Las células son la base fundamental de todos los organismos vivos y se clasifican como eucariotas y procariotas. Hay varias diferencias entre ambas, pero la mayor distinción es que las eucariotas tienen un núcleo verdadero que contiene el material genético de la célula, mientras que las procariotas no tienen núcleo y su material genético flota en el citoplasma.
Células procariotas
Células eucariotas
Complejidad
Menos complejas.
Más complejas.
Núcleo
Ausente.
Presente. Rodeado por una envoltura nuclear que consta de dos membranas lipídicas.
Tipo de célula
Generalmente unicelular.
Generalmente pluricelular.
Recombinación genética
Transferencias parciales e indirectas del ADN.
Meiosis y fusión de gametos.
Membrana celular
Presente.
Presente.
Cromosoma
Uno.
Más de uno.
Forma del ADN
Circular de doble cadena.
Lineal de doble cadena.
Lisosomas y peroxisomas
Ausentes.
Presentes.
Retículo endoplásmico
Ausente.
Presente.
Mitocondrias
Ausentes.
Presentes.
Ribosomas
Pequeños, se dispersan y flotan en todo el citoplasma.
Más grandes, más complejos y unidos por una membrana.
Aparato de Golgi
Ausente.
Presente.
Pared celular
Presente. Rígida, rodea a la membrana plasmática y le da forma al organismo. Compuesta de azúcares y aminoácidos.
Presente en plantas y hongos. En las plantas está compuesta principalmente por celulosa y en los hongos por quitina.
El ADN ha sido el protagonista de la genética desde su descubrimiento, mientras que el ARN solo era considerado un simple intermediario entre el ADN, sin embargo, décadas de estudios han revelado funciones de transcripción y regulación genéticas que son esenciales para el desarrollo y funcionamiento de un organismo. A continuación podrás conocer más sobre esta importante biomolécula.
¿QUÉ ES EL ARN?
El ácido ribonucleico o ARN es un heteropolímero lineal no ramificado de ribonucleótidos, es una molécula similar a la de ADN, se compone de sucesiones de nucleótidos unidos por enlaces fosfodiéster. Los nucleótidos están formados por una base nitrogenada y un azúcar. En el ARN el azúcar es unaribosa y las bases nitrogenadas son: adenina (A), citosina (C), guanina (G) yuracilo (U). Este último sustituye a la timina (T) del ADN.
El ARN se encuentra en las células procariotas así como en las eucariotas, dado que se trata del único material genético que se produce para ciertos virus. El ARN se ubica con el ADN en el núcleo, sin embargo, puede salir de él y hacer vida en el citoplasma.
TIPOS DE ARN
Existen tres tipos de ARN: el ARN mensajero, el ARN de transferencia y el ARN ribosomal.
ARN mensajero (ARNm)
Es la molécula que se forma al copiar la información del ADN en forma de cadena simple, es el responsable de tomar la información del ADN del núcleo al citoplasma, donde se produce la proteína. Dado que el ARN es una réplica de una de las cadenas de ADN, es a partir de esa información que el ARN mensajero determinará qué aminoácidos son necesarios para la formación de una proteína dada, ya que tiene las grietas de la base de nitrógeno que define cada aminoácido.
ARN de transferencia (ARNt)
El ARNt se encuentra disperso por todo el citoplasma, este se produce a partir de una cadena de ADN, se denomina de transferencia porque es responsable del transporte de los aminoácidos que se usarán en la formación de proteínas a los ribosomas, donde en realidad habrá síntesis de proteínas.
ARN ribosomal (ARNr)
Está formado por moléculas muy largas con numerosos plegamientos y regiones en las que aparecen bases nitrogenadas apareadas, incluye moléculas de diferentes tamaños con estructuras tridimensionales complejas que participan activamente en la síntesis de proteínas. Forma parte de los ribosomas, que es donde se interpreta la secuencia de bases del ARN mensajero y la proteína es sintetizada.
Diferencias entre el ADN y el ARN
El ADN es de cadena doble, mientras que el ARN es de cadena simple.
El azúcar que los compone es diferente. En el ADN es la desoxirribosa y en el ARN la ribosa.
En las bases nitrogenadas del ARN la Timina se sustituye por Uracilo.
El peso molecular del ARN es menor que el del ADN.
El ADN contiene la información genética y el ARN es el que permite que esta sea comprendida por las células.
El ARN presenta una sola cadena polinucleotídica, y es de menor tamaño que el ADN.
¿CUÁL ES LA FUNCIÓN DEL ARN?
Síntesis de proteínas: el ARN es el responsable de garantizar la síntesis de proteínas, en este proceso, el ARNm se lee en los ribosomas, y el ARNt transporta los aminoácidos necesarios para formar la proteína. Por lo tanto, podemos decir que el ARN es una molécula intermedia en la síntesis de proteínas, ya que garantiza que el ADN se traduzca en proteínas.
Acción catalítica: el ARN también puede actuar como enzimas denominadas ribozimas para acelerar las reacciones químicas.
Transporte de información: en varios virus clínicamente importantes, el ARN, en lugar del ADN, transporta la información genética viral.
Regulación de procesos celulares: el ARN también desempeña un papel importante en la regulación de los procesos celulares, desde la división celular, la diferenciación y el crecimiento hasta el envejecimiento y la muerte celular. Los defectos en ciertos ARN ola regulación de los ARN se han implicado en una serie de enfermedades humanas importantes, incluidas enfermedades cardíacas, algunos tipos de cáncer, derrames cerebrales y muchos otros.
¿Sabías qué?
El ADN y ARN son los ácidos nucleicos que conforman la base de nuestro genoma, ambas biomoléculas determinan lo que somos como especie y lo que somos como individuos.
SÍNTESIS DE PROTEÍNAS
La síntesis de proteínas se lleva a cabo en las células, siendo los ribosomas quienes intervienen en la unión de los aminoácidos, mediante enlaces peptídicos.
Los ribosomas son orgánulos celulares cuya función es sintetizar proteínas de acuerdo a información del ADN que se transcribió en ARN mensajero (ARNm). Se componen de proteínas y ARN ribosómico (ARNr).
La síntesis de proteínas se efectúa en el citoplasma, siguiendo la formación impuesta por el ARNm. Al unirse varios aminoácidos se obtiene la cadena proteica o polipéptido, dando origen a proteínas variadas. Según la disposición de la cadena, pueden formar proteínas fibrosas o globulares. Las primeras, también denominadas fibrilares, son poco solubles en agua y facilitan la contracción muscular, por lo que se hallan en tendones, también en cartílagos y huesos.
Las proteínas están presentes en todos los seres vivos. Son las responsables de construir estructuras biológicas y realizar varias funciones indispensables para el desarrollo de los organismos. El ADN determina el orden de los aminoácidos en la formación de proteínas, en el proceso denominado síntesis de proteínas.
¿CÓMO SE SINTETIZAN LAS PROTEÍNAS?
La síntesis de proteínas es un proceso a través del cual se forman nuevas proteínas a partir de los veinte aminoácidos esenciales. Estos aminoácidos se combinan entre sí y son los responsables de la construcción de una gran cantidad de proteínas diferentes.
La síntesis de proteínas tiene como finalidad permitir al organismo formar aquellas macromoléculas que se necesitan para llevar a cabo sus funciones, ya que el cuerpo humano no es capaz de utilizar las proteínas ingeridas únicamente mediante la alimentación, sino que necesita romper sus enlaces peptídicos, y a partir de los aminoácidos que contienen, crear nuevas estructuras.
La síntesis de proteínas en las células consta de dos etapas, la transcripción y la traducción.
LA TRANSCRIPCIÓN
Es el proceso mediante el cual la información contenida en el ADN es copiada en forma de ARN mensajero (ARNm) para la síntesis de proteínas. Es un mecanismo fundamental, ya que gracias a éste se expresa la información genética que llega a todas las partes de la célula.
Es similar a la replicación del ADN: consta de la formación de una cadena inversa a la hebra de ADN copiada, con la diferencia de que una nueva base nitrogenada es insertada y sustituye a la timina. Esta nueva base se llama uracilo. La aparición del uracilo en lugar de la timina es una de las características que distinguen al ARN del ADN.
Dentro de las células eucariotas existen tres polimerasas de ARN distintas. Cada una de ellas es responsable de la transcripción de distintos genes y produce distintos tipos de ARN: la Pol ARN I, la cual genera ARNr (ARN ribosomal), la Pol ARN II, que genera ARNm (ARN mensajero), y la Pol ARN III, que genera ARN de transferencia (ARNt).
La transcripción de un gen ocurre en tres etapas: iniciación, elongación y terminación.
Iniciación: la ARN polimerasa se une al promotor, una secuencia de ADN que se encuentra al inicio de cada gen. Luego de la unión, la ARN polimerasa separa las cadenas de ADN para proporcionar el molde de cadena sencilla necesario para la transcripción.
Elongación: una cadena de ADN actúa como plantilla para la ARN polimerasa. Al leerla, la polimerasa produce una molécula de ARN y una cadena que crece en dirección 5′ a 3′. La nueva cadena de ARN tiene la misma información que la cadena molde de ADN pero al contrario y con la base nitrogenada uracilo (U) en lugar de timina (T).
Terminación: es el proceso de finalización de la transcripción, y sucede cuando la polimerasa transcribe una secuencia de ADN llamada terminador.
TRADUCCIÓN
El ARN mensajero sale del núcleo y se mueve hacia los ribosomas, donde se produce la síntesis de proteínas. A este proceso se lo conoce como traducción. Es importante porque permite la expresión de la información contenida en nuestros genes a proteínas que son necesarias para que la célula lleve a cabo sus funciones vitales.
El ARN mensajero es leído en los ribosomas. Las bases nitrogenadas se agrupan en grupos de 3, llamados codones. Cada codón produce un aminoácido, y el conjunto de aminoácidos mediante una serie de procesos dará lugar a una determinada proteína.
La traducción contiene las mismas tres fases:
Iniciación: el ribosoma se une al ARNm y el primer ARNt para poder dar inicio a la traducción.
Elongación: los ARNt traen los aminoácidos al ribosoma, estos se unen de manera que forman una cadena de aminoácidos extendible.
Terminación: la cadena polipeptídica es liberada para que pueda realizar su función en la célula.
RIBOSOMAS
Son los organelos encargados de fabricar proteínas, pueden encontrarse libres en el citoplasma o unidos al retículo endoplasmático rugoso. Su función es sintetizar proteínas en base a las instrucciones y plantillas que reciben de los distintos tipos de ARN.
Los ribosomas que están libres intervienen en la síntesis de proteínas que permanecerán en el citosol; mientras que los que están adheridos a la superficie externa del retículo endoplasmático lo hacen en la síntesis de proteínas que serán enviadas a la superficie de la célula, al exterior o a otros compartimientos del sistema de endomembranas.
RETÍCULO ENDOPLASMÁTICO
El retículo endoplasmático es un organelo celular membranoso formado por una serie de canales que ocupan gran parte del citoplasma y comunican éste último con el núcleo celular. Pueden ser de dos tipos: lisos o rugosos.
Retículo endoplasmático rugoso: también llamado retículo endoplasmático granular, tiene la superficie externa cubierta de ribosomas y se encarga de transportar las proteínas sintetizadas por ellos.
Retículo endoplasmático liso: su aspecto es más tubular y carece de ribosomas. Es poco aparente en la mayoría de las células, pero alcanza un notable desarrollo en las células secretoras de hormonas esteroides.
APARATO DE GOLGI
Son una serie de sacos membranosos aplanados unos sobre otros, cuya función es empaquetar y ordenar las proteínas fabricadas en el retículo endoplasmático rugoso, antes de que sean enviadas hasta su destino final. Cada saco presenta una cara convexa y otra cóncava, esta última orientada hacia la superficie celular.
En las células animales el aparato de Golgi se ubica entre el núcleo y el polo secretor de la célula, mientras que en las células vegetales aparece fragmentado en complejos denominados dictiosomas o golgiosomas.
El aparato de Golgi recibe este nombre porque fue identificado por el médico italiano Camillo Golgi a mediados del siglo XX.
RECURSOS PARA DOCENTES
Artículo “Formación de un nuevo ADN”
En este artículo encontrarás mayor información acerca de la síntesis, transcripción y traducción del ADN.