Lenguaje matemático

Día a día utilizamos el lenguaje coloquial para describir situaciones a través de las palabras; sin embargo, muchas de estas palabras expresan problemas que pueden ser traducidas al lenguaje matemático: un lenguaje universal formado por números, letras y símbolos especiales que nos permite entender conceptos complejos en términos precisos.

¿QUÉ ES?

Es el conjunto de símbolos, operaciones y reglas que se utilizan para expresar y resolver problemas matemáticos. Este tipo de lenguaje se basa en la lógica y la precisión. Además, puede ser utilizado por cualquier persona, independientemente de su idioma o cultura.

El lenguaje matemático también es conocido como lenguaje simbólico, ya que sirve para expresar ideas, conceptos y operaciones matemáticas mediante uno o más símbolos.

CARACTERÍSTICAS

  • Se basa en un sistema de símbolos y fórmulas en lugar de palabras para comunicar ideas y conceptos de manera más clara y precisa.
  • Todos los símbolos se utilizan de forma rigurosa para representar una idea o concepto específico.
  • Se utiliza en todo el mundo.
  • Elimina detalles irrelevantes y se enfoca en los conceptos y las relaciones más significativas.
  • Se basa en la lógica y la deducción para establecer y demostrar una afirmación matemática.

SÍMBOLOS MATEMÁTICOS

Son un componente clave en este tipo de lenguaje. Los símbolos matemáticos nos ayudan a representar conceptos abstractos como números, operaciones, funciones, relaciones, probabilidad, etc. Los símbolos más comunes son los siguientes:

Lenguaje matemático Lenguaje coloquial
+ Suma/Adición/Aumentar
Resta/Sustracción/Diferencia
× Multiplicación/Producto
÷ División/Cociente
= Igual
± Más menos
% Porcentaje
> Mayor que
< Menor que
Mayor o igual qué
Menor o igual qué
Sumatoria
Raíz cuadrada
Equivalencia
Desigualdad
π Pi
Infinito
ƒ Función
Integral

NOTACIÓN

Es una parte importante del lenguaje matemático, se utiliza para simplificar la representación de conceptos complejos; por ejemplo, la fórmula del teorema de Pitágoras (a2 + b2 = c2) es más fácil de recordar y aplicar que una explicación verbal del mismo.

IMPORTANCIA

Es esencial en áreas como la física, la ingeniería, la economía, la informática, la química y muchas otras disciplinas científicas debido a que las fórmulas y los símbolos matemáticos se utilizan para modelar y resolver problemas complejos en estas áreas.

También es importante en la educación. Los niños aprenden a leer, escribir y hablar en este lenguaje desde una edad temprana, inicialmente manejan los números y la aritmética básica y, a medida que avanzan, usan ecuaciones y fórmulas para resolver problemas más complejos. De igual forma, durante su progreso estudiantil, también aprenden otras áreas de las matemáticas, como la geometría, la trigonometría y el álgebra, las cuales necesitan del lenguaje matemático para ser comprendidas.

El lenguaje matemático es una valiosa herramienta para resolver problemas. Así, por ejemplo, en lugar de escribir “el doble de siete es catorce”, podemos escribir “7 × 2 = 14”.

EVOLUCIÓN

Edad Antigua: las matemáticas se expresaban en lenguaje verbal y pictórico. Los egipcios utilizaban jeroglíficos para representar números y problemas matemáticos, mientras que los babilonios empleaban tablas para realizar cálculos.

Grecia Clásica: los matemáticos empezaron a utilizar la notación simbólica para representar las matemáticas de forma más rigurosa; por ejemplo, Euclides utilizó símbolos para los conceptos básicos de geometría, como las líneas, ángulos y triángulos.

Edad Media: la incorporación de la numeración árabe y la invención del álgebra marcaron un paso importante en la forma en que se representaban las matemáticas.

Renacimiento: en este período se volvió más formal y preciso. Los matemáticos comenzaron a utilizar símbolos especiales para operaciones matemáticas y a representar las relaciones entre las variables.

Siglo XVIII: el cálculo y la geometría analítica se desarrollaron como disciplinas principales de las matemáticas. La notación simbólica se hizo más compleja y sofisticada para representar conceptos abstractos y complicados.

Siglo XIX: la teoría de conjuntos y la lógica matemática se convirtieron en disciplinas importantes. El lenguaje matemático se hizo aún más exacto y formal gracias a la introducción de la notación moderna de conjunto y de la teoría de funciones.

Siglo XX: la informática y la estadística se expandieron, lo que llevó a la creación de nuevas disciplinas que utilizan un lenguaje simbólico, como la lógica matemática, la teoría de la computación y la estadística matemática. En la actualidad, sigue evolucionando para adaptarse a las nuevas tecnologías y a los avances de la investigación.

Ejemplo

Representemos en lenguaje matemático las siguientes expresiones:

Un número x
Un número más cien x+100
El siguiente de un número x+1
El anterior de un número x-1
Siete veces un número 7x
El producto de dos números x\times y
La diferencia de dos números x-y
Un número disminuido en cinco unidades x-5
El cubo de un número x^{3}
La cuarta parte de un número \frac{x}{4}
El cociente entre un número y seis es igual a dos \frac{x}{6}=2
Un número menos cincuenta es igual treinta x-50=30
La raíz cuadrada de un número es ocho \sqrt{x}=8

¿Sabías qué?
La palabra “cálculo” proviene del latín calcŭlus, que significa “piedra pequeña”. Antes de que los árabes introdujeran los números indo-arábigos, los antiguos romanos usaban piedras pequeñas para contar y hacer cálculos matemáticos. Estos procedimientos se realizaban en un ábaco, que es un instrumento de operaciones aritméticas sencillas que utiliza cuentas para representar números.

El origen de los símbolos

Muchos de los símbolos matemáticos tienen su origen en la palabra o concepto que representan. Por ejemplo, el símbolo “+” proviene del latín plus, que significa “más”; el símbolo “-” proviene del latín minus, que significa “menos”, y el símbolo “=” proviene del latín aequalitas, que significa “igualdad”.

¡A practicar!

 

1. Escribe en lenguaje matemático las siguientes expresiones.

 

  • El doble de un número.
  • El quíntuple de un número.
  • Un tercio de un número.
  • La raíz cuadrada de un número.
  • La raíz cúbica del producto de dos números.
  • La suma de los cuadrados de dos números.
  • La mitad de un número más diez.
  • El doble de un número menos su mitad.

Operaciones con números decimales

En las matemáticas hay ocasiones en las que se desea hablar de cantidades de forma más precisa, por lo que se recurre a los números decimales, estos números cuentan con una forma propia de aplicar las operaciones básicas como la suma, resta, multiplicación y división.

¿Qué son los números decimales?

Son valores que sirven para expresar números racionales e irracionales. Todo número decimal está formado por una parte entera y una parte decimal. En este sentido, un número que pertenece al conjunto de los números reales, se representa de forma decimal de la siguiente manera:

d = a, a1, a2…an

Dónde:

a: es un número entero cualquiera.

a, a1, a2…an: representan los decimales donde se cumple para cada uno de ellos que 0 ≤ ai ≤ 9

En algunos países como Estados Unidos se usa el símbolo del punto para expresar la coma decimal.

Cifras decimales

Para leer e interpretar el valor posicional de números decimales se debe considerar la ubicación de los decimales.

0,1 Décima
0,01 Centésima
0,001 Milésima
0,0001 Diezmilésima
0,00001 Cienmilésima
0,000001 Millonésima

De esta forma, el número 132,486579 se puede descomponer en sus unidades de la siguiente forma:

Centena (C) Decena (D) Unidad (U) Coma decimal Décima (d) Centésima (c) Milésima (m) Diezmilésima Cienmilésima Millonésima
1 3 2 , 4 8 6 5 7 9

De este modo, 132 representa la parte decimal y resto de los números corresponden a su parte decimal.

Operaciones con decimales

  • Suma

Para realizar sumas de números decimales se deben colocar los números uno debajo del otro de forma tal que coincidan cada una de sus unidades. En caso de ser necesario se completa con 0 las unidades que no aparezcan reflejadas en la operación. Una vez hecho esto, se realiza a suma de forma convencional y se ubica la coma decimal en su respectivo lugar.

Por ejemplo:

– Resolver 2,785 + 5,14

Recordemos las unidades de dichos números:

Se colocan los números uno de bajo del otro, como 5,14 no tiene milésimas se coloca un 0 en la columna correspondiente a dicho número:

Se resuelve la suma de forma convencional y se coloca la coma decimal en su respectiva columna:

De manera que el resultado de 2,785 + 5,14 es igual a 7,925.

El número pi (π) es un número decimal y es el resultado de dividir la longitud de cualquier circunferencia entre su radio.
  • Resta

Se resuelve de forma similar a la suma. Es decir se ubican los números uno debajo del otro de manera que coincidan sus unidades correspondientes y luego se resuelve la operación de sustracción de forma convencional. Al final se coloca la coma en su columna respectiva.

Por ejemplo:

-Resuelva 8,513 − 4,372

Recordemos las unidades de dichos números:

Se colocan los números uno debajo del otro de acuerdo a su unidad y se resuelve la resta:

En este caso no se completó con 0 debido a que ambos números tenían la misma cantidad de cifras decimales.

El resultado de 8,513 − 4,372 es igual a 4,141.

  • Multiplicación

En las multiplicaciones puede haber cifras decimales en cualquiera de los dos factores, o incluso en ambos. Las multiplicaciones se resuelven de manera convencional, la única diferencia es que el número de cifras decimales de los factores corresponderá a las cifras decimales del resultado.

Por ejemplo:

-Resolver 635 x 2,5

Se resuelve la multiplicación de manera convencional sin considerar por el momento la coma:

El paso siguiente es colocar la coma en el resultado de manera tal que tenga el mismo número de decimales que los dos factores. En este caso los factores son 635 y 2,5:

635 → no tiene cifras decimales.

2,5 → tiene una sola cifra decimal.

Como 635 no tiene cifras decimales y 2,5 tiene una sola cifra decimal, entonces el resultado deberá tener una cifra decimal, de manera que el resultado de la multiplicación es 1.587,5:

Otra forma de saber la ubicación de la coma es mover la coma a partir de la última cifra de resultado tantos espacios como cifras significativas tengan los factores. De la siguiente forma:

Otro ejemplo:

-Resuelva 1,45 x 3,78

Se resuelve con el mismo procedimiento anterior:

El factor 1,45 tiene 2 cifras decimales y el factor 3,78 también tiene 2 cifras decimales. De manera que el número total de cifras decimales de los dos factores es 4. Es decir, el resultado deberá tener cuatro cifras decimales, por lo tanto será 5,8110:

Las cifras decimales que terminan en cero se pueden omitir, por lo tanto el 5,8110 es lo mismo que 5,811.

Multiplicación por la unidad seguida de cero

Cuando se multiplican decimales por la unidad seguida de cero, el resultado será igual a las mismas cifras que componen del número decimal. La diferencia es que la coma se moverá a la derecha tantos espacios como el número de ceros del número entero.

1,55 x 10 = 15,5

En caso de que el número de ceros de la unidad sea mayor al número de decimales, se completa con ceros has cumplir con los espacios.

2,479 x 10.000 = 24.790,0

El mismo resultado se obtiene si se multiplican dichos factores de la forma convencional explicada anteriormente.
  • División

Puede ser de tres formas diferentes: dividendo decimal y divisor entero, dividendo entero y divisor decimal, dividendo decimal y divisor decimal.

Dividendo decimal y divisor entero: se realiza la división como si fueran ambos números enteros, la diferencia, es que se coloca la coma al momento de bajar la primera cifra decimal del dividendo.

Por ejemplo:

-Resuelva 2,84 : 2

Se resuelve la división como si se tratase de divisiones con números enteros:

Como el 8 es la primera cifra decimal del dividendo, se coloca la coma al momento de bajar dicha cifra mientras se resuelve la división.

El resultado de 2,84 : 2 es 1,42

Dividendo entero y divisor decimal: en este caso se suprime la coma del divisor y se colocan tantos ceros al dividendo como cifras decimales tuviera el divisor inicialmente.

Por ejemplo:

Resolver 896 : 3,2

Se suprime la coma del divisor:

3,2 → 32

Como 3,2 tiene una sola cifra decimal, se agrega un cero al dividendo

896 → 8.960

De manera que la división quedaría 8.960 : 32 y se resuelve como una división convencional sin decimales:

 De esta manera el resultado de 896 : 3,2 es 280

Dividendo decimal y divisor decimal: en este caso se suprime la coma del divisor y se mueve la coma del dividendo hacia la derecha tantos espacios como cifras decimales tenga el divisor.

Por ejemplo:

-Resuelva 4,340 : 3,5

Se elimina la coma del divisor:

3,5 → 35

Se mueve la coma del dividendo tantos espacios a la derecha como cifras decimales tenga el divisor. En este caso, como el divisor es 3,5 tiene una cifra decimal por lo tanto, la coma del dividendo se debe mover un espacio a la derecha:

4,340 → 43,40

De esta manera la división a resolver quedaría 43,40 : 35, es del primer tipo que se explicó anteriormente (dividendo decimal y divisor entero) y se resuelve de la siguiente forma:

De manera que el resultado de 4,240 : 3,5 es 1,24

En caso de ser necesario, se pueden agregar ceros al divisor de la misma forma que se hace en las divisiones sin decimales.

¿Qué es un número natural?

Un número natural se designa con N. Se trata de aquellos que se utilizan para contar los elementos de un conjunto.

Un número natural es cualquier miembro del siguiente conjunto: = {0, 1, 2, 3, 4, …}

En el caso del ejemplo anterior, comienza en cero y prosigue ad infinitum, lo que significa “hasta el infinito”. El número que se encuentra a la derecha de otro número se denomina sucesivo o siguiente.

El conjunto se toma a partir del cero en este caso, ya que éste representa la cantidad de elementos que tiene el conjunto vacío.

Llamamos segmento de una sucesión natural al conjunto de todos los números naturales iguales o menores que cierto número natural, K. Se denota de la siguiente manera:  I 1, K I

Propiedades del conjunto de los números naturales

  • Los números naturales nos permiten contar los elementos de un conjunto determinado, y cuando realizamos operaciones con ellos, podemos obtener resultados catalogados o no como número naturales.

Al sumar y al multiplicar dos números naturales obtendremos como resultado un número natural.

En cambio, en la división y en la resta de números naturales, no siempre obtendremos como resultado otro número natural.

  • Cada elemento tiene un sucesor. Si tomamos un número natural sabremos cuál es el que le sigue, es decir el sucesor, y esto nos indicará que no hay un número natural en medio de ellos.
  • La función de los números naturales es representar cantidades (mayores o menores) . Si queremos decir que un número es mayor que otro usamos >, mientras que para decir que un número es más pequeño que otro se utiliza <.

Ejemplo 10 > 1 o 1 < 10