Lenguaje matemático

Día a día utilizamos el lenguaje coloquial para describir situaciones a través de las palabras; sin embargo, muchas de estas palabras expresan problemas que pueden ser traducidas al lenguaje matemático: un lenguaje universal formado por números, letras y símbolos especiales que nos permite entender conceptos complejos en términos precisos.

¿QUÉ ES?

Es el conjunto de símbolos, operaciones y reglas que se utilizan para expresar y resolver problemas matemáticos. Este tipo de lenguaje se basa en la lógica y la precisión. Además, puede ser utilizado por cualquier persona, independientemente de su idioma o cultura.

El lenguaje matemático también es conocido como lenguaje simbólico, ya que sirve para expresar ideas, conceptos y operaciones matemáticas mediante uno o más símbolos.

CARACTERÍSTICAS

  • Se basa en un sistema de símbolos y fórmulas en lugar de palabras para comunicar ideas y conceptos de manera más clara y precisa.
  • Todos los símbolos se utilizan de forma rigurosa para representar una idea o concepto específico.
  • Se utiliza en todo el mundo.
  • Elimina detalles irrelevantes y se enfoca en los conceptos y las relaciones más significativas.
  • Se basa en la lógica y la deducción para establecer y demostrar una afirmación matemática.

SÍMBOLOS MATEMÁTICOS

Son un componente clave en este tipo de lenguaje. Los símbolos matemáticos nos ayudan a representar conceptos abstractos como números, operaciones, funciones, relaciones, probabilidad, etc. Los símbolos más comunes son los siguientes:

Lenguaje matemático Lenguaje coloquial
+ Suma/Adición/Aumentar
Resta/Sustracción/Diferencia
× Multiplicación/Producto
÷ División/Cociente
= Igual
± Más menos
% Porcentaje
> Mayor que
< Menor que
Mayor o igual qué
Menor o igual qué
Sumatoria
Raíz cuadrada
Equivalencia
Desigualdad
π Pi
Infinito
ƒ Función
Integral

NOTACIÓN

Es una parte importante del lenguaje matemático, se utiliza para simplificar la representación de conceptos complejos; por ejemplo, la fórmula del teorema de Pitágoras (a2 + b2 = c2) es más fácil de recordar y aplicar que una explicación verbal del mismo.

IMPORTANCIA

Es esencial en áreas como la física, la ingeniería, la economía, la informática, la química y muchas otras disciplinas científicas debido a que las fórmulas y los símbolos matemáticos se utilizan para modelar y resolver problemas complejos en estas áreas.

También es importante en la educación. Los niños aprenden a leer, escribir y hablar en este lenguaje desde una edad temprana, inicialmente manejan los números y la aritmética básica y, a medida que avanzan, usan ecuaciones y fórmulas para resolver problemas más complejos. De igual forma, durante su progreso estudiantil, también aprenden otras áreas de las matemáticas, como la geometría, la trigonometría y el álgebra, las cuales necesitan del lenguaje matemático para ser comprendidas.

El lenguaje matemático es una valiosa herramienta para resolver problemas. Así, por ejemplo, en lugar de escribir “el doble de siete es catorce”, podemos escribir “7 × 2 = 14”.

EVOLUCIÓN

Edad Antigua: las matemáticas se expresaban en lenguaje verbal y pictórico. Los egipcios utilizaban jeroglíficos para representar números y problemas matemáticos, mientras que los babilonios empleaban tablas para realizar cálculos.

Grecia Clásica: los matemáticos empezaron a utilizar la notación simbólica para representar las matemáticas de forma más rigurosa; por ejemplo, Euclides utilizó símbolos para los conceptos básicos de geometría, como las líneas, ángulos y triángulos.

Edad Media: la incorporación de la numeración árabe y la invención del álgebra marcaron un paso importante en la forma en que se representaban las matemáticas.

Renacimiento: en este período se volvió más formal y preciso. Los matemáticos comenzaron a utilizar símbolos especiales para operaciones matemáticas y a representar las relaciones entre las variables.

Siglo XVIII: el cálculo y la geometría analítica se desarrollaron como disciplinas principales de las matemáticas. La notación simbólica se hizo más compleja y sofisticada para representar conceptos abstractos y complicados.

Siglo XIX: la teoría de conjuntos y la lógica matemática se convirtieron en disciplinas importantes. El lenguaje matemático se hizo aún más exacto y formal gracias a la introducción de la notación moderna de conjunto y de la teoría de funciones.

Siglo XX: la informática y la estadística se expandieron, lo que llevó a la creación de nuevas disciplinas que utilizan un lenguaje simbólico, como la lógica matemática, la teoría de la computación y la estadística matemática. En la actualidad, sigue evolucionando para adaptarse a las nuevas tecnologías y a los avances de la investigación.

Ejemplo

Representemos en lenguaje matemático las siguientes expresiones:

Un número x
Un número más cien x+100
El siguiente de un número x+1
El anterior de un número x-1
Siete veces un número 7x
El producto de dos números x\times y
La diferencia de dos números x-y
Un número disminuido en cinco unidades x-5
El cubo de un número x^{3}
La cuarta parte de un número \frac{x}{4}
El cociente entre un número y seis es igual a dos \frac{x}{6}=2
Un número menos cincuenta es igual treinta x-50=30
La raíz cuadrada de un número es ocho \sqrt{x}=8

¿Sabías qué?
La palabra “cálculo” proviene del latín calcŭlus, que significa “piedra pequeña”. Antes de que los árabes introdujeran los números indo-arábigos, los antiguos romanos usaban piedras pequeñas para contar y hacer cálculos matemáticos. Estos procedimientos se realizaban en un ábaco, que es un instrumento de operaciones aritméticas sencillas que utiliza cuentas para representar números.

El origen de los símbolos

Muchos de los símbolos matemáticos tienen su origen en la palabra o concepto que representan. Por ejemplo, el símbolo “+” proviene del latín plus, que significa “más”; el símbolo “-” proviene del latín minus, que significa “menos”, y el símbolo “=” proviene del latín aequalitas, que significa “igualdad”.

¡A practicar!

 

1. Escribe en lenguaje matemático las siguientes expresiones.

 

  • El doble de un número.
  • El quíntuple de un número.
  • Un tercio de un número.
  • La raíz cuadrada de un número.
  • La raíz cúbica del producto de dos números.
  • La suma de los cuadrados de dos números.
  • La mitad de un número más diez.
  • El doble de un número menos su mitad.

CAPÍTULO 4 / EJERCICIOS

MATERIALES | EJERCICIOS

MASA, PESO Y VOLUMEN

1. MARCA VERDADERO O FALSO SEGÚN CORRESPONDA.

EL ÁTOMO ES LA UNIDAD BÁSICA DE CUALQUIER ELEMENTO. V F
LA MASA Y EL PESO SON LO MISMO. V F
LAS PROPIEDADES QUE PODEMOS PERCIBIR CON LOS SENTIDOS SE LLAMAN CARACTERÍSTICAS ORGANOLÉPTICAS replica watches. V F
EL VOLUMEN ES UNA PROPIEDAD QUE NO DEPENDE DE LA CANTIDAD DE MATERIA. V F
LA MASA ES LA CANTIDAD DE MATERIA QUE POSEE UN CUERPO. V F

2.  ¿CUÁL ES LA DIFERENCIA ENTRE MASA Y PESO?

MASA PESO
 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. SEGÚN LO QUE APRENDISTE SOBRE EL VOLUMEN, ¿CÓMO ES EL VOLUMEN DE LOS SIGUIENTES MATERIALES? ¿SON DEFINIDOS O SE AMOLDAN AL RECIPIENTE QUE LO CONTIENE?

 

 

 

 

___________________________

 

 

 

 

___________________________

 

 

 

 

___________________________

los materiales y el calor

1. COMPLETA LAS SIGUIENTES FRASES.

  • EL CALOR ES UNA ENERGÍA QUE SE ___________________________.
  • EL CALOR CIRCULA SIEMPRE DESDE EL CUERPO QUE SE ENCUENTRA A _______________ TEMPERATURA HACIA EL QUE SE ENCUENTRA A _______________ TEMPERATURA.
  • EL ____________________ ___________________ ES CUANDO UN CUERPO CEDE CALOR A UN CUERPO MÁS FRÍO HASTA QUE AMBOS ESTÉN A LA MISMA TEMPERATURA.
  • LOS CAMBIOS DE ESTADO MÁS COMUNES SON EL ___________________, ____________________ Y EL _________________________.

2. EXPLICA BREVEMENTE EL PROCESO QUE SE LLEVA A CABO PARA QUE EL AGUA CAMBIE SU ESTADO.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

MATERIALES Y SU COMPORTAMIENTO ÓPTICO

1. RELACIONA LOS ELEMENTOS DE LA COLUMNA A CON LOS DE LA COLUMNA B.

A B
LA LUZ PROVIENE DE LA LUZ VISIBLE QUE SE PUEDE PERCIBIR MEDIANTE RECEPTORES EN EL OJO.
EL ARCOÍRIS ESTAS ENGAÑAN TANTO A LA VISTA COMO A LA MENTE, YA QUE GENERAN UNA PERCEPCIÓN FALSA DE LAS IMÁGENES QUE SE ENCUENTRAN A NUESTRO ALREDEDOR.
LAS ILUSIONES ÓPTICAS ES ENERGÍA, GRACIAS A ELLA PODEMOS VER LOS OBJETOS Y SUS COLORES. ADEMÁS, ES UNA ONDA DE TIPO ELECTROMAGNÉTICA.
EL COLOR APARECEN EN DÍAS NUBLADOS, CUANDO A LO LEJOS, SE VE CAER LA LLUVIA. APARECEN BAJO ESTAS CONDICIONES PORQUE LA LUZ DEL SOL ATRAVIESA LAS GOTAS DE AGUA QUE CAEN DURANTE UNA LLUVIA Y ESTA SE COMPORTA COMO UN PRISMA, LO QUE CAUSA QUE SE DESCOMPONGA EN LOS COLORES QUE LA CONFORMAN.

2. PARA QUE EXISTA EL COLOR ES INDISPENSABLE QUE DÉ LUZ SOBRE UN OBJETO. INDICA QUÉ COLOR REFLEJARÁN LAS SIGUIENTES SUPERFICIES.

MATERIAS PRIMAS Y SU TRANSFORMACIÓN

1. INDICA EL ORIGEN DE LAS SIGUIENTES MATERIAS PRIMAS.

_______________________________
_______________________________
_______________________________

2. ESCRIBE 3 EJEMPLOS DE CAMBIOS FÍSICOS Y 3 DE CAMBIOS QUÍMICOS.

CAMBIOS FÍSICOS:

  1. ___________________________________________
  2. ___________________________________________
  3. ___________________________________________

CAMBIOS QUÍMICOS:

  1. ___________________________________________
  2. ___________________________________________
  3. ___________________________________________

Masa, peso y volumen

La masa, el peso y el volumen son magnitudes asociadas a un cuerpo y, por lo tanto, se pueden medir. A menudo estos términos, especialmente la masa y el peso, se usan indistintamente; sin embargo, aunque realmente no signifiquen lo mismo, están directamente relacionados.

Masa Peso Volumen
Definición Es la cantidad de materia en un cuerpo. Es la fuerza que ejerce la gravedad sobre un cuerpo. Es el espacio que ocupa un cuerpo en cualquier estado físico.
Símbolo m W V
Unidad de medida SI Kilogramo (kg) Newton (N) Metro cúbico (m3)
Otras unidades de medida Múltiplos y submúltiplos del kilogramo,libra (lb), tonelada (t), entre otros. Kilopondio (kp) y dina (dyn). Múltiplos y submúltiplos del metro cúbico, litro (l), galón (gal), onza (oz), entre otros.
Tipo de magnitud Escalar Vectorial Escalar
Instrumentos de medición Balanzas y básculas. Dinamómetros, básculas, entre otros. Pipetas, matraces aforados, buretas, probetas, entre otros.
Fórmula m = \rho \cdot V

 

m: masa

ρ: densidad

V: volumen

W=m\cdot g

 

W: peso

m: masa

g: aceleración de la gravedad

V=\frac{m}{\rho }

 

m: masa

ρ: densidad

V: volumen

Ejemplos Un objeto en la Luna o en la Tierra siempre va a tener la misma masa. El peso en la Tierra y el peso en la Luna del mismo objeto es diferente. La capacidad de una botella agua representa el volumen del espacio que ocupa la sustancia.

 

CAPÍTULO 1 / EJERCICIOS

La materia y sus propiedades | Ejercicios

Propiedades extensivas de los materiales: masa, volumen y temperatura

1. Selecciona la opción correcta.

  • Las propiedades extensivas de la materia son:
  1. Las que dependen de la naturaleza de la materia.
  2. Las que dependen de la cantidad de materia.
  3. Las que dependen de la distancia a la que se encuentra la materia.
  • La masa es:
  1. La cantidad de materia que posee un cuerpo.
  2. El aumento o disminución del choque entre moléculas.
  3. La cantidad de espacio que ocupa la materia.
  • Para medir la temperatura utilizamos:
  1. Una balanza.
  2. Un barómetro.
  3. Un termómetro.
  • El litro (L) es una unidad de medida que corresponde a:
  1. La masa.
  2. La temperatura.
  3. El volumen.
  • El cero absoluto es igual a:
  1. -273,15 ºC
  2. -1.000 ºC
  3. 0 º

2. Escribe la propiedad extensiva adecuada que debes medir en cada uno de los enunciados. Menciona la unidad de medida que utilizarías en cada caso.

  • La cantidad de agua en un vaso.

______________________________________________________________________________________________________

  • El calor o el frío que hay en tu habitación.

______________________________________________________________________________________________________

  • Tu peso.

______________________________________________________________________________________________________

  • La cantidad de carne que puedes comprar en el supermercado.

______________________________________________________________________________________________________

  • El punto de ebullición del agua que hierves.

______________________________________________________________________________________________________

  • La cantidad de sal que necesitas para preparar una receta de cocina.

______________________________________________________________________________________________________

Modelo de partícula

1. Marca verdadero o falso según corresponda.

El átomo es la unidad básica de la materia. V F
Un átomo está compuesto por al menos un protón, un electrón y un platón. V F
Existen cuatro estados de la materia: sólido, líquido, gaseoso y láser. V F
La estructura formada por la unión de varios átomos recibe el nombre de molécula. V F
La tabla periódica está constituida por 116 elementos. V F
Las moléculas sólo pueden formarse por átomos de un mismo elemento. V F
La materia puede ser homogénea o heterogénea. V F

2. Explica brevemente de qué forma describieron al átomo los siguientes científicos.

  • John Dalton (1808)

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Joseph J. Thompson (1904)

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Ernest Rutherford (1911)

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Niels Bohr (1913)

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Werner Heisenberg (1925)

______________________________________________________________________________________________________

______________________________________________________________________________________________________

3. Menciona los elementos que conforman a cada una de las siguientes moléculas.

  • Agua

______________________________________________________________________________________________________

  • Oxígeno

______________________________________________________________________________________________________

  • Ozono

______________________________________________________________________________________________________

  • Dióxido de carbono

______________________________________________________________________________________________________

Cambios físicos y químicos

1. Explica brevemente en qué consisten cada uno de los cambios de estado presentes en la imagen.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. Coloca las características que se mencionan a la derecha en la columna que les corresponde.

Cambios físicos Cambios químicos – Evaporización

– Biodegradación

– Fusión

– La composición de la materia no cambia

– Oxidación

– Neutralización

– Son irreversibles

– Combustión

– Precipitación

– Condensación

– Solidificación

– La composición de la materia cambia

– Sublimación

– Son reversibles

Ciclos de la materia

1. Responde las siguientes preguntas.

  • ¿En qué consiste la ley de la conservación de la materia?

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • ¿Cómo se conserva la materia en la naturaleza?

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • ¿Cuáles son los integrantes que conforman cadenas alimentarias en la naturaleza?

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. Explica brevemente en qué consiste el ciclo del carbono y cuáles son los pasos para que se lleve a cabo. Para ello, imagina un ecosistema, menciona cuáles animales y plantas participarían en este ciclo y qué roles tendrían dentro de la cadena trófica.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

3. Explica brevemente en qué consiste el ciclo del nitrógeno.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

Soluciones y mezclas

1. Menciona un ejemplo de cada uno de los sistemas materiales presentes en la imagen.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. Indica si las siguientes mezclas son una solución o una mezcla heterogénea y por qué.

  • Agua + sal

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Agua + arena

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Agua + aceite

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Bebida saborizada + gas

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Fruta + yogurt

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Hierro + carbono (para formar acero)

______________________________________________________________________________________________________

______________________________________________________________________________________________________

3. Menciona qué técnica de separación utilizarías para separar las siguientes mezclas, y describe brevemente en qué consiste dicha técnica.

  • Agua + piedras

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Papel + clavos

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Arena + piedras

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Agua + azúcar

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Alcohol + vinagre

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Componentes de la tinta

______________________________________________________________________________________________________

______________________________________________________________________________________________________

CAPÍTULO 3 / TEMA 2

Sistemas homogéneos

Cuando un sistema posee las mismas propiedades intensivas en toda su masa, significa que es un sistema homogéneo. Un sistema homogéneo cuenta con una sola fase. En estos sistemas generalmente se debe aplicar mayor energía o calor para lograr separar las sustancias que lo conforman.

Aire fresco

 

El aire que respiramos es un sistema homogéneo, es una mezcla de distintos gases como el oxígeno, el nitrógeno, el argón, el helio y el dióxido de carbono.

SOLUCIONES

Las soluciones son sistemas materiales homogéneos compuestos por uno o más solutos disueltos en un solvente determinado.

VER INFOGRAFÍA

El soluto es el componente de la solución que se encuentra en menor proporción y se disuelve en el solvente, en tanto, el solvente es el que se encuentra en mayor proporción y tiene la capacidad disolver el soluto. El agua es el solvente más conocido y empelado a nivel mundial.

Solvente universal

 

El agua es conocida como el solvente universal, es capaz de disolver una gran cantidad de compuestos, además no es tóxica y su manipulación no conlleva ninguna peligrosidad. Encabeza la lista de los denominados solventes verdes o sostenibles, cada vez más importantes para la industria y la ciencia.

 

Sin embargo, el agua no es capaz de disolver todos los compuestos que existen, por ejemplo, no puede disolver el aceite.

CLASIFICACIÓN DE LAS SOLUCIONES

Las soluciones se clasifican en función de la concentración en insaturadas, saturadas y sobresaturadas.

  • Solución insaturada: no alcanza la cantidad máxima posible de soluto para la presión y la temperatura dadas.
  • Solución saturada: es cuando la cantidad del soluto disuelto es la máxima que puede disolver el solvente en determinadas condiciones.
  • Solución sobresaturada: es aquella donde la cantidad de soluto es mayor a la máxima que puede ser disuelta en el solvente. Este tipo de soluciones suelen ser inestables ya que el soluto tiende a precipitar. Además, para lograr la completa disolución del soluto se utilizan temperaturas superiores a la del ambiente.
Solubilidad

 

Es la propiedad de las sustancias que nos indica qué tan solubles son en un solvente determinado a temperaturas y presiones específicas.

Las soluciones también pueden clasificarse en función al estado de agregación en el que se encuentran ambos compuestos En una disolución, tanto el soluto como el solvente pueden estar presentes en diferentes estados de agregación, ya sea sólido, líquido o gaseoso, por lo que en caso de que ambos estén en el mismo estado, se dice que el solvente es el componente que está en mayor cantidad y el otro componente sería el soluto.

¿Sabías qué?
Es posible encontrar soluciones con dos o más solutos. Este principio también se puede aplicar para los gases y los sólidos.

CONCENTRACIONES DE UNA SOLUCIÓN

La concentración puede expresarse cuantitativamente al establecer  diferentes relaciones porcentuales entre las cantidades de sustancias a través de unidades químicas y físicas conocidas como: masa (m), volumen (v) y cantidad de sustancia (n). Dentro de las formas de expresar la concentración de una sustancia tenemos:

  • Tanto por ciento masa sobre masa (%m/m): el porcentaje masa-masa se define como la unidad física que determina la concentración en gramos (g) de soluto contenidos en 100 g de solución.
  • Tanto por ciento volumen sobre volumen (%v/v): el porcentaje en volumen- volumen se define como la unidad física que determina la concentración en mililitros (ml) de soluto contenido en 100 ml de solución.
  • Tanto por ciento masa sobre volumen (%m/v): el porcentaje en masa- volumen se define como la unidad física que determina la concentración en gramos de soluto contenidos en 100 ml de solución.
  • Molalidad (m): es una magnitud que expresa el número de moles de soluto por kilogramo de solvente.
  • Molaridad (M): es una magnitud que expresa el número de moles de soluto por litro de solución.

SEPARACIÓN DE COMPONENTES EN SOLUCIÓN

Al ver una solución parece imposible que se puedan separar sus componentes, sin embargo, los componentes de una solución pueden aislarse a través del empleo de diferentes técnicas de separación, la utilización de cada una dependerá del tipo de solución y las características particulares de sus elementos.

Técnicas de separación.

Destilación

Puede ser simple o fraccionada.

  • Destilación simple: es una técnica empleada para separar dos líquidos con punto de ebullición diferente o un sólido disuelto en un líquido. El fundamento de esta técnica es la evaporación del componente más volátil de la solución seguida de una condensación del mismo, lo cual ocurre dentro de un sistema cerrado que se conoce como equipo de destilación.
  • Destilación fraccionada: se utiliza cuando se necesita separar una solución formada por dos líquidos de punto de ebullición muy cercanos. En la industria se emplea la destilación fraccionada para la fabricación de bebidas alcohólicas, la obtención de agua destilada y el fraccionamiento de los componentes del petróleo.

Cromatografía

Se utiliza para separar fluidos que pueden ser gases o líquidos. Este método de separación requiere de dos fases: una llamada fase móvil y la otra llamada fase fija o estacionaria. Las sustancias presentes en una mezcla son arrastradas a través de la fase estacionaria, generalmente representada por papel, y la fase móvil, que puede ser agua, alcohol u otro solvente.

Precipitación y cristalización

Es una técnica que se usa cuando la solución está sobresaturada. Esto provoca que el soluto se precipite y finalmente se cristalice. Cuanto más lentamente se produce la precipitación mejor se cristaliza, ya que los iones tendrán más tiempo para ordenarse y los cristales serán mayores.

Una de las formas de provocar la cristalización es evaporar el solvente hasta lograr la sobresaturación de la solución, luego se enfría para la formación de los cristales del soluto.

Extracción de sal

 

En la extracción de sal se induce la formación de los cristales de sal a partir de la evaporación del agua.

SOLUCIONES EN LA VIDA COTIDIANA

En nuestro entorno entramos en contacto con diversidad de objetos; algunos son sólidos, otros líquidos y otros gaseosos. Si bien parece que todos son diferentes, podemos decir que hay algo que tienen en común: todos se forman de materia.

El estudio de las soluciones tiene mucha importancia en diferentes aspectos de la vida cotidiana, como en la elaboración de medicamentos, de exámenes médicos, a nivel industrial para estudios del petróleo, en la industria de los metales, de bebidas, entre otros.

RECURSOS PARA DOCENTES

Enciclopedia Virtual “Soluciones”

Material audiovisual exclusivo para el uso docente, en el video el profesor detalla todos los elementos y características de las soluciones.

VER

Circulación cardíaca menor y circulación cardíaca mayor

La circulación tiene como función principal el transporte de nutrientes a través del cuerpo, con el fin de que cada organismo pueda cumplir con su desarrollo. Existen dos tipos principales de circulación que se diferencian, entre otras cosas, por la presencia o no de oxígeno, éstas son la circulación menor y la circulación mayor. 

Circulación cardíaca menor Circulación cardíaca mayor
  Definición    Es la encargada de llevar la sangre desoxigenada hasta los pulmones. Se encarga de llevar la sangre oxigenada desde los pulmones al resto del cuerpo.
¿Contiene oxígeno? No. Sí.
Sinónimo  Circulación pulmonar. Circulación sistémica o periférica.
Funciones 
  • Intercambiar en los pulmones, el dióxido de carbono presente en los glóbulos rojos por oxígeno.
  • Dar oxígeno a los tejidos.
  • Transportar hormonas.
  • Recoger dióxido de carbono y otros desechos metabólicos.
Arterias importantes Arteria pulmonar. Aorta, carótidas, renal e ilíaca.
Venas importantes Venas pulmonares. Cava superior e inferior, renal derecha e izquierda y porta.
Volumen de sangre 16 % del total de la sangre. 84 % del total de la sangre.
Presión arterial Presión pulmonar sistólica: 25mm Hg.

Presión pulmonar diastólica: 8mm Hg.

Presión arterial sistólica: 120mm Hg.

Presión arterial diastólica: 80mm Hg.

 

Ondas sonoras

El sonido es producido por fuentes vibrantes colocadas en un medio que por lo general suele ser el aire, pero puede ser cualquier gas, líquido o sólido. Un objeto que vibra en el aire produce ondas de sonido a través del desplazamiento de las capas de sus partículas.

El sonido es una forma de energía que se transmite de un punto a otro como una onda.

¿Qué es una onda?

Una onda es una perturbación vibratoria en un medio que transporta energía de un punto a otro sin que haya un contacto directo entre los dos puntos.

Se puede decir que una onda es producida por las vibraciones de las partículas del medio a través del cual pasa.

Tipos de ondas

Hay dos tipos de ondas: longitudinales y transversales.

En las ondas longitudinales, las partículas del medio vibran hacia adelante y hacia atrás en la misma dirección en que se mueve la onda. El medio puede ser sólido, líquido o gaseoso.

Por su parte, en las ondas transversales las partículas del medio vibran hacia arriba y hacia abajo en ángulo recto hacia la dirección en que se mueve la onda. Estas ondas se producen sólo en sólidos y líquidos, pero no en los gases.

El sonido es una onda longitudinal que consiste en compresiones y rarefacciones que viajan a través de un medio.

Características de las ondas sonoras

Los sonidos de diferentes objetos se pueden distinguir en base a sus diferentes características:

Volumen o sonoridad

La sonoridad es la característica del sonido por la cual se pueden distinguir los sonidos fuertes y débiles. El volumen hace referencia a la magnitud del sonido que escuchamos, es la intensidad con que percibimos la onda sonora. Por ejemplo, cuando una persona habla con otra lo hace con menos intensidad que si lo hiciera en una reunión pública.

La sonoridad depende de una serie de factores:

  • Amplitud del cuerpo vibrante: la intensidad del sonido varía directamente con la amplitud del cuerpo vibrante. Por ejemplo, cuando al tocar un tambor con fuerza la amplitud de su membrana aumenta y se escucha un sonido fuerte.
  • Área del cuerpo vibrante: la intensidad del sonido también depende del área del cuerpo vibrante. Por ejemplo, el sonido producido por un tambor grande es más fuerte que el de uno pequeño debido a su gran área vibratoria. La sonoridad aumenta con el área del cuerpo vibrante y viceversa.
  • Distancia desde el cuerpo vibrante: la sonoridad también depende de la distancia del cuerpo vibrante al oyente. Es causada por la disminución de la amplitud debido al aumento de la distancia.

Tono

El tono es la característica del sonido por la cual podemos distinguir entre un sonido agudo o grave, y depende de la frecuencia. Un tono más alto significa una frecuencia más alta y viceversa.

Frecuencia

La frecuencia es el número de vibraciones de sonido que pasan en un segundo. Por ejemplo, la frecuencia de la voz de las mujeres y los niños es mayor que la de los hombres.

Calidad

Es la característica del sonido por la cual se puede distinguir entre dos sonidos de la misma intensidad y el tono. Por ejemplo, si una persona está fuera de una sala puede distinguir entre las notas de un piano y una flauta que se tocan dentro de la sala, esto se debe a la diferencia en la calidad de estas notas.

Intensidad

Es la energía del sonido que pasa por segundo a través de una unidad de área perpendicular a la dirección de propagación del sonido. Las ondas sonoras transfieren energía desde la fuente sonora al oyente. La intensidad del sonido depende de la amplitud de la onda.

¿Sabías qué...?
La sonoridad depende no sólo de la intensidad del sonido sino también de las condiciones físicas del oído ya que el oído humano es más sensible a algunas frecuencias que a otras.

Reflejo del sonido

Cuando una persona aplaude o grita cerca de una superficie reflectante, como un edificio alto o una montaña, vuelve a escuchar el mismo sonido un poco más tarde. Ese sonido que escucha se llama eco y es el resultado de la reflexión del sonido desde la superficie.

Energía del sonido

Es la energía producida cuando las ondas se mueven hacia afuera desde un objeto vibrante o fuente sonora. Cuando las moléculas de aire alrededor de las ondas comienzan a vibrar, las ondas de sonido son transportadas.

Diferencia entre eco y reverberación

Cuando el sonido incide en la superficie de un medio y rebota, se llama eco o reflejo del sonido. La reverberación es el reflejo múltiple de las ondas sonoras.

La sensación de sonido persiste en nuestro cerebro durante aproximadamente 0,1 s. Para escuchar un eco claro, el intervalo de tiempo entre nuestro sonido y el sonido reflejado debe ser de mayor a 0,1 s si este es menor a 0,1 s se produce reverberación.

Propagación del sonido

En el aire, el sonido se transmite por las variaciones de presión de su fuente al entorno. El nivel de sonido disminuye a medida que se aleja cada vez más de su fuente.

Si bien la absorción por el aire es uno de los factores que atribuyen al debilitamiento de un sonido durante la transmisión, la distancia juega un papel más importante en la reducción del ruido durante la transmisión. La reducción de un sonido se llama atenuación.

El efecto de la atenuación de la distancia depende del tipo de fuentes de sonido. La mayoría de los sonidos o ruidos que se encuentran en la vida cotidiana provienen de fuentes que se pueden caracterizar como fuentes puntuales o lineales.

Si una fuente sonora produce una propagación esférica del sonido en todas las direcciones, es una fuente puntual. Si la fuente sonora produce una propagación cilíndrica del sonido, se puede considerar como una fuente lineal.

Las fuentes sonoras puedes ser naturales o artificiales de acuerdo a su origen.

Teoría Cinético Molecular

Todas las partículas tienen energía que varía de acuerdo a la temperatura de la muestra, lo que determina si la sustancia es un sólido, un líquido o un gas. Las partículas sólidas tienen la menor cantidad de energía, mientras que las partículas de gas poseen la mayor cantidad.

¿En qué consiste esta teoría?

La teoría cinética de la materia afirma que ésta se compone de un gran número de pequeñas partículas o moléculas individuales que están en constante movimiento. Ayuda a explicar el flujo o transferencia de calor y la relación entre la presión, la temperatura y las propiedades del volumen.

¿Sabías qué...?
La teoría cinética de la materia también es ilustrada por el proceso de difusión, donde se da el movimiento de partículas desde una alta concentración a una baja concentración.

Es un modelo utilizado para explicar el comportamiento de la materia y se basa en una serie de postulados:

  • La materia está hecha de partículas en constantemente movimiento.
  • La energía en movimiento se llama energía cinética y la cantidad en una sustancia está relacionada con su temperatura.
La materia puede existir en las fases sólida, líquida y gaseosa.
  • Hay espacio entre las partículas. El tamaño de este espacio está relacionado con el estado de la sustancia.
  • Los cambios de fase ocurren cuando la temperatura de la sustancia cambia lo suficiente.
  • Hay fuerzas de atracción entre las partículas llamadas fuerzas intermoleculares que aumentan a medida que dichas partículas se acercan.

 

Si hay un aumento de temperatura, los átomos y moléculas ganarán más energía y se moverán aún más rápido.

Propiedades de los líquidos

Una de las propiedades más notables de los líquidos es que son fluidos, es decir, pueden fluir. Los líquidos tienen un volumen definido, pero no una forma definida. El movimiento de las partículas está restringido en gran medida por el volumen del líquido.

Hay menos espacio entre las partículas que en los gases, pero hay más que en los sólidos. Las partículas líquidas también tienen relativamente más energía que las partículas sólidas, es lo que permite que los líquidos fluyan.

Las fuerzas intermoleculares en un líquido dependen de la composición química del propio líquido.

La fuerza intermolecular se ve afectada por la cantidad de energía cinética en la sustancia; cuanta más energía cinética exista, más débil es la fuerza entre las moléculas. Los líquidos tienen más de esta energía que los sólidos, por lo que las fuerzas entre sus partículas tienden a ser más débiles.

Propiedades de los sólidos

Las sustancias sólidas tienen formas y volúmenes definidos. Las partículas sólidas tienen relativamente poca energía cinética y vibran en su lugar. Debido a esto, no pueden fluir como los líquidos. En los sólidos, el movimiento de partículas está completamente restringido dentro de un área pequeña, lo que ayuda al sólido a mantener su forma.

La energía cinética está determinada básicamente por la velocidad de cada partícula participante.

La mayoría de los sólidos están dispuestos en una estructura apretada, de manera ordenada y repetitiva de partículas llamada red cristalina. La forma del cristal muestra la disposición de éstas en el sólido.

Algunos sólidos no tienen forma cristalina y son llamados sólidos amorfos porque no tienen estructuras internas ordenadas. Ejemplos de sólidos amorfos son el caucho, el plástico, la cera y el vidrio.

Los sólidos se pueden moldear en cualquier forma.

Propiedades de los gases

La teoría cinética explica la temperatura, la presión y el volumen de un gas en términos del movimiento de moléculas.

Según esta teoría, los gases están formados por partículas diminutas que se encuentran en movimiento aleatorio y además experimentan colisiones entre sí y con las paredes del contenedor, pero de lo contrario no interactúan.

En un medio gaseoso el espacio entre las partículas es muy grande, esto da como resultado la ausencia de fuerzas atractivas o repulsivas entre las moléculas.

En la teoría cinética se hacen las siguientes suposiciones acerca de los gases ideales:

  • El gas contiene un gran número de moléculas idénticas.
  • Las colisiones entre moléculas son perfectamente elásticas, al igual que las moléculas y las paredes del contenedor.
  • El tiempo de colisión es insignificante en comparación con el tiempo transcurrido entre las colisiones.
  • Las moléculas no se atraen entre sí si no hay fuerzas intermoleculares.
  • Las moléculas están en constante movimiento al azar.
  • El volumen de las moléculas es despreciable en comparación con el volumen del gas o el recipiente.
  • Las leyes del movimiento de Newton pueden aplicarse a las moléculas
  • La energía cinética media de una colección de partículas de gas depende de la temperatura del gas y nada más.
Plasma

Los plasmas son gases ionizados que en su forma natural son poco comunes en la Tierra. Se pueden observar en cosas artificiales, como letreros de neón y bombillas fluorescentes. Pero en el resto del universo el plasma es la fase más común de la materia. La mayoría de las estrellas son de plasma, al igual que las luces del norte que se ven alrededor de las regiones polares.