartir 3 naranjas entre 6 personas, cada una tendrá 0,5 = 1/2, es decir, cada una tendrá media naranja.

OPERACIONES CON NÚMEROS DECIMALES

Para la adición y sustracción de números decimales procedemos igual que en el caso de los números naturales, pues debemos colocar cada elemento uno sobre otro según su valor posicional, al final nos aseguramos de que la coma esté en la misma columna. En el caso de las multiplicaciones, realizamos la operación tal y como si fuera una de números naturales, luego le colocamos al producto final la coma de acuerdo a los decimales de los factores.

Si sube la temperatura corporal un grado más allá de los 36,6° de la imagen, la persona tiene fiebre. ¿Cuál es la temperatura a la que puede tener fiebre? El cálculo es 36,6° + 1° = 37,6°. Este es un ejemplo de adición de decimales.

OPERACIONES COMBINADAS

Las operaciones combinadas son aquellas que agrupan diversos cálculos en una sola expresión. Cuando no hay paréntesis debemos seguir un orden de resolución: primero las multiplicaciones y divisiones, luego las sumas y restas. Si la operación combinada tiene paréntesis tenemos que realizar primero los cálculos que están dentro de ellos, es decir, estos tienen prioridad sobre otros.

Los paréntesis son de gran importancia si deseamos realizar operaciones en una calculadora, pues indican que son prioritarias sobre las demás.

MÍNIMO COMÚN MÚLTIPLO Y MÁXIMO COMÚN DIVISOR

El mínimo común múltiplo (mcm) y el máximo común divisor (mcd) son operaciones que nos ayudan a simplificar cálculos más complejos. El mcm es el mínimo múltiplo que tienen en común dos o más números y el mcd es el divisor mayor que tienen en común dos o más números. Ambos pueden ser calculados por comparación de múltiplos y divisores o por descomposición de su números en factores primos.

La descomposición en factores primos consiste en dividir cada número entre su divisor mínimo para representar un número como producto de sus números primos. Algunos números primos están en esta imagen.

CONVERSIONES DE MEDIDAS

Algunas magnitudes que podemos medir son la longitud, la masa, el volumen y el tiempo. Cada una de ellas tiene una unidad básica de medida pero no son las únicas. Para medir longitudes podemos usar unidades como el metro, el kilómetro o el centímetro; para medir masas usamos unidades como el gramo, el kilogramo o el miligramo; para medir el volumen usamos unidades como el centímetro cúbico o el metro cúbico; y para medir el tiempo usamos unidades como los segundos, los minutos, las horas, los días o los años.

Hay mariposas que solo viven 1 día. Si convertimos esta unidad, también podemos decir que hay mariposas que viven 24 horas.

CAPÍTULO 2 / TEMA 6 (REVISIÓN)

OPERACIONES NUMÉRICAS | ¿qué aprendimos?

ADICIÓN

La adición es una de las cuatro operaciones básicas que utilizamos de forma habitual y se caracteriza porque nos permite añadir una cantidad a otra. Los términos de la adición son los sumandos y la suma. Para resolver adiciones usamos el algoritmo de la suma que consiste ordenar los sumando de manera que las unidades de mil, las centenas, las decenas y las unidades se encuentren en una misma columna. Si la suma de una columna es un número de dos cifras (mayor a 9), se coloca el valor de la segunda cifra y el valor de la primera se suma al resultado de la siguiente columna a la izquierda. Esta operación cumple varias propiedades como la conmutativa, la asociativa y la del elemento neutro.

La propiedad conmutativa explica que no importa cómo ordenemos los sumandos, el resultado es siempre el mismo.

SUSTRACCIÓN

La sustracción es una operación matemática que consiste en quitar o restar una cantidad a otra para determinar la diferencia. Esta operación es inversa a la suma y está formada por el minuendo, el sustraendo y la diferencia. El minuendo es la cantidad a la que se le va a restar, el sustraendo es la cantidad que se resta y la diferencia es el resultado de la sustracción. En la sustracciones los números se agrupan en columnas al igual que en la adición. Si el minuendo es mayor al sustraendo restamos de forma convencional. En caso contrario, debemos desagrupar la cifra de la columna siguiente y canjear un valor posicional.

Una forma de comprobar una sustracción es sumar el sustraendo y la diferencia, el resultado debe ser igual al minuendo.

OPERACIONES COMBINADAS

Las operaciones combinadas son aquellas en las que aparecen varias cálculos aritméticos. Para este tipo de problemas resolvemos primero las operaciones que están entre paréntesis y luego resolvemos las operaciones en el orden que aparecen de izquierda a derecha. En caso de que la operación combinada no tenga paréntesis resolvemos de acuerdo al orden que aparecen los términos de izquierda a derecha.

Los cálculos mentales permiten resolver operaciones sin usar herramientas como un lápiz, una hoja o una calculadora.

multiplicación

La multiplicación es sumar un mismo números tantas veces como indique otro. Por esta razón, esta operación se encuentra estrechamente relacionada con la adición. De hecho, toda adición iterada (adición que posee todos sus sumandos iguales) puede ser representada a través de la multiplicación. Su elementos principales son los factores y el producto. Los primeros son los números que se multiplican y el segundo corresponde al resultado. Para multiplicaciones de una cifra se ordenan los factores de forma vertical, se multiplica la unidad del segundo factor por la unidad del primero y luego se anota el resultado en la parte inferior, después se multiplica la unidad del segundo factor por la decena del primero y se anota el resultado.

Al multiplicar un número por la unidad seguida de cero se añade a la derecha de este la misma cantidad de ceros que acompañen a la unidad.

división

La división es una operación matemática que consiste en realizar reparticiones equitativas o formar grupos con la misma cantidad de elementos. Es una operación inversa a la multiplicación y puede considerarse una sustracción sucesiva. Los elementos de la división son el dividendo, el divisor, el cociente y el residuo o resto. El dividendo es la cantidad que se va a repartir, el divisor es la cantidad en la que se va a dividir, el cociente es el resultado y el residuo o resto es la parte que no se puede dividir. Para resolver divisiones buscamos un número que al ser multiplicado por el divisor sea igual o cercano al valor del dividendo.

Cada vez que compartimos alimentos hacemos una división, por ejemplo, esta pizza se dividió en 6 porciones, lo que es igual a 1 ÷ 6.

CAPÍTULO 2 / TEMA 5

DIVISIÓN

La división es una de las cuatro operaciones básicas de las matemáticas y consiste en repartir un número en varias partes iguales. Cada vez que compartimos nuestros dulces hacemos una división. Esta operación está muy relacionada con la resta y con la multiplicación. A continuación, aprenderás a hacer divisiones de números con una, dos o tres cifras.

LA DIVISIÓN y su relación con la sustracción

La división es una operación matemática que consiste en realizar reparticiones equitativas o formar grupos con la misma cantidad de elementos. Es una operación inversa a la multiplicación y puede considerarse una sustracción sucesiva.

La división a través de sustracciones sucesivas es una manera fácil de llegar a un resultado. Hay que recordar que la división tiene que ver con la resta y juntas tienen varias aplicaciones.

– Ejemplo:

Si deseamos repartir 8 magdalenas de 2 en 2, ¿cuántas personas tendrán  magdalenas?

Este problema lo podemos representar como una resta sucesiva:

Observa que se hicieron 4 restas de 2 hasta llegar a cero (0). Por lo tanto, 4 personas tendrá 2 magdalenas cada una.

Este proceso, también lo podemos representar como una división y decir que 8 ÷ 2 = 4 porque se puede restar 4 veces 2 al número 8.

– Otro ejemplo:

30 ÷ 5 = ?

Restas 30 − 5 = 25 25 − 5 = 2 20 − 5 = 15 15 − 5 = 10 10 − 5 = 0 5 − 5 = 0
Cantidad de veces que se hace la resta 1 2 3 4 5 6

Entonces, 30 ÷ 5 = 6 porque se puede restar 6 veces 5 al 30.

Las divisiones simbólicamente se puede expresar de la siguiente manera:

En todos los casos se lee “treinta entre cinco igual a seis”.

Elementos de la división

Los términos de la división son el dividendo, el divisor, el cociente y el residuo o resto.

El dividendo es la cantidad que se desea repartir en partes iguales; el divisor es la cantidad entre la cual se divide y el cociente es el resultado de la operación. La cantidad que no se logra dividir es el residuo, también llamado resto; y debe ser menor que el divisor.

Divisiones exactas e inexactas

Cuando el residuo es igual a cero, podemos decir que la división se realizó equitativamente sin sobrar elementos, por lo que es exacta; pero si el residuo es distinto de cero, se considera que la división es inexacta por sobrar elementos sin dividir o agrupar.

El propósito de la división como operación matemática es encontrar el cociente, el cual indica las veces que el divisor está contenido en el dividendo. El resto o residuo es la parte de la división que no se puede dividir como número entero por el divisor, si el resto es cero se habla de una división exacta, y si es mayor es una división inexacta.

¿Cómo resolver divisiones?

1. Colocamos a la izquierda al dividendo y dentro de la caja de división colocamos al divisor.

2. Luego, seleccionamos del dividendo una cifra que sea mayor o igual al divisor, para esto se comienza por la cifra de mayor orden. En este caso no hay un número que multiplicado por 5 resulte 3, por lo que seleccionamos una cifra más para dividir, es decir, 35.

3. Luego, buscamos un número que multiplicado por 5 nos de cómo resultado 35 o un número cercano a ese valor. Para esto es necesario emplear las tablas de multiplicación. Se sabe que 5 × 7 = 35, por lo tanto:

4. Encontramos que al multiplicar 5 por 7 da como resultado 35; entonces colocamos el 7 debajo del 5, restamos el producto obtenido de multiplicar el cociente por el divisor y lo escribimos en el resto. En este caso el resto es cero (0), por lo tanto, es una división exacta.

– Otro ejemplo:

1. Colocamos a la izquierda al dividendo y dentro de la caja de división colocamos al divisor.

2. Luego, seleccionamos del dividendo una cifra que sea mayor o igual al divisor, para esto se comienza por la cifra de mayor orden. En este caso no hay un número que multiplicado por 4 resulte 3, por lo que seleccionamos una cifra más para dividir, el 36.

3. Luego, buscamos un número que multiplicado por 4 de cómo resultado 36 o un número cercano a ese valor. Para esto es necesario emplear las tablas de multiplicación. Sabemos que 4 × 9 = 36, por lo tanto:

Encontramos que al multiplicar 4 por 9 da como resultado 36; entonces colocamos el 9 debajo del 4, restamos el producto obtenido de multiplicar el cociente por el divisor y lo escribimos en el resto.

4. Realizamos una nueva selección y repetimos los pasos hasta agotar las cifras del dividendo, en este caso solo nos resta el 5, lo bajamos y colocamos junto al resto obtenido anteriormente. Observa:

5. Buscamos un número que multiplicado por 4 de cómo resultado 5 o un número cercano a ese valor. Para esto es necesario emplear las tablas de multiplicación. Sabemos que 4 × 1 = 4, por lo tanto:

Encontramos que al multiplicar 4 por 1 da como resultado 4; entonces se coloca el 1 en el cociente, restamos el producto obtenido de multiplicar el cociente por el divisor y lo escribimos en el resto. Esto da como resultado 1, por lo tanto; la división es inexacta.

¿Sabías qué?
Al momento de resolver divisiones se busca el número que multiplicado por el divisor es igual al dividendo, de esta manera se obtiene el cociente.

SITUACIONES DE REPARTO EQUITATIVO

Cuando una cantidad de elementos se reparte en grupos iguales, se puede conocer la cantidad de elementos de cada grupo por medio de la división.

Cantidad de elementos ÷ cantidad de grupos = cantidad de elementos por grupo

Las situaciones de reparto equitativo son aquellas donde una cantidad de elementos se reparten en grupos iguales, en estas se conoce la cantidad de elementos y la cantidad de grupos formados, lo que se busca es conocer la cantidad de elementos de cada grupo mediante la división. Este caso se aplica solo en casos de divisiones exactas donde el resto es igual a cero.

Por ejemplo, tenemos una canasta con 12 manzanas y debemos repartirlas en 4 canastas equitativamente.

12 manzanas repartidas en 4 canastas corresponden a 3 manzanas por canasta.

12 ÷ 4 = 3

 

– Otro ejemplo:

25 esferas azules repartidas en 5 partes iguales.

25 esferas azules, repartidas en 5 partes iguales, corresponden a 5 esferas en cada parte.

25 ÷ 5 = 5

Para repartir en partes iguales una cantidad de elementos puedes poner un elemento por grupo hasta que se terminen de repartir todos los elementos.

SITUACIONES DE REPARTO POR MEDIDA

Cuando se conoce la cantidad total de elementos que se repartieron en grupos de medidas iguales se puede obtener la cantidad de grupos por medio de la división.

Cantidad de elementos ÷ cantidad de elementos por grupo = cantidad de grupos

En las operaciones de reparto por medida o agrupamiento por medida se conoce la cantidad total de elementos y la cantidad de elementos por grupo. El objetivo es conocer la cantidad de grupos para lo cual se emplea la división. Existen una serie de situaciones en las que encontramos problemas de este tipo y para ello conocer cómo resolver divisiones es esencial.

– Ejemplo:

Una maestra de tercer grado ha pedido a sus alumnos que lleven un artículo de periódico para realizar un trabajo en clase. De 24 alumnos que conforman la sección, solo la mitad llevó el artículo. La maestra tuvo que formar grupos de 2 niños para realizar la actividad. ¿Cuántos grupos formó la maestra?

La maestra formó 12 grupos de 2 alumnos cada uno.

24 ÷ 2 = 12

 

– Otro ejemplo:

En una biblioteca hay 18 libros, en cada tramo caben 6, ¿cuántos tramos se necesitan para guardarlos todos?

Para organizar los 18 libros se necesitan 3 tramos con 6 libros cada uno.

 18 ÷ 6 = 3

¿Sabías qué?
A principio del siglo XVII, John Napier diseñó un tablero para multiplicar y dividir conocido como “los huesos de Napier”.

RELACIÓN ENTRE LA MULTIPLICACIÓN Y LA DIVISIÓN

La división es la operación inversa a la multiplicación, pero con la multiplicación se puede comprobar el resultado de una división al multiplicar el cociente obtenido por el divisor, el resultado de esta multiplicación debe ser igual al dividendo. Entonces:

dividendo = cociente × divisor

Si la división es inexacta, se aplica el mismo procedimiento y se le suma el resto o residuo. Ejemplo:

La multiplicación y la división son operaciones inversas, así como lo son la adición y la sustracción. En la división, el orden de los factores sí altera el producto, por lo que no cumple con la propiedad conmutativa, mientras que la propiedad distributiva para la división solamente se cumple si la suma o resta se encuentra en el dividendo.

¡A practicar!

1. Resuelve las siguientes divisiones a través de restas sucesivas.

a) 12 ÷ 4

Solución
1 2 3 Cociente
12 − 4 = 8 8 − 4 = 4 4 − 4 = 0 3

12 ÷ 4 = 3

b) 49 ÷ 7

Solución
1 2 3 4 5 6 7 Cociente
49 − 7 = 42 42 − 7 = 35 35 − 7 = 28 28 − 7 = 21 21 − 7 = 14 14 − 7 = 7 7 − 7 = 0 7

49 ÷ 7 = 7

c) 54 ÷ 9

Solución
1 2 3 4 5 6 Cociente
54 − 9 = 45 45 − 9 = 36 36 − 9 = 27 27 − 9 = 18 18 − 9 = 9 9 − 9 = 0 6

54 ÷ 9 = 6

 

2. Efectúa las siguientes divisiones.

a) 88 ÷ 4

Solución

88 ÷ 4 = 22

b) 25 ÷ 3

Solución

25 ÷ 3 = 8 y resto = 1

c) 41 ÷ 6

Solución

41 ÷ 6 = 6 y resto = 5

 

3. Escribe y resuelve la división que representa cada situación de reparto equitativo.

a) Julián tiene 16 caramelos y quiere repartirlos por igual entre sus 4 amigos, ¿cuántos caramelos le corresponden a cada uno de sus amigos?

Solución
16 ÷ 4 = 4

A cada amigo le corresponden 4 caramelos.

b) Patricia debe empacar por igual 15 vestidos en 5 cajas. ¿Cuántos vestidos tendrá cada caja?

Solución
15 ÷ 5 = 3

Tendrá 3 vestidos por caja.

c) Leonardo tiene 36 naranjas y debe colocarlas en 6 cestos por igual. ¿Cuántas naranja debe colocar en cada cesto?

Solución
36 ÷ 6 = 6

Debe colocar 6 naranjas por cesto.

 

4. Escribe y resuelve la división que representa cada situación de reparto por medida.

a) Lucía tiene 45 galletas, si las guarda en pequeñas cajas en las que caben 9 galletas, ¿cuántas cajas necesita?

Solución
45 ÷ 9 = 5

Lucía necesita 5 cajas.

b) Felipe el panadero desea hornear 24 pastelitos, si caben 8 pastelitos en cada bandeja, ¿cuántas bandejas necesitará Felipe?

Solución
24 ÷ 8 = 3

Felipe necesitará 3 bandejas.

c) Alicia tiene 50 libros. Si guarda 10 libros en cada una de las repisas de un mueble. ¿Cuántas repisas del mueble ocupa para guardar todos sus libros?

Solución
50 ÷ 10 = 5

Alicia ocupa 5 repisas del mueble para guardar todos sus libros.

RECURSOS PARA DOCENTES

Artículo “Divisiones por dos o más cifras”

El siguiente material trata sobre las divisiones desde un enfoque del método tradicional y del método del algoritmo desplegado de la división.

VER

Artículo “División: método americano”

En este artículo se explica cómo resolver divisiones a través del método americano, uno de los más usados en países de Centroamérica, México y los Estados Unidos.

VER

CAPÍTULO 4 / TEMA 4

Propiedades de las Raíces

La radicación consiste en la obtención de un número que se ha multiplicado por sí mismo n cantidad de veces bajo el operador de la raíz, por eso también se conoce como “raíz enésima de un número”. De este modo, también podemos decir que la radicación es la operación inversa a la potenciación y, al igual que esta última, presenta propiedades importantes que aprenderás a continuación.

El origen del símbolo radical es incierto. Algunos autores coinciden en que provino de los árabes, mientras que otros afirman que fue introducido en siglo XVI por Christoph Rudolff, cuyo uso es evidenciado en su libro Coss. Muchos otros asocian el origen del signo de la raíz con la letra r, de la palabra latina radix que significa “raíz”.

¿Qué es la radicación?

Es una operación que consiste en hallar números que multiplicados por sí mismos tantas veces como indica el índice de la raíz den como resultado al radicando. Puede verse como la operación inversa a la potenciación.

\boldsymbol{\sqrt[n]{a} = b\; \; \Leftrightarrow \; \; b^{n}=a}

– Ejemplo:

\boldsymbol{\sqrt{81}=9}\: \: \: porque\: \: \: \boldsymbol{9^{2}=9\times 9=81}

\boldsymbol{\sqrt[3]{27} = 3}\; \; porque\; \; \boldsymbol{ 3^{3} = 3\times 3\times 3 =27}

Elementos de una raíz

Toda raíz cuenta con tres elementos:

\huge \boldsymbol{\sqrt[n]{a}=b}

  • Índice (n): orden de la raíz que se aplica al radicando. Indica cuántas veces multiplicamos un número por sí mismo para obtener el radicando.
  • Radicando (a): número sometido a la raíz del orden determinado por el índice.
  • Raíz (b): resultado de la radicación, el cual elevado al orden de la raíz da como resultado el radicando.

principales propiedades de la radicación

Las propiedades de la radicación tienen una gran cantidad de aplicaciones y, del mismo modo que en la potenciación, no se deben aplicar las propiedades a las operaciones de suma y resta, sino solo a las de multiplicación y división.

Propiedades de la radicación
Raíz de cero \boldsymbol{\sqrt[n]{0}=0\; \: \: \: \: \: n\neq 0}
Raíz de la unidad \boldsymbol{\sqrt[n]{1}=1}
Raíz de un producto \boldsymbol{\sqrt[n]{a\times b}=\sqrt[n]{a}\times \sqrt[n]{b}}
Raíz de un cociente \boldsymbol{\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}}
Potencia de una raíz \boldsymbol{\left ( \sqrt[n]{a} \right )^{x}=\sqrt[n]{a^{x}}}
Raíz de una raíz \boldsymbol{\sqrt[n]{\sqrt[m]{a}}=\sqrt[n\times m]{a}}

¿Sabías qué?
La mayoría de los números irracionales pueden ser expresados a partir de una raíz, por ejemplo, \sqrt{2} o \sqrt{3}.

raíz cuadrada de números negativos

La raíz cuadrada de números negativos no tiene solución dentro de los números reales (\boldsymbol{\mathbb{R}}) porque no existe un número (positivo o negativo) que al ser multiplicado por sí mismo resulte en otro negativo. Por ejemplo, la raíz cuadrada de 4 es igual a 2 porque 22 es igual a 4.

\boldsymbol{\sqrt{4}=2}\: \: \: porque \: \: \: \boldsymbol{2^{2}=2\times 2=4}

Pero esta raíz también tiene otra solución negativa:

\boldsymbol{\sqrt{4}=-2} \: \: \: porque\: \: \: \boldsymbol{\left ( -2 \right )^{2}=\left ( -2 \right )\times \left ( -2 \right )=4}

Recuerda que la regla de los signos indica que al multiplicar símbolos iguales el resultado es positivo.

Ahora, ¿cuál será la raíz cuadrada de −4?

\boldsymbol{\sqrt{-4}=} no \: \: existe

La raíz cuadrada de −4 no existe en los números reales porque no hay un número que al multiplicarse por sí mismo resulte en −4.

Sin embargo, esto no significa que no tenga solución posible, sino que pertenece a otro grupo numérico: los números complejos. Los números complejos incluyen una parte imaginaria que sirve para obtener resultados que no pertenecen a los reales.

Soluciones de una raíz

Siempre que el radicando sea negativo, la raíz tendrá solución real solo si el índice es impar, en cambio, si el índice es par, el resultado pertenecerá a los números imaginarios. Esto se debe a la regla de los signos, pues si multiplicamos por sí mismo un número negativo una cantidad de veces par (2, 4, 6, 8,…) el resultado será igualmente positivo.

aplicación de las propiedades de la radicación

Raíz de cero

Toda raíz cuyo radicando sea cero es igual a cero, siempre y cuando su índice sea diferente de dicho número.

\boldsymbol{\sqrt[n]{0}=0\; \: \: \: \: \: n\neq 0}

– Ejemplo:

\sqrt[3]{0}=0

\sqrt[5]{0}=0

Raíz de la unidad

La raíz de la unidad es igual a uno.

\boldsymbol{\sqrt[n]{1}=1}

– Ejemplo:

\sqrt[3]{1}=1

\sqrt{1}=1

Raíz de un producto

La raíz de un producto es igual al producto de las raíces de los factores.

\boldsymbol{\sqrt[n]{a\times b}=\sqrt[n]{a}\times \sqrt[n]{b}}

– Ejemplo:

\sqrt[3]{64\times 8}=\sqrt[3]{64}\times \sqrt[3]{8}=4\times 2=8

\sqrt{9\times 25}=\sqrt{9}\times \sqrt{25}=3\times 5=15

Raíz de un cociente

La raíz de un cociente es igual al cociente de las raíces del dividendo y del divisor.

\boldsymbol{\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}}

– Ejemplo:

\sqrt{\frac{576}{4}}=\frac{\sqrt{576}}{\sqrt{4}}=\frac{24}{2}=12

\sqrt[3]{\frac{64}{8}}=\frac{\sqrt[3]{64}}{\sqrt[3]{8}}=\frac{4}{2}=2

Potencia de una raíz

La potencia de una raíz es igual a la misma raíz con el radicando elevado a dicha potencia.

\boldsymbol{\left ( \sqrt[n]{a} \right )^{x}=\sqrt[n]{a^{x}}}

– Ejemplo:

\left ( \sqrt{4} \right )^{4}=\sqrt{4^{4}}=\sqrt{256}=16

\left ( \sqrt[3]{3} \right )^{9}=\sqrt[3]{3^{9}}=\sqrt[3]{19.683}=27

¡Existe otro método!

La potencia de una raíz es igual al radicando elevado al cociente de las potencias.

\left ( \sqrt{4} \right )^{4}=4^{\frac{4}{2}}=4^{2}=16

\left ( \sqrt[3]{3} \right )^{9}=3^{\frac{9}{3}}=3^{3}=27

Raíz de una raíz

La raíz de una raíz es igual otra raíz con el mismo radicando y cuyo índice es igual al producto de los índices.

\boldsymbol{\sqrt[n]{\sqrt[m]{a}}=\sqrt[n\times m]{a}}

– Ejemplo:

\sqrt{\sqrt[3]{64}}=\sqrt[2\times 3]{64}=\sqrt[6]{64}=2

\sqrt{\sqrt{81}}=\sqrt[2\times 2]{81}=\sqrt[4]{81}=3

Números irracionales

Existen números que no se pueden expresar como el cociente de dos enteros. Estos reciben el nombre de número irracionales y las raíces son un ejemplo de ellos. Uno de los números irracionales más famosos es el número pi (π). A lo largo de la historia el valor de pi ha tenido distintas aproximaciones y se lo usa, entre otras cosas, para el cálculo de superficies y volúmenes de circunferencias y esferas.

Suma y resta de radicales

Podemos sumar y restar radicales siempre y cuando estos sean semejantes, es decir, que tengan el mismo índice y el mismo radicando. Cuando esto sucede, solo sumamos o restamos los coeficientes y mantenemos el radical igual.

\boldsymbol{{\color{Red} b}\sqrt[n]{a}+{\color{Red} c}\sqrt[n]{a}=({\color{Red} b+c})\sqrt[n]{a}}

– Ejemplo:

5\sqrt{8}+\sqrt{8}+2\sqrt{8}=(5+1+2)\sqrt{8}=8\sqrt{8}

3\sqrt{25}+\sqrt{25}+\sqrt[3]{25}=4\sqrt{25}+\sqrt[3]{25}

¡A practicar!

Resuelve estas raíces y aplica las propiedades.

  • \sqrt{4}\times \sqrt{9}
Solución

\sqrt{4}\times \sqrt{9}=\sqrt{4\times 9}=\sqrt{36}=6

  • \frac{\sqrt[4]{64}}{\sqrt[4]{4}}
Solución

\frac{\sqrt[4]{64}}{\sqrt[4]{4}}=\sqrt[4]{\frac{64}{4}}=\sqrt[4]{16}=2

  • \sqrt{\sqrt[4]{256}}

Solución

\sqrt{\sqrt[4]{256}}=\sqrt[2\times 4]{256}=\sqrt[8]{256}=2

  • \sqrt[4]{3}\times \sqrt[4]{27}
Solución

\sqrt[4]{3}\times \sqrt[4]{27}=\sqrt[4]{3\times 27}=\sqrt[4]{81}=3

  • \frac{\sqrt[3]{16}}{\sqrt[3]{2}}
Solución

\frac{\sqrt[3]{16}}{\sqrt[3]{2}}=\sqrt[3]{\frac{16}{2}}=\sqrt[3]{8}=2

  • \sqrt{3}\times \sqrt{12}
Solución

\sqrt{3}\times \sqrt{12}=\sqrt{3\times 12}=\sqrt{36}=6

  • \sqrt{\frac{16}{9}}
Solución

\sqrt{\frac{16}{9}}=\frac{\sqrt{16}}{\sqrt{9}}=\frac{4}{3}

  • \frac{\sqrt{98}}{\sqrt{2}}
Solución

\frac{\sqrt{98}}{\sqrt{2}}=\sqrt{\frac{98}{2}}=\sqrt{49}=7

  • \sqrt{8}\times \sqrt{2}
Solución

\sqrt{8}\times \sqrt{2}=\sqrt{8\times 2}=\sqrt{16}=4

RECURSOS PARA DOCENTES

Artículo “Los números irracionales”

En el artículo podrá encontrar los números irracionales más conocidos y su representación en la recta numérica. Es un buen complemento para afianzar la importancia de la radicación y experimentar sus aplicaciones.

VER

Artículo “Propiedades de las raíces”

Este recurso contiene ejemplos prácticos muy útiles para profundizar sobre las propiedades de la radicación.

VER

CAPÍTULO 4 / TEMA 3

Propiedades de la potencia

Cada vez que necesitamos hacer una multiplicación del mismo número repetidas veces, recurrimos a la potenciación. Esta operación, así como muchas otras, cumple con ciertas propiedades. ¿Cuál es la manera correcta de aplicarlas?, ¿cuáles son los beneficios? A continuación, aprenderás cuáles son y sus aplicaciones prácticas.

La potencia o potenciación es una operación matemática que consiste en multiplicar varias veces un mismo número. Consta de una base, que es el número que se multiplica, y de un exponente, que es el número que señala la cantidad de veces que se multiplica la base por sí misma. Es decir, la potenciación no es más que una multiplicación abreviada.

principales propiedades de la potencia

Las propiedades de potenciación tienen una gran cantidad de aplicaciones, pero también tienen ciertas restricciones y es importante conocerlas para no cometer errores en su resolución. Entonces, siempre que apliquemos las propiedades será a las operaciones de multiplicación y división, nunca será a las operaciones de suma y resta.

En verde están las operaciones a las que aplicaremos las propiedades de potenciación, y en rojo, las operaciones a las que no podremos aplicarlas nunca.

En la siguiente tabla podrás observar las propiedades de la potenciación:

Propiedades de la potenciación
Producto de potencia de igual base a· a= a(m + n)
Cociente de potencia de igual base a/ a= a(m − n)
Potencia de potencia (am)= an · m
Producto de potencias con bases diferentes y exponentes iguales a· bn = (a · b)n
Cociente de potencias con bases diferentes y exponentes iguales a/ b= (a / b)n
Exponente negativo a−n = 1 / an

¿Sabías qué?
Cuando el exponente es negativo, mientras mayor sea su valor más pequeño será el resultado.

Notación científica

La notación científica es una forma de expresar cantidades muy grandes o muy pequeñas que le ha permitido a los científicos simplificar sus cálculos. Es conocida también como notación o patrón exponencial porque emplea potencias de base 10 dentro de su expresión. Las potencias de base 10 son iguales a la unidad seguida de tantos ceros como indique el exponente. Un ejemplo de notación científica lo vemos en las masas de los objetos astronómicos, por ejemplo, la masa de la Luna es de aproximadamente 735 × 1020 kg.

Ejemplos prácticos

Aplicación a la suma y resta

La aplicación de las propiedades corresponde a varias operaciones matemáticas pero no a la suma y la resta. Sin embargo, eso no significa que no pueda aplicarse a ejercicios donde existan muchos términos que se suman o se restan. Cuando esto sucede, se aplican las propiedades solo a los términos por separado.

Producto de una potencia de igual base

Cuando existe una multiplicación entre dos potencias con igual base, el resultado final será la misma base elevada a la suma de los exponente de potencias que se multiplicaron. Por ejemplo:

  • 5· 52 = 5(3 + 2) = 55
  • 4· 40 = 4(2 + 0) = 42
  • 68 · 62 · 63 = 6(8 + 2 + 3) = 613

Cociente de una potencia de igual base

Cuando dividimos dos potencias con igual base el procedimiento es similar al de la multiplicación, con la diferencia de que aquí restamos los exponentes de las potencias. Por ejemplo:

  • 53 / 52 = 5(3 − 2) = 51
  • 42 / 40 = 4(2 − 0) = 42

Potencia de una potencia

Cuando tenemos una base elevada a un exponente n, y esta a su vez está elevada a otro exponente m, el resultado final lo obtenemos al multiplicar ambos exponentes (n · m). Por ejemplo:

  • (42)4 = 42 · 4 = 48
  • (33)3 = 33 · 3 = 39

Producto de potencias con bases diferentes y exponentes iguales

Si multiplicamos dos potencias con igual exponente y bases distintas, el resultado será igual a mantener el exponente y solo multiplicar las bases. Por ejemplo:

  • 53 · 43 = (5 · 4)3
  • 32 · 22 = (3 · 2)2

Cociente de potencias con bases diferentes y exponentes iguales

De igual manera que en el caso anterior, el resultado será el cociente de las bases elevadas al exponente. Por ejemplo:

  • 53 43 = (5/4)3
  • 32 / 22 = (3/2)2

Exponente negativo

Cuando el exponente es negativo, la potencia será igual a la inversa de su base y el mismo exponente con signo positivo. Por ejemplo:

  • (2)2 = (1/2)2 = 1/22 = 1/4
  • (1/2)−1 = 2
Los átomos son las unidades básicas de toda la materia. En conjunto crean las moléculas y son microscópicos. Para poder medir las distancias entre ellos se usa una unidad de longitud llamada angstrom (Å = 1 x 10−10 metros). El exponente igual a −10 nos indica que el valor en metros es equivalente a 0,0000000001 m.

Potencia de decimales y fracciones

Cuando las bases son decimales o fracciones, las propiedades se mantienen sin distinción. Por ejemplo:

  • (0,1)2 = (0,1) · (0,1) = 0,01

Observa que 0,1 = 1 · 10−1 , y aquí se puede aplicar la propiedad de potencia de potencia. 

  • (0,1)2 = (1 · 10(−1))2 = 10(−1) · 2 = 102 = 0,01

De la misma manera, si sabemos que 0,1 = 1/10:

  • (0,1)2 = (1/10)2 = 1/102 = 1/100 = 0,01

Cualquiera sea la expresión que se elija para resolver la operación se debe llegar al mismo resultado.

¡A practicar!

Aplica la propiedad correspondiente en cada caso:

  • 34 · 3· 33

Solución
34 · 31 · 33 = 3(4 + 1 + 3) = 38 = 6.561
  • 62 / 62

Solución
62 / 62 = 6(2 − 2) = 60 = 1
  • (7−1)−3

Solución
(7−1)−3 = 7(−1) · (−3) = 73 = 343
  • 63 · 83

Solución
63 · 83 = (6 · 8)3 = 483 = 110.592
  • (−1/2)−2

Solución
(−1/2)−2 = (−2)2 = (−2) · (−2) = 4 
  • 83 / 43

Solución
83 / 43 = (8/4)3 = 23 = 8
RECURSOS PARA DOCENTES

Artículo “Ejercicios de propiedades de la potencia”

En el artículo podrá reforzar las propiedades de potenciación vistas a partir de ejemplos y ejercicios. También se explica la importancia de la correcta aplicación de las propiedades en cada término al sumar o restar.

VER

CAPÍTULO 3 / TEMA 1

Las fracciones y sus usos

En diversas situaciones cotidianas usamos números naturales para expresar la hora, nuestra edad o un número de teléfono. Sin embargo, si queremos indicar las partes de algo debemos recurrir a los números racionales, también conocidos como fracciones. Usamos estos números frecuentemente: por ejemplo, cuando hacemos una receta o al comprar una bebida.

¿Qué es una fracción?

Una fracción es una parte de un número entero y se representa como una división o un cociente. Está formada por un numerador y un denominador, ambos separados por una raya fraccionaria.

El denominador nos indica en cuántas partes hemos dividido el entero, mientras que el numerador nos muestra cuántas de esas partes hemos tomado.

 

– Ejemplo:

Compramos una barra de chocolate muy grande, entonces decidimos dividirla en tres partes iguales y comernos solo dos de esas porciones, ¿cómo representamos esa cantidad?

Primero consideramos la barra como un todo.

Luego, dividimos el todo en tres partes. Esto significa que el denominador es igual a 3.

Sombreamos o pintamos las dos partes que no comimos. Esto significa que el numerador es 2.

Este último gráfico representa a la fracción 2/3. Es decir, nos comimos 2/3 de chocolate.

¿Sabías qué?

Además de la raya fraccionaria, podemos representar números fraccionarios con diagonales o como divisiones. Por ejemplo:

\boldsymbol{\frac{1}{2}=1/2 =1\div 2}

VER INFOGRAFÍA

Imagina que estás con tres amigos y debes repartir una pizza para todos, ¿cómo harías el reparto? ¡Muy sencillo! Solo debes cortarla en cuatro partes iguales y cada uno podrá comer una rebanada, es decir, cada quien tomará 1/4 de la pizza. Observa que el pedazo que comes es igual al numerador y la cantidad total de pedazos es igual al denominador.

¿Cómo se leen las fracciones?

Cada vez que dividimos un entero, este recibe un nombre diferente. Observa esta tabla:

Partes en la que dividimos al entero ¿Cómo se lee?
2 Medios
3 Tercios
4 Cuartos
5 Quintos
6 Sextos
7 Séptimos
8 Octavos
9 Novenos
10 Décimos
11 Onceavos
12 Doceavos
13 Treceavos
14 Catorceavos
15 Quinceavos
16 Dieciseisavos
17 Diecisieteavos
18 Dieciochoavos
19 Diecinueveavos
20 Veinteavos
30 Treintavos
40 Cuarentavos
50 Cincuentavos
60 Sesentavos
70 Setentavos
80 Ochentavos
90 Noventavos
100 Centavo

Así que para la lectura de fracciones seguimos estos pasos:

  1. Lee el número del numerador.
  2. Lee el número del denominador, es decir, las partes en las que se dividió el entero según la tabla.

– Ejemplos:

 

  • \frac{2}{8}  se lee “dos octavos”.

 

  • \frac{1}{2}  se lee “un medio”.

 

  • \frac{13}{40}  se lee “trece cuarentavos”.

 

  • \frac{1}{10}  se lee “un décimo”.

 

  • \frac{7}{15}  se lee “siete quinceavos”.

 

  • \frac{25}{100}  se lee “veinticinco centavos”.

 

Observa que cuando el numerador es 1, decimos “un” en lugar de “uno”.



Una fracción es una parte del número entero y se representa como una división o un cociente. Es un tipo de número muy usado en la cocina. Por ejemplo, cuando desayunamos podemos agregar a nuestro cereal 1/2 taza de leche o yogurt, también podemos añadir 1/4 de taza de frutas.

¿Sabías qué?
Una fracción con denominador 1 es igual a un número entero, por eso es común no escribir el denominador en estos casos. Por ejemplo, 8/1 = 8.

Tipos de Fracciones

Las fracciones pueden ser propiasimpropias o aparentes.

Fracciones propias

Son aquellas fracciones en las que el numerador es menor que el denominador. Estas fracciones siempre son menores que 1. Por ejemplo:

\frac{2}{3},  \frac{1}{4} y \frac{7}{10}

Fracciones impropias

Son aquellas fracciones en las que el numerador es mayor que el numerador. Estas fracciones siempre son mayores que 1. Por ejemplo:

\frac{4}{3},  \frac{5}{2} y \frac{8}{6}

Fracciones aparentes

Son aquellas fracciones cuyo numerador es múltiplo del denominador. Por ejemplo:

\frac{6}{3}=2

\frac{10}{2}=5

 

¿Qué tipo de fracción es?

Clasifica las siguientes fracciones en propias, impropias o aparentes:

  • \frac{8}{2}
Solución
Fracción aparente.
  • \frac{3}{5}
Solución
Fracción propia.
  • \frac{9}{4}
Solución
Fracción impropia.

 

Gráfico de Fracciones

De acuerdo al tipo de fracción, podemos graficar un entero o más de uno. Si es una fracción propia, usaremos un entero; sin embargo, si se trata de una fracción impropia, utilizaremos más de un entero.

Gráfico de fracciones propias

Este tipo de fracciones tiene el numerador menor que el denominador y siempre son menores que 1. Para graficarlas solo dibujamos cualquier figura (será el entero) y la dividimos en tantas partes como indique el denominador. Luego, pintamos las partes que señale el numerador.

– Ejemplo:

Realiza el gráfico de la fracción \frac{5}{8}

1. Dibujamos una figura, esta será el entero o “el todo”. En este caso es un rectángulo.

2. Dividimos el entero en 8 partes iguales porque el denominador de la fracción es 8.

3. Pintamos 5 partes del entero porque el numerador de la fracción es 5. Este será el gráfico de la fracción.

Gráfico de fracciones impropias

Estas fracciones tienen el numerador mayor al denominador y siempre son mayores que 1. Para realizar sus gráficos debemos dibujar una figura (será el entero) y dividirla en tantas partes como señale el denominador. Como el numerador es mayor, repetimos la figura la cantidad de veces necesaria para poder pintar la partes que exprese el numerador.

– Ejemplo:

Realiza el gráfico de la fracción \frac{9}{4}

1. Dibujamos una figura que represente al entero, por ejemplo, un cuadrado.

 

2. Dividimos el entero en 4 partes iguales porque el denominador de la fracción es 4.

 

3. Pintamos 9 partes del entero, pero como el entero solo tiene 4, repetimos la misma figura hasta que podamos tener las nueve partes para pintar. Este será el gráfico de la fracción.

Gráfico de una fracción aparente

En las fracciones aparentes el numerador es múltiplo del denominador. Para graficar estas fracciones podemos seguir los pasos anteriores. Como resultado, los gráficos tendrán siempre todas sus partes pintadas.

– Ejemplo:

Realiza el gráfico de la fracción \frac{6}{3}

Observa que, si bien el numerador es mayor que el denominador, 6 es múltiplo de 3, por lo tanto, 6 ÷ 3 = 2.

Si tomamos un rectángulo como entero, lo dividimos en 3 partes iguales (por el denominador) y repetimos la figura para poder pintar 6 partes (por el numerador); observaremos que el gráfico es igual a dos enteros completos.

Usos de Fracciones

Sin darnos cuenta, hacemos uso de las fracciones a diario. Por ejemplo, en las instrucciones para una receta que necesite 1/4 de taza de azúcar; en el supermercado cuando pedimos 1/2 kilogramo de fresas; cuando hablamos de distancias y decimos que nuestras casa está a 1/2 cuadra del kiosco; o al medir el tiempo y decir que en 1/2 hora empieza una serie de televisión. Cada vez que dividamos un valor entero en partes iguales empleamos fracciones.

Toda fracción indica que un todo se ha dividido en partes iguales. Cada vez que repartimos alimentos tratamos de hacerlo de esta forma. Por ejemplo, podemos comernos “medio trozo de pan” cuya fracción es 1/2, lo que quiere decir que dividimos la unidad (el pan) en dos partes iguales (el denominador) y tomamos una (el numerador).

Equivalencias de interés

Este cuadro muestra las fracciones que están contenidas en una unidad.

De otro modo:

1 = \frac{1}{2}+\frac{1}{2}

1 = \frac{1}{4}+ \frac{1}{4}+ \frac{1}{4}+ \frac{1}{4}

\frac{1}{2}=\frac{1}{4}+\frac{1}{4}

\frac{1}{2} = \frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}

¡A practicar!

1. En la panadería venden el pan rallado en bolsitas de 1 kg, 1/2 kg y 1/4 kg. Si José quiere comprar 2 kg de pan rallado…

a) ¿Cuántas bolsitas de 1/4 de kilo necesita?

Solución
 8 bolsitas de 1/4 de kg.

b) ¿Cuántas bolsitas de 1/2 kilo necesita?

Solución
4 bolsitas de 1/2 kg.

c) Si quiere llevar llevar 5 bolsitas para completar los 2 kg, ¿cuáles puede tomar?

Solución
1 bolsita de 1 kg y 4 bolsas de 1/4 de kg.

d) Si quiere llevar 3 bolsitas, ¿cuáles puede tomar?

Solución
1 bolsita de 1 kg y 2 bolsitas de 1/2 kg.

e) ¿Cuál es la menor cantidad de bolsitas que puede tomar? ¿y la mayor cantidad?

Solución
Puede tomar la menor cantidad de bolsitas si escoge las de mayor peso, es decir, las de 1 kg. Entonces, solo tomaría 2 bolsitas de 1 kg.

Para tomar la mayor cantidad de bolsita, debe escoger las de menor peso, que serían las de 1/4 de kg. En ese caso, llevaría 8 bolsitas de 1/4 de kg.

[/su_spoiler]

2. ¿Qué fracción representa cada gráfico?

Solución

Partes en las que dividimos el entero: 16

Partes sombreada: 10

Solución

\frac{4}{4}=1

Partes en las que dividimos el entero: 4

Partes sombreada: 4

Solución

\frac{6}{10}

Partes en las que dividimos el entero: 10

Partes sombreada: 6

 

RECURSOS PARA DOCENTES

Artículo “Fracciones”

Este artículo te permitirá acceder a más ejemplos sobre las fracciones y sus tipos.

VER

Artículo “Clasificación de las fracciones”

El siguiente recurso proporciona más información sobre los tipo de fracciones y sus gráficos.

VER