Multiplicación y división de fracciones
Las fracciones son números, por lo tanto, podemos realizar operaciones aritméticas básicas con ellas. Para multiplicar fracciones se debe realizar una multiplicación lineal de todos los numeradores y denominadores. Por otro lado, la división de estos números se puede realizar a través de varios procedimientos.
Diferentes métodos para la resolución de problemas
Una de las maravillas de las matemáticas es que generalmente para resolver un problema existen varios caminos que conducen al mismo resultado. Las operaciones con fracciones son un ejemplo, especialmente al momento de dividirlas se suelen aplicar varios métodos.
Multiplicación de fracciones
La multiplicación es una de las operaciones con fracciones mas sencillas. Para resolverla se deben multiplicar de forma lineal sus factores, es decir, numerador por numerador y denominador por denominador. En el caso de multiplicar más de dos fracciones el procedimiento es el mismo.
Por ejemplo:
a)
b)
En la multiplicación de fracciones no importa si son homogéneas o heterogéneas, el procedimiento siempre es el mismo. En los ejemplos anteriores observamos la resolución de fracciones de estos dos tipos.
Simplificación de fracciones
Cuando se hace una multiplicación o división de fracciones, es necesario conocer cómo simplificarlas. Esto ahorra tiempo al momento de resolver el ejercicio y permite expresar cantidades de manera más sencilla. Para realizar una simplificación debemos tener presente los criterios de divisibilidad. A continuación, puedes ver algunos criterios:
Ahora, mira el siguiente ejemplo:
Al comparar la fracción con la tabla anterior, se puede observar que tanto el numerador como el denominador son divisibles entre 2. Por lo tanto, se puede simplificar la fracción:
La fracción que se obtuvo se puede simplificar también:
Esta fracción se pudo convertir en un número entero porque se trata de una fracción aparente, pero en otros casos la simplificación de una fracción es otra con numerador y denominador menores que los de la fracción original. También debemos considerar que hay fracciones irreducibles, lo que quiere decir que no se pueden simplificar.
Simplificación de fracciones en multiplicaciones
En los casos de multiplicaciones se pueden realizar simplificaciones de términos pertenecientes a diferentes fracciones. Para ello, se realiza el mismo procedimiento explicado y se consideran de igual forma los criterios de divisibilidad.
Por ejemplo:
Como se puede observar, las dos fracciones, si se evalúan de forma separada, son irreducibles. Sin embargo, esta multiplicación se puede simplificar porque el numerador de la primera fracción y el denominador de la segunda son divisibles entre 2. Por lo tanto, al aplicar la simplificación queda de la siguiente manera:
Ahora sí se puede aplicar la multiplicación de fracciones con números más pequeños, ya que no tenemos ninguna posibilidad de simplificar.
Se debe simplificar el resultado si es necesario. En este caso, la fracción ya es irreducible.
En la multiplicación de tres o más fracciones se sigue el mismo procedimiento: simplificar, multiplicar todos los numeradores para obtener el numerador del resultado y luego se hace lo mismo con los denominadores para obtener el denominador del resultado.
División de fracciones
Para realizar la división de fracciones existen varios métodos.
- Primer método
Se gira la segunda fracción, con el propósito de invertir de posición el numerador y el denominador y se aplica el método de multiplicación de fracciones.
Por ejemplo:
Se hace el cambio de la segunda fracción y el signo de división por multiplicación.
Luego se resuelve la multiplicación resultante.
- Segundo método
Otra forma de realizar la división de fracciones es multiplicar en forma cruzada, de la siguiente forma:
Al igual que con las multiplicaciones, se debe revisar si el resultado es una fracción irreducible. Si no lo es, se procede a simplificar.
- Tercer método
Otro método aplicado en la división de fracciones es la doble c. En este procedimiento, la segunda fracción se coloca debajo de la primera de la siguiente manera:Luego se procede a multiplicar los extremos de la fracción y el resultado de esa multiplicación se coloca como numerador. Luego se multiplican los números internos y el resultado de esta última multiplicación se coloca como denominador.Al igual que en los métodos anteriores, debemos asegurarnos que el resultado sea una fracción irreducible. Si no lo es, debemos aplicar la simplificación hasta obtenerla.
Multiplicación y división de fracciones con números enteros
El procedimiento para la multiplicación o división de fracciones con números enteros es muy sencillo. Para ello, es necesario representar primero al entero en forma de fracción y luego se resuelve la operación a través de los procedimientos explicados anteriormente.
Para expresar un entero en forma de fracción se debe colocar a la unidad como su denominador. Esto se hace ya que el número (1) como denominador no modifica el entero existente, porque todo número divido entre (1) es el mismo número.
Por ejemplo:
Ahora se procede a aplicar el método de la multiplicación como se explicó anteriormente. Numerador por numerador y denominador por denominador.Recuerda simplificar el resultado de la fracción.Este paso previo para convertir un número entero en fracción, también se aplica para la división de fracciones.
¡A practicar!