Lenguaje matemático

Día a día utilizamos el lenguaje coloquial para describir situaciones a través de las palabras; sin embargo, muchas de estas palabras expresan problemas que pueden ser traducidas al lenguaje matemático: un lenguaje universal formado por números, letras y símbolos especiales que nos permite entender conceptos complejos en términos precisos.

¿QUÉ ES?

Es el conjunto de símbolos, operaciones y reglas que se utilizan para expresar y resolver problemas matemáticos. Este tipo de lenguaje se basa en la lógica y la precisión. Además, puede ser utilizado por cualquier persona, independientemente de su idioma o cultura.

El lenguaje matemático también es conocido como lenguaje simbólico, ya que sirve para expresar ideas, conceptos y operaciones matemáticas mediante uno o más símbolos.

CARACTERÍSTICAS

  • Se basa en un sistema de símbolos y fórmulas en lugar de palabras para comunicar ideas y conceptos de manera más clara y precisa.
  • Todos los símbolos se utilizan de forma rigurosa para representar una idea o concepto específico.
  • Se utiliza en todo el mundo.
  • Elimina detalles irrelevantes y se enfoca en los conceptos y las relaciones más significativas.
  • Se basa en la lógica y la deducción para establecer y demostrar una afirmación matemática.

SÍMBOLOS MATEMÁTICOS

Son un componente clave en este tipo de lenguaje. Los símbolos matemáticos nos ayudan a representar conceptos abstractos como números, operaciones, funciones, relaciones, probabilidad, etc. Los símbolos más comunes son los siguientes:

Lenguaje matemático Lenguaje coloquial
+ Suma/Adición/Aumentar
Resta/Sustracción/Diferencia
× Multiplicación/Producto
÷ División/Cociente
= Igual
± Más menos
% Porcentaje
> Mayor que
< Menor que
Mayor o igual qué
Menor o igual qué
Sumatoria
Raíz cuadrada
Equivalencia
Desigualdad
π Pi
Infinito
ƒ Función
Integral

NOTACIÓN

Es una parte importante del lenguaje matemático, se utiliza para simplificar la representación de conceptos complejos; por ejemplo, la fórmula del teorema de Pitágoras (a2 + b2 = c2) es más fácil de recordar y aplicar que una explicación verbal del mismo.

IMPORTANCIA

Es esencial en áreas como la física, la ingeniería, la economía, la informática, la química y muchas otras disciplinas científicas debido a que las fórmulas y los símbolos matemáticos se utilizan para modelar y resolver problemas complejos en estas áreas.

También es importante en la educación. Los niños aprenden a leer, escribir y hablar en este lenguaje desde una edad temprana, inicialmente manejan los números y la aritmética básica y, a medida que avanzan, usan ecuaciones y fórmulas para resolver problemas más complejos. De igual forma, durante su progreso estudiantil, también aprenden otras áreas de las matemáticas, como la geometría, la trigonometría y el álgebra, las cuales necesitan del lenguaje matemático para ser comprendidas.

El lenguaje matemático es una valiosa herramienta para resolver problemas. Así, por ejemplo, en lugar de escribir “el doble de siete es catorce”, podemos escribir “7 × 2 = 14”.

EVOLUCIÓN

Edad Antigua: las matemáticas se expresaban en lenguaje verbal y pictórico. Los egipcios utilizaban jeroglíficos para representar números y problemas matemáticos, mientras que los babilonios empleaban tablas para realizar cálculos.

Grecia Clásica: los matemáticos empezaron a utilizar la notación simbólica para representar las matemáticas de forma más rigurosa; por ejemplo, Euclides utilizó símbolos para los conceptos básicos de geometría, como las líneas, ángulos y triángulos.

Edad Media: la incorporación de la numeración árabe y la invención del álgebra marcaron un paso importante en la forma en que se representaban las matemáticas.

Renacimiento: en este período se volvió más formal y preciso. Los matemáticos comenzaron a utilizar símbolos especiales para operaciones matemáticas y a representar las relaciones entre las variables.

Siglo XVIII: el cálculo y la geometría analítica se desarrollaron como disciplinas principales de las matemáticas. La notación simbólica se hizo más compleja y sofisticada para representar conceptos abstractos y complicados.

Siglo XIX: la teoría de conjuntos y la lógica matemática se convirtieron en disciplinas importantes. El lenguaje matemático se hizo aún más exacto y formal gracias a la introducción de la notación moderna de conjunto y de la teoría de funciones.

Siglo XX: la informática y la estadística se expandieron, lo que llevó a la creación de nuevas disciplinas que utilizan un lenguaje simbólico, como la lógica matemática, la teoría de la computación y la estadística matemática. En la actualidad, sigue evolucionando para adaptarse a las nuevas tecnologías y a los avances de la investigación.

Ejemplo

Representemos en lenguaje matemático las siguientes expresiones:

Un número x
Un número más cien x+100
El siguiente de un número x+1
El anterior de un número x-1
Siete veces un número 7x
El producto de dos números x\times y
La diferencia de dos números x-y
Un número disminuido en cinco unidades x-5
El cubo de un número x^{3}
La cuarta parte de un número \frac{x}{4}
El cociente entre un número y seis es igual a dos \frac{x}{6}=2
Un número menos cincuenta es igual treinta x-50=30
La raíz cuadrada de un número es ocho \sqrt{x}=8

¿Sabías qué?
La palabra “cálculo” proviene del latín calcŭlus, que significa “piedra pequeña”. Antes de que los árabes introdujeran los números indo-arábigos, los antiguos romanos usaban piedras pequeñas para contar y hacer cálculos matemáticos. Estos procedimientos se realizaban en un ábaco, que es un instrumento de operaciones aritméticas sencillas que utiliza cuentas para representar números.

El origen de los símbolos

Muchos de los símbolos matemáticos tienen su origen en la palabra o concepto que representan. Por ejemplo, el símbolo “+” proviene del latín plus, que significa “más”; el símbolo “-” proviene del latín minus, que significa “menos”, y el símbolo “=” proviene del latín aequalitas, que significa “igualdad”.

¡A practicar!

 

1. Escribe en lenguaje matemático las siguientes expresiones.

 

  • El doble de un número.
  • El quíntuple de un número.
  • Un tercio de un número.
  • La raíz cuadrada de un número.
  • La raíz cúbica del producto de dos números.
  • La suma de los cuadrados de dos números.
  • La mitad de un número más diez.
  • El doble de un número menos su mitad.

Fracciones equivalentes

Si una pizza la dividimos en dos partes iguales y nos comemos una de las partes y otra pizza la dividimos en cuatro partes iguales, pero nos comemos dos de ellas, en ambas pizzas nos comimos exactamente la misma cantidad, esto es un modelo de lo que se conoce como fracción equivalente, que representan la misma cantidad, aunque tengan numerador y denominador diferente.

¿qué son las fracciones equivalentes?

Las fracciones equivalentes son aquellas fracciones que representan la misma parte de un entero, es decir, representan el mismo número aunque tengan numerador y denominador diferente.

Por ejemplo, tenemos tres pasteles de chocolate iguales, de uno nos comemos medio pastel, de otro nos comemos dos cuartos de pastel y del tercero nos comemos cuatro octavos de pastel. ¿De cuál pastel comimos más cantidad? Veamos.

Como puedes observar comimos la misma cantidad en los tres pasteles, aunque el primero lo representamos como un medio, el segundo como dos cuartos y el tercero como cuatro octavos, los tres representan la misma cantidad, por lo que se consideran fracciones equivalentes.

Entonces, como las fracciones equivalentes son iguales, las representamos de la siguiente forma:

\frac{1}{2} = \frac{2}{4} = \frac{4}{8}

Producto cruzado

Una forma para determinar si una fracción es equivalente es empleando el método del producto cruzado, si los productos del numerador de una y el denominador de la otra son iguales, entonces se puede decir que es una fracción equivalente. Veamos algunos ejemplos:

Comprueba si las siguientes fracciones son equivalentes:

  • \frac{2}{3} = \frac{4}{6}

Para ello, multiplicamos el denominador de una por el numerador de la otra de la siguiente forma:

Como ambos resultados son iguales, entonces podemos decir que son fracciones equivalentes.

  • \frac{2}{4} = \frac{3}{7}

Multiplicamos el denominador de una por el numerador de la otra de la siguiente forma:

En este caso los productos son diferentes, por lo tanto las fracciones no son equivalentes.

  • \frac{1}{3} = \frac{2}{6}

Multiplicamos el denominador de una por el numerador de la otra de la siguiente forma:

Como ambos resultados son iguales, entonces podemos decir que son fracciones equivalentes.

Todas las fracciones se pueden representar en forma de gráfica, para ello se emplean figuras geométricas que se dividen en las partes que indique el denominador y se colorean las partes que indica el numerador.

¿Cómo calcular fracciones equivalentes?

Las fracciones equivalentes pueden calcularse por amplificación o simplificación.

Por amplificación:

La amplificación consiste en multiplicar el numerador y el denominador por el mismo número, que debe ser diferente a cero.

Multiplicamos el numerador y el denominador por 2, por lo tanto 4/6 es una fracción equivalente de 2/3.

Podemos obtener una fracción equivalente al multiplicar esta nueva fracción por 2 o por cualquier otro número diferente a cero, en este caso vamos a multiplicarla por 3.

Multiplicamos el numerador y el denominador por 3 y a partir de allí obtenemos la fracción equivalente 12/18.

También podemos multiplicar la fracción original por cualquier otro número y obtener otra fracción equivalente, en este caso, vamos a multiplicar la fracción original por 5.

Al multiplicar el numerador y el denominador por 5, obtenemos la fracción equivalente 10/5.

Entonces, todas las fracciones obtenidas anteriormente son equivalentes a la fracción original y las podemos representar de la siguiente manera:

¿Sabías qué?
Al representar fracciones equivalentes se debe colocar el signo igual (=) entre ellas para indicar que representan el mismo valor.

Por simplificación:

La simplificación consiste en dividir el numerador y el denominador por el mismo número, que debe ser diferente a cero y debe ser un divisor común del numerador y el denominador.

Dividimos el numerador y el denominador entre 2, por lo tanto 9/15 es una fracción equivalente de 18/30.

Podemos obtener otra fracción equivalente al dividir 9/15 por cualquier otro número diferente a cero, que sea divisor común del numerador y el denominador, en este caso vamos a dividirla entre 3.

Dividimos el numerador y el denominador entre 3, por lo tanto 3/5 es una fracción equivalente de 9/15.

También podemos dividir la fracción original por cualquier otro número y obtener la fracción equivalente, en este caso, vamos a dividir la fracción original por 6.

Dividimos el numerador y el denominador entre 6, por lo tanto 3/5 es una fracción equivalente de 18/30.

Entonces las siguientes fracciones son equivalentes:

¿Sabías qué?
Las fracciones irreducibles son aquellas que ya no pueden simplificarse porque ya no hay ningún divisor común entre en el numerador y el denominador. Por ejemplo 3/5 es una fracción irreducible porque no existe un divisor común entre 3 y 5.

¡A practicar!

  1. Comprueba mediante el producto cruzado si las siguientes fracciones son equivalentes:
  • 2/4 = 4/8
  • 3/6 = 6/9
  • 1/5 = 2/10

2. Calcula tres fracciones equivalentes mediante el método de la amplificación:

  • 1/3
  • 3/5
  • 6/8

3. Calcula las fracciones equivalentes por simplificación hasta que sean irreducibles.

  • 16/36
  • 12/18
  • 20/25

Números mixtos

Las fracciones representan una parte de un todo, así que son útiles para expresar, por ejemplo, la cantidad de trozos de pizza que nos comimos. Cuando el numerador es mayor que el denominador se dicen que son impropias y se pueden expresar como un número mixto: una combinación de un número natural con una fracción propia.

recordemos las fracciones

Una fracción es una división de un entero en partes iguales. Está formada por un numerador y un denominador.

  • El numerador es el número de partes que se ha tomado del total.
  • El denominador es el número de partes en las que se dividió la unidad.
Las fracciones propias son aquellas cuyo numerador es menor que el denominador, mientras que las fracciones impropias tienen su numerador mayor al denominador.

¿qué son los números mixtos?

Los números mixtos, también conocidos como fracciones mixtas, están formados por un número natural (parte entera) y una fracción propia (parte fraccionaria).

Los números mixtos son otra forma de representar fracciones impropias, las cuales siempre son mayores que la unidad.

Gráficas de fracciones impropias

Son una manera visual de ver las fracciones. Para realizar estas representaciones gráficas basta con dividir una figura en tantas partes como indique el denominador. Luego repetimos esta figura hasta poder colorear la cantidad de partes que señala el numerador.

– Ejemplos:

  • \boldsymbol{\frac{5}{3}}==\boldsymbol{1\frac{2}{3}}
  • \boldsymbol{\frac{11}{5}}==\boldsymbol{2\frac{1}{5}}
  • \boldsymbol{\frac{10}{4}}==\boldsymbol{2\frac{2}{4}}

Observa que la cantidad de partes enteras de las gráficas es igual al valor de la parte entera del número mixto, mientras que la última gráfica determina la parte fraccionaria. Así que el número mixto resulta de sumar un entero y una fracción propia.

¿Cómo transformar una fracción impropia a un número mixto?

Lo primero que debemos hacer es dividir el numerador entre el denominador de la fracción, el cociente será igual a la parte entera, mientras que el resto será igual al numerador de la parte fraccionaria y el denominador será igual al de la fracción impropia inicial.

– Ejemplo:

– Otros ejemplos:

Fracción impropia División Número mixto
\frac{8}{5} 8 : {\color{Red} 5}={\color{Blue} 1}\: \: \: resto ={\color{DarkOrange} 3} \boldsymbol{{\color{Blue} 1}\frac{{\color{DarkOrange} 3}}{{\color{Red} 5}}}
\frac{11}{4} 11 : {\color{Red} 4} = {\color{Blue} 2}\: \: resto={\color{DarkOrange} 3} \boldsymbol{{\color{Blue} 2}\frac{{\color{DarkOrange} 3}}{{\color{Red} 4}}}
\frac{5}{3} 5:{\color{Red} 3}={\color{Blue} 1}\: \: resto={\color{DarkOrange} 2} \boldsymbol{{\color{Blue} 1}\frac{{\color{DarkOrange} 2}}{{\color{Red} 3}}}

 

¿cómo transformar un número mixto a una fracción impropia?

En esta conversión tenemos que multiplicar la parte entera por el denominador de la parte fraccionaria y sumar a ese resultado el numerador. Luego, colocamos como denominador de la fracción impropia el mismo denominador de la parte fraccionaria del número mixto.

– Ejemplo:

\boldsymbol{{\color{Blue} 1}\frac{{\color{DarkOrange} 4}}{{\color{Red} 5}}} {\color{Blue} 1}\times {\color{Red} 5}=5+{\color{DarkOrange} 4}=\boldsymbol{9} \boldsymbol{\frac{9}{{\color{Red} 5}}}

 

– Otros ejemplos:

Número mixto Operación Fracción impropia
\boldsymbol{{\color{Blue} 1}\frac{{\color{DarkOrange} 3}}{{\color{Red} 5}}} {\color{Blue} 1}\times {\color{Red} 5}=5+{\color{DarkOrange} 3}=\boldsymbol{8} \boldsymbol{\frac{8}{{\color{Red} 5}}}
\boldsymbol{{\color{Blue} 2}\frac{{\color{DarkOrange} 3}}{{\color{Red} 4}}} {\color{Blue} 2}\times {\color{Red} 4}=8+{\color{DarkOrange} 3}=\boldsymbol{11} \boldsymbol{\frac{11}{{\color{Red} 4}}}
\boldsymbol{{\color{Blue} 1}\frac{{\color{DarkOrange} 2}}{{\color{Red} 3}}} {\color{Blue} 1}\times {\color{Red} 3}=3+{\color{DarkOrange} 2}=\boldsymbol{5} \boldsymbol{\frac{5}{{\color{Red} 3}}}

Números mixtos en la vida cotidiana

Muchas veces usamos números mixtos para expresar cantidad de ingredientes o tiempo, por ejemplo:

  • Un partido de fútbol dura hora o un partido de fútbol dura una hora y media.
  • Faltan horas para la película o faltan dos horas y cuarto para la película.
  • El postre necesita cucharadas de azúcar o el postre necesita tres cucharadas y media de azúcar.

¿Sabías qué?
Para sumar y restar números mixtos de forma sencilla primero debemos convertirlos en fracciones impropias.

números mixtos en la recta numérica

Para ubicar números mixtos en la recta numérica consideramos inicialmente la parte entera, esta nos indicará entre cuáles números está la parte fraccionaria. Como la parte fraccionaria consta de una fracción propia, solo tenemos que dividir el segmento entre los dos números enteros en la cantidad de partes que señale el denominador, luego contamos tantos espacios como muestre el numerador y marcamos el número mixto o su equivalente fracción impropia.

– Ejemplo:

Ubiquemos en la recta numérica el número mixto 1\frac{4}{5}.

  • La parte entera es 1, así que solo dibujamos la recta entre 1 y 2.

  • Como el denominador de la parte fraccionaria es 5, dividimos el segmento entre 1 y 2 en 5 partes iguales.

  • Contamos 4 espacios desde el número 1 porque el numerador de la parte fraccionaria es 4.

  • Escribimos el número mixto o su fracción impropia equivalente \frac{9}{5} en ese punto.

¡A practicar!

1. ¿Qué número mixto representan estos gráficos?

a. 

b. 

c. 

2. Convierte los siguientes números mixtos a fracciones impropias.

a.   3\frac{2}{5} b.   1\frac{6}{7} c.   2\frac{3}{5}

3. Convierte las siguientes fracciones impropias a números mixtos.

a.   \frac{4}{3} b.   \frac{10}{7} c.   \frac{15}{4}

4. Ubica los siguientes número mixtos en la recta numérica.

a.   3\frac{3}{4} b.   1\frac{1}{3} c.   2\frac{3}{5}

Respuestas

1a.  3\frac{3}{4}

 

1b.  1\frac{1}{5}

 

1c.  2\frac{4}{7}

2a.   \frac{17}{5}

 

2b.   \frac{13}{7}

 

2c.   \frac{13}{5}

3a.   1\frac{1}{3}

 

3b.   1\frac{3}{7}

 

3c.   3\frac{3}{4}

4a. 

4b. 

4c.