Ácido ribonucleico (ARN)

El ADN ha sido el protagonista de la genética desde su descubrimiento, mientras que el ARN solo era considerado un simple intermediario entre el ADN, sin embargo, décadas de estudios han revelado funciones de transcripción y regulación genéticas que son esenciales para el desarrollo y funcionamiento de un organismo. A continuación podrás conocer más sobre esta importante biomolécula.

¿QUÉ ES EL ARN?

El ácido ribonucleico o ARN es un heteropolímero lineal no ramificado de ribonucleótidos, es una molécula similar a la de ADN, se compone de sucesiones de nucleótidos unidos por enlaces fosfodiéster. Los nucleótidos están formados por una base nitrogenada y un azúcar. En el ARN el azúcar es una ribosa y las bases nitrogenadas son: adenina (A), citosina (C), guanina (G) y uracilo (U). Este último sustituye a la timina (T) del ADN.

El ARN está formado por adenina, citosina, uracilo, guanina, ribosa, nucleótido, pirimidina, purina y fosfato de azúcar.

El ARN se encuentra en las células procariotas así como en las eucariotas, dado que se trata del único material genético que se produce para ciertos virus. El ARN se ubica con el ADN en el núcleo, sin embargo, puede salir de él y hacer vida en el citoplasma.

TIPOS DE ARN

Existen tres tipos de ARN: el ARN mensajero, el ARN de transferencia y el ARN ribosomal.

ARN mensajero (ARNm)

Es la molécula que se forma al copiar la información del ADN en forma de cadena simple, es el responsable de tomar la información del ADN del núcleo al citoplasma, donde se produce la proteína. Dado que el ARN es una réplica de una de las cadenas de ADN, es a partir de esa información que el ARN mensajero determinará qué aminoácidos son necesarios para la formación de una proteína dada, ya que tiene las grietas de la base de nitrógeno que define cada aminoácido.

ARN de transferencia (ARNt)

El ARNt se encuentra disperso por todo el citoplasma, este se produce a partir de una cadena de ADN, se denomina de transferencia porque es responsable del transporte de los aminoácidos que se usarán en la formación de proteínas a los ribosomas, donde en realidad habrá síntesis de proteínas.

ARN ribosomal (ARNr)

Está formado por moléculas muy largas con numerosos plegamientos y regiones en las que aparecen bases nitrogenadas apareadas, incluye moléculas de diferentes tamaños con estructuras tridimensionales complejas que participan activamente en la síntesis de proteínas. Forma parte de los ribosomas, que es donde se interpreta la secuencia de bases del ARN mensajero y la proteína es sintetizada.

Ribosoma durante la síntesis de proteínas. La interacción de un ribosoma con ARNm y el inicio del proceso de la traducción.

Diferencias entre el ADN y el ARN

  • El ADN es de cadena doble, mientras que el ARN es de cadena simple.
  • El azúcar que los compone es diferente. En el ADN es la desoxirribosa y en el ARN la ribosa.
  • En las bases nitrogenadas del ARN la Timina se sustituye por Uracilo.
  • El peso molecular del ARN es menor que el del ADN.
  • El ADN contiene la información genética y el ARN es el que permite que esta sea comprendida por las células.
  • El ARN presenta una sola cadena polinucleotídica, y es de menor tamaño que el ADN.

¿CUÁL ES LA FUNCIÓN DEL ARN?

  • Síntesis de proteínas: el ARN es el responsable de garantizar la síntesis de proteínas, en este proceso, el ARNm se lee en los ribosomas, y el ARNt transporta los aminoácidos necesarios para formar la proteína. Por lo tanto, podemos decir que el ARN es una molécula intermedia en la síntesis de proteínas, ya que garantiza que el ADN se traduzca en proteínas.
  • Acción catalítica: el ARN también puede actuar como enzimas denominadas ribozimas para acelerar las reacciones químicas.
  • Transporte de información: en varios virus clínicamente importantes, el ARN, en lugar del ADN, transporta la información genética viral.
  • Regulación de procesos celulares: el ARN también desempeña un papel importante en la regulación de los procesos celulares, desde la división celular, la diferenciación y el crecimiento hasta el envejecimiento y la muerte celular. Los defectos en ciertos ARN o la regulación de los ARN se han implicado en una serie de enfermedades humanas importantes, incluidas enfermedades cardíacas, algunos tipos de cáncer, derrames cerebrales y muchos otros.
¿Sabías qué?
El ADN y ARN son los ácidos nucleicos que conforman la base de nuestro genoma, ambas biomoléculas determinan lo que somos como especie y lo que somos como individuos.

SÍNTESIS DE PROTEÍNAS

La síntesis de proteínas se lleva a cabo en las células, siendo los ribosomas quienes intervienen en la unión de los aminoácidos, mediante enlaces peptídicos.

Los ribosomas son orgánulos celulares cuya función es sintetizar proteínas de acuerdo a información del ADN que se transcribió en ARN mensajero (ARNm). Se componen de proteínas y ARN ribosómico (ARNr).

La síntesis de proteínas se efectúa en el citoplasma, siguiendo la formación impuesta por el ARNm. Al unirse varios aminoácidos se obtiene la cadena proteica o polipéptido, dando origen a proteínas variadas. Según la disposición de la cadena, pueden formar proteínas fibrosas o globulares. Las primeras, también denominadas fibrilares, son poco solubles en agua y facilitan la contracción muscular, por lo que se hallan en tendones, también en cartílagos y huesos.

CAPÍTULO 4 / EJERCICIOS

Los seres vivos y las células

NIVELES DE ORGANIZACIÓN

1. Define los siguientes niveles de organización:

Nivel celular:

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

Nivel tisular:

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

Nivel órgano:

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

Nivel sistema de órganos:

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

Nivel organismo:

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. Identifica cuáles de los siguientes enunciados son verdaderos (V) y cuáles son falsos (F). Justifica todas las respuestas.

  • Las células realizan una sola función metabólica, como proporcionar estructura y rigidez al cuerpo. (  )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • El cuerpo humano tiene 10 sistemas de órganos. (  )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Sólo existen los niveles básicos de organización de los seres vivos. (  )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Los seres vivos como las plantas no tienen órganos. (  )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Las células eucariotas tienen un tamaño más pequeño y una forma más simple que las procariotas. (  )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

LA CÉLULA: UNA UNIDAD FUNCIONAL Y ESTRUCTURAL

    1. Describe las partes de una célula:

    2. Explica qué es una célula y cuáles son sus funciones.

    ______________________________________________________________________________________________________

    ______________________________________________________________________________________________________

    ______________________________________________________________________________________________________

    ______________________________________________________________________________________________________

    ______________________________________________________________________________________________________

    ______________________________________________________________________________________________________

    TIPO CELULAR Y FORMAS DE NUTRICIÓN

    1. Explica qué importancia tiene la fotosíntesis para los seres humanos.

    ______________________________________________________________________________________________________

    ______________________________________________________________________________________________________

    ______________________________________________________________________________________________________

    ______________________________________________________________________________________________________

    ______________________________________________________________________________________________________

    ______________________________________________________________________________________________________

    2. Menciona cuatro características de los organismos autótrofos y cuatro de los organismos heterótrofos:

    Autótrofos Heterótrofos
     

     

     

     

     

     

     

     

    ADN Y ARN

    1. Compara cuatro características del ADN con cuatro del ARN.

    ADN ARN
     

     

     

     

     

     

     

     

    2. Completa las siguientes oraciones:

    • Un ________________  es una macromolécula compuesta de moléculas más pequeñas llamadas ________________, que permiten a los organismos _______________ información genética de una generación a otra.
    • El ________________ es la molécula que contiene instrucciones para la realización de todas las funciones celulares. El __________________ está organizado en __________________ y se encuentra dentro del núcleo celular.
    • El _________________ está compuesto por una cadena principal de azúcar fosfato-ribosa y las bases nitrogenadas _______________, ________________, _______________ y ________________ (U).
    • El _______________ es la transcripción del ARN o la copia del mensaje de ADN producido durante su transcripción.
    • Las cadenas de ADN son responsables de _______________ la información genética de la ______________, mientras que las cadenas de ARN funcionan para _________________ los procesos celulares de acuerdo con estas instrucciones genéticas.

    DIVISIÓN CELULAR

    1. Describe las cuatro fases del ciclo celular:

    a)

    ______________________________________________________________________________________________________

    ______________________________________________________________________________________________________

    ______________________________________________________________________________________________________

    b)

    ______________________________________________________________________________________________________

    ______________________________________________________________________________________________________

    ______________________________________________________________________________________________________

    c)

    ______________________________________________________________________________________________________

    ______________________________________________________________________________________________________

    ______________________________________________________________________________________________________

    d)

    ______________________________________________________________________________________________________

    ______________________________________________________________________________________________________

    ______________________________________________________________________________________________________

    2. Dibuja y describe las fases de la mitosis y de la meiosis:

     

     

     

     

     

     

     

     

     

     

     

     

    DIFERENCIAS ENTRE CÉLULA VEGETAL Y ANIMAL

    1. Menciona cuatro diferencias y cuatro similitudes entre las células vegetales y las animales:

    Células vegetales Células animales
     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     


    2. Explica las tres
    incorporaciones simbiogenéticas:

    a)

    ______________________________________________________________________________________________________

    ______________________________________________________________________________________________________

    ______________________________________________________________________________________________________

    b)

    ______________________________________________________________________________________________________

    ______________________________________________________________________________________________________

    ______________________________________________________________________________________________________

    c)

    ______________________________________________________________________________________________________

    ______________________________________________________________________________________________________

    ______________________________________________________________________________________________________

     

     

     

    CAPÍTULO 6 / TEMA 6

    PRODUCCIÓN CELULAR

    Las proteínas están presentes en todos los seres vivos. Son las responsables de construir estructuras biológicas y realizar varias funciones indispensables para el desarrollo de los organismos. El ADN determina el orden de los aminoácidos en la formación de proteínas, en el proceso denominado síntesis de proteínas.

    Las proteínas se constituyen químicamente por aminoácidos y cumplen funciones de suma importancia para los seres vivos.

    ¿CÓMO SE SINTETIZAN LAS PROTEÍNAS?

    La síntesis de proteínas es un proceso a través del cual se forman nuevas proteínas a partir de los veinte aminoácidos esenciales. Estos aminoácidos se combinan entre sí y son los responsables de la construcción de una gran cantidad de proteínas diferentes.

    La síntesis de proteínas tiene como finalidad permitir al organismo formar aquellas macromoléculas que se necesitan para llevar a cabo sus funciones, ya que el cuerpo humano no es capaz de utilizar las proteínas ingeridas únicamente mediante la alimentación, sino que necesita romper sus enlaces peptídicos, y a partir de los aminoácidos que contienen, crear nuevas estructuras.

    La síntesis de proteínas en las células consta de dos etapas, la transcripción y la traducción.

    LA TRANSCRIPCIÓN

    Es el proceso mediante el cual la información contenida en el ADN es copiada en forma de ARN mensajero (ARNm) para la síntesis de proteínas. Es un mecanismo fundamental, ya que gracias a éste se expresa la información genética que llega a todas las partes de la célula.

    Es similar a la replicación del ADN: consta de la formación de una cadena inversa a la hebra de ADN copiada, con la diferencia de que una nueva base nitrogenada es insertada y sustituye a la timina. Esta nueva base se llama uracilo. La aparición del uracilo en lugar de la timina es una de las características que distinguen al ARN del ADN.

    Ver infografía

    ARN polimerasa

    Dentro de las células eucariotas existen tres polimerasas de ARN distintas. Cada una de ellas es responsable de la transcripción de distintos genes y produce distintos tipos de ARN: la Pol ARN I, la cual genera ARNr (ARN ribosomal), la Pol ARN II, que genera ARNm (ARN mensajero), y la Pol ARN III, que genera ARN de transferencia (ARNt).

    La transcripción de un gen ocurre en tres etapas: iniciación, elongación y terminación.

    • Iniciación: la ARN polimerasa se une al promotor, una secuencia de ADN que se encuentra al inicio de cada gen. Luego de la unión, la ARN polimerasa separa las cadenas de ADN para proporcionar el molde de cadena sencilla necesario para la transcripción.
    • Elongación: una cadena de ADN actúa como plantilla para la ARN polimerasa. Al leerla, la polimerasa produce una molécula de ARN y una cadena que crece en dirección 5′ a 3′. La nueva cadena de ARN tiene la misma información que la cadena molde de ADN pero al contrario y con la base nitrogenada uracilo (U) en lugar de timina (T).
    • Terminación: es el proceso de finalización de la transcripción, y sucede cuando la polimerasa transcribe una secuencia de ADN llamada terminador.

    TRADUCCIÓN

    El ARN mensajero sale del núcleo y se mueve hacia los ribosomas, donde se produce la síntesis de proteínas. A este proceso se lo conoce como traducción. Es importante porque permite la expresión de la información contenida en nuestros genes a proteínas que son necesarias para que la célula lleve a cabo sus funciones vitales.

    El ARN mensajero es leído en los ribosomas. Las bases nitrogenadas se agrupan en grupos de 3, llamados codones. Cada codón produce un aminoácido, y el conjunto de aminoácidos mediante una serie de procesos dará lugar a una determinada proteína.

    La traducción contiene las mismas tres fases:

    • Iniciación: el ribosoma se une al ARNm y el primer ARNt para poder dar inicio a la traducción.
    • Elongación: los ARNt traen los aminoácidos al ribosoma, estos se unen de manera que forman una cadena de aminoácidos extendible.
    • Terminación: la cadena polipeptídica es liberada para que pueda realizar su función en la célula.
    Durante el proceso de síntesis de proteínas primero ocurre la replicación, luego la transcipción y posteriormente la traducción.

    RIBOSOMAS

    Son los organelos encargados de fabricar proteínas, pueden encontrarse libres en el citoplasma o unidos al retículo endoplasmático rugoso. Su función es sintetizar proteínas en base a las instrucciones y plantillas que reciben de los distintos tipos de ARN.

    Los ribosomas que están libres intervienen en la síntesis de proteínas que permanecerán en el citosol; mientras que los que están adheridos a la superficie externa del retículo endoplasmático lo hacen en la síntesis de proteínas que serán enviadas a la superficie de la célula, al exterior o a otros compartimientos del sistema de endomembranas.

    RETÍCULO ENDOPLASMÁTICO

    El retículo endoplasmático es un organelo celular membranoso formado por una serie de canales que ocupan gran parte del citoplasma y comunican éste último con el núcleo celular. Pueden ser de dos tipos: lisos o rugosos.

    • Retículo endoplasmático rugoso: también llamado retículo endoplasmático granular, tiene la superficie externa cubierta de ribosomas y se encarga de transportar las proteínas sintetizadas por ellos.
    • Retículo endoplasmático liso: su aspecto es más tubular y carece de ribosomas. Es poco aparente en la mayoría de las células, pero alcanza un notable desarrollo en las células secretoras de hormonas esteroides.
    Las membranas del aparato de Golgi continúan con la envoltura nuclear y pueden extenderse hasta muy cerca de la membrana plasmática.

    APARATO DE GOLGI

    Son una serie de sacos membranosos aplanados unos sobre otros, cuya función es empaquetar y ordenar las proteínas fabricadas en el retículo endoplasmático rugoso, antes de que sean enviadas hasta su destino final. Cada saco presenta una cara convexa y otra cóncava, esta última orientada hacia la superficie celular.

    En las células animales el aparato de Golgi se ubica entre el núcleo y el polo secretor de la célula, mientras que en las células vegetales aparece fragmentado en complejos denominados dictiosomas o golgiosomas.

    El aparato de Golgi recibe este nombre porque fue identificado por el médico italiano Camillo Golgi a mediados del siglo XX.

    RECURSOS PARA DOCENTES

    Artículo “Formación de un nuevo ADN”

    En este artículo encontrarás mayor información acerca de la síntesis, transcripción y traducción del ADN.

    VER

    Cuadro comparativo “ADN y ARN”

    Este cuadro contiene las diferencias y semejanzas entre el ADN y el ARN.

    VER

    Infografía “Proteínas”

    Esta infografía contiene información adicional acerca de las proteínas y su importancia.

    VER

    CAPÍTULO 6 / TEMA 5

    FUNCIONES CELULARES DE REPRODUCCIÓN Y RELACIÓN

    Recibimos de nuestros progenitores un bien fundamental: el material genético. El mecanismo de reproducción celular más difundido es la mitosis, proceso por el cual una célula da origen a 2 células hijas idénticas entre sí e idénticas a la célula que las originó. Este tipo de reproducción se da en células somáticas, sin embargo, para las células sexuales existe otro tipo de reproducción: la meiosis, que sólo sucede en organismos con reproducción sexual.

    ¿CÓMO SE DESARROLLA EL CICLO CELULAR?

    El ciclo celular es un conjunto ordenado de sucesos que pueden producir crecimiento y división en células hijas. La duración del mismo dependerá del tipo celular en cuestión, algunas células lo pueden completar en una hora y otras pueden hacerlo en varios días. También dependerá de algunos factores externos y/o internos, como la presencia o falta de nutrientes y proteínas dentro de la célula, y la temperatura.

    ¿Sabías qué?
    La creación constante de nuevas células permite que nuestro cuerpo se renueve, que exista un balance y que se eviten enfermedades.

    Las células en el camino hacia la división celular avanzan a través de una serie de etapas de crecimiento, replicación de ADN y división que producen dos células idénticas o células con carga genética de ambos padres.

    Algunas células en división celular se pueden observar fácilmente en el microscopio con ayuda de una tinción.

    Interfase

    Durante la interfase, la célula experimenta procesos de crecimiento normales mientras se prepara para la división celular. Para que una célula pase de la interfase a la fase mitótica, se deben cumplir muchas condiciones internas y externas. Las tres etapas de la interfase se llaman G1, S y G2.

    G1 

    La primera etapa de la interfase se denomina fase G1 (primer gap) porque, desde un aspecto microscópico, se ven pocos cambios. Sin embargo, durante la etapa G1, la célula es bastante activa a nivel bioquímico. La célula acumula los componentes básicos del ADN cromosómico y las proteínas asociadas, así como también suficientes reservas de energía para completar la tarea de replicar cada cromosoma en el núcleo.

    G0

    La fase G0 o fase de reposo es un período en el ciclo celular en el que las células existen en un estado inactivo. La fase G0 se ve como una fase G1 extendida, donde la célula no se divide ni se prepara para dividirse, o se ve como una etapa distinta que se produce fuera del ciclo celular. Algunos tipos de células, como las células nerviosas y musculares del corazón, se vuelven inactivas cuando alcanzan la madurez, pero continúan desempeñando sus funciones principales durante el resto de la vida del organismo.

    Células en G0

     

    Algunos tipos de células que entran en la fase G0 pueden salir de ese estado inactivo y entrar en la fase G1, mientras que otras células G0 no pueden hacerlo.

    S

    Es la segunda etapa de la interfase del ciclo en la que se produce la replicación o síntesis del ADN y como resultado el núcleo contiene el doble de proteínas nucleares y de ADN que al principio. Cada cromosoma tendrá dos cromátidas hermanas idénticas unidas por el centrómero. Las células que entran en esta fase del ciclo se dividen inevitablemente.

    G2

    Es la tercera fase de la interfase del ciclo celular en la que continúa la síntesis de proteínas y ARN. Al final de este período se observan con el microscopio cambios en la estructura celular que indican el principio de la división celular. Termina cuando la cromatina empieza a condensarse al inicio de la división.

    Estado M o fase de división celular

    Representa la división celular y agrupa a la mitosis y meiosis y citocinesis. Cuando una célula se divide debe transmitir a sus células hijas los requisitos esenciales para la vida, la información hereditaria para dirigir los procesos vitales, y la de los materiales en el citoplasma que necesitan las células hijas para sobrevivir y utilizar dicha información.

    MITOSIS

    Proceso de división celular mediante el cual una célula se divide y da origen a dos células hijas genéticamente idénticas a ella. En este proceso, el ADN de una célula se divide en dos conjuntos de cromosomas exactamente iguales.

    Durante la mitosis, el cuerpo produce nuevas células tanto para el crecimiento como para la reparación de tejidos dañados o envejecidos.

    ¿Qué células del cuerpo se dividen por mitosis?

     

    Las células somáticas son las únicas que se dividen por mitosis y se definen como aquellas que forman la mayoría del cuerpo de cualquier ser pluricelular, están en los huesos, los órganos, los tejidos e incluso en la sangre. Son diploides, es decir, tienen doble carga cromosómica.

    Por ejemplo, si nos caemos de nuestra bicicleta y nos raspamos la rodilla, el cuerpo se encarga de activar el proceso de mitosis para reparar el daño causado en nuestros tejidos. De igual manera, si nuestro hígado necesita crecer porque nosotros hemos crecido, las células hepáticas se dividen mediante la mitosis para así producir mayor cantidad.

    Fases de la mitosis

    Profase

     

    Metafase

     

    Anafase

     

    Telofase

     

    MEIOSIS

    Es la forma especializada de división celular que se produce en las células sexuales, por ejemplo: las esporas de plantas, los espermatozoides y los óvulos.

    Durante la meiosis, el ADN de una célula diploide (2n) se somete a un largo proceso de replicación que dará como resultado una célula tetraploide (4n), la cual se someterá posteriormente a dos divisiones celulares sucesivas que darán origen a cuatro células haploides (n) conocidas como gametos.

    Estas células haploides luego se fusionan con las células haploides del sexo opuesto durante la reproducción y se genera así una nueva célula diploide o cigoto.

    Durante este proceso se produce el entrecruzamiento, que no es más que la mezcla de cromosomas de ambos progenitores. A futuro, el entrecruzamiento produce variabilidad genética, ya que los descendientes no serán simples copias de uno de los padres.

    ¿Cómo se divide la meiosis?

     

    La meiosis se divide en meiosis I y meiosis II, cada una cuenta con profase, metafase, anafase y telofase, y culmina con la citocinesis.

    ¿QUÉ ES LA CARIOCINESIS Y CITOCINESIS?

    Es el proceso físico de la división celular que divide el citoplasma de una célula parental en dos células hijas. Ocurre simultáneamente con dos tipos de división nuclear llamados mitosis y meiosis, que se dan en las células animales. La mitosis y cada una de las dos divisiones meióticas dan como resultado dos núcleos separados contenidos dentro de una sola célula. La citocinesis realiza un proceso esencial para separar la célula por la mitad y garantizar que un núcleo termine en cada célula hija.

    Por otro lado, la cariocinesis es la división celular en la que el material genético es dividido y transferido a las células hijas. Se da tanto en la mitosis como en la meiosis.

    RECURSOS PARA DOCENTES

    Ver infografía “Ciclo celular”

    En esta infografía encontrará todo el proceso del ciclo celular.

    VER

    Ver artículo “Mitosis”

    Este artículo contiene información sobre la mitosis y todas sus partes.

    VER

    Ver artículo “Meiosis”

    Este artículo contiene información adicional sobre todo el proceso de la meiosis.

    VER

    Virus, viroides y priones

    Con las investigaciones que los científicos han realizado para descubrir los agentes causantes de nuevas enfermedades, se han descubierto formas no vivas diferentes a los virus que están formadas sólo por ARN o sólo por proteínas, y que también pueden propagarse a expensas de un huésped.

     

    Virus Viroides Priones
    ¿Qué son? Partículas acelulares. Partículas acelulares. Partículas acelulares.
    Reproducción A través de un huésped. A través de un huésped. Obligan a las proteínas celulares normales a comenzar a plegarse en formas anormales.
    Visualización A través de un microscopio electrónico. A través de un microscopio electrónico. A través de un microscopio electrónico.
    Tipo de agente Infeccioso. Infeccioso. Infeccioso.
    Material genético ADN o ARN. ARN. No tienen, están formados por proteínas.
    Infecta  Todas las formas de vida. Plantas. Principalmente animales. Rara vez humanos.
    Cubierta Si presenta, se llama cápside. No presenta. No presenta.
    Medio de propagación Fluidos corporales, aire o picaduras de insectos. Semillas o polen. Aire.
    Ejemplos Varicela, VIH, gripe y herpes, entre otros. Cadang-cadang, exocortis y piel de manzana, entre otros. Enfermedad de las vacas locas y el kuru.

     

    ADN y ARN

    El ADN y el ARN son polímeros lineales largos, llamados ácidos nucleicos. Son las moléculas responsables del almacenamiento y la lectura de la información genética de los seres vivos, que puede transmitirse de una generación a la siguiente. Estas macromoléculas consisten en una gran cantidad de nucleótidos unidos, cada uno compuesto de un azúcar, un fosfato y una base.

    ADN ARN
    Nombre Ácido desoxirribonucleico. Ácido ribonucleico.
    Función Almacenar y transferir la información genética. Codificar directamente los aminoácidos y actuar como mensajero entre el ADN y los ribosomas para producir proteínas.
    Estructura Doble hélice, molécula bicatenaria que consiste en una larga cadena de nucleótidos. Hélice de cadena sencilla que consiste en cadenas más cortas de nucleótidos.
    Bases nitrogenadas Adenina, timina, citosina y guanina Adenina, uracilo, citosina y guanina
    Emparejamiento de las bases AT-GC AU-GC
    Tipo de azúcar Desoxirribosa Ribosa
    Ubicación Núcleo y una pequeña parte en las mitocondrias. Nucléolo y luego se mueve a regiones especializadas del citoplasma.
    Propagación Se autorreplica. Se sintetiza a partir del ADN.
    Sensibilidad ultravioleta Vulnerable al daño UV. Más resistente al daño UV.
    Estabilidad Estable en condiciones alcalinas. No es estable en condiciones alcalinas y es suceptible al ataque enzimático.
    Diferencia

     

    Mutación

    Las mutaciones provocan cambios en el ADN, los cuales pueden provocar desórdenes genéticos devastadores o adaptaciones beneficiosas, razón por la cual es de suma importancia estudiarlas.

    ¿Qué son las mutaciones?

    Las mutaciones son cambios en las secuencias del ADN o ARN y son una de las causas principales de la diversidad biológica. Se producen en muchos niveles diferentes, desde un bloque del ADN hasta un segmento de algún cromosoma, y tienen consecuencias diferentes en cada organismo.

    A pesar de que existen varios tipos de cambios moleculares, la mutación se refiere típicamente a los cambios en los ácidos nucleicos.
    A pesar de que existen varios tipos de cambios moleculares, la mutación se refiere típicamente a los cambios en los ácidos nucleicos.

    En los sistemas biológicos capaces de reproducirse, los cambios pueden ser o no heredables. Por ejemplo, algunas mutaciones afectan a un solo individuo, el que la porta, mientras que otras a todos los descendientes del organismo portador y por lo tanto a futuras generaciones.

    Mutaciones hereditarias vs. mutaciones somáticas o adquiridas

    Las mutaciones hereditarias son aquellas que pasan de padres a hijos, generalmente están presentes en toda la vida de la persona y ocupan prácticamente todas las células de su cuerpo. Estas mutaciones también se conocen como mutaciones de línea germinal, porque se pueden hallarse en las células germinales del padre o de la madre, es decir, en el óvulo o los espermatozoides.

    Las mutaciones hereditarias se producen en las células sexuales.
    Las mutaciones hereditarias se producen en las células sexuales.

    Por otro lado, las mutaciones adquiridas o somáticas pueden producirse en algún momento de la vida de la persona, pero solo estarán presentes en ciertas células del cuerpo. Estas no son pasadas a las siguientes generaciones porque no se producen en las células germinales, ocurren en las somáticas.

    Las mutaciones adquiridas se pueden generar por factores ambientales o errores durante la división celular de las células somáticas.

    Tipos de mutaciones

    Existen muchas formas diferentes en las que el ADN puede cambiar, lo que da como resultado diversos tipos de mutaciones, las cuales se diferencian entre sí de acuerdo al lugar donde se producen, dividiéndose en:

    • Mutaciones génicas o moleculares.
    • Mutaciones cromosómicas.
    • Mutaciones genómicas.

    Mutaciones genéticas

    Son aquellas que ocurren cuando se producen cambios en la secuencia de nucleótidos del ARN, lo que puede traer como consecuencia que se formen las proteínas incorrectas. Dentro de este tipo se encuentran:

    • Sustituciones: son aquellas en las que hay un intercambio entre dos bases nitrogenadas, ejemplo, un cambio entre una timina (T) y una citosina (C). Dicha sustitución podría cambiar el codón y generar un aminoácido diferente, lo que provocará a su vez un cambio en la proteína producida.

    CTGGAG

    CTGGTG

    La anemia falciforme es causada por una mutación de sustitución, en esta el codón GAG muta a GTG, y conduce al cambio del aminoácido glutamato a valina.

    En algunos casos las sustituciones pueden no afectar la estructura de la proteína, a éstas se las conoce como mutaciones silenciosas.

    Mutaciones cromosómicas

    Son aquellas que afectan a los cromosomas mediante las supresiones o duplicaciones de algún segmento del cromosoma. Dentro de este tipo se encuentran:

    • Inserciones: son aquellas mutaciones en las que pares de bases extra se insertan en el ADN. Este número de bases puede variar entre uno y miles. La enfermedad de Huntington y el síndrome de X frágil son ejemplos de este tipo de mutaciones.
    Mutación de tipo inversión.
    Mutación de tipo inversión.
    • Deleciones: son aquellas en las que se suprime o se pierde una sección del ADN. El número de bases suprimidas puede variar de uno a miles.

    El síndrome de deleción 22q11.2 es un ejemplo de mutación por deleción en el que se suprimen algunos pares de bases del cromosoma 22, lo que trae como consecuencia trastornos autoinmunes y defectos cardíacos.

    Mutación de tipo deleción.
    Mutación de tipo deleción.
    • Translocaciones: son aquellas mutaciones en las que una porción del ADN es pasada de un cromosoma a otro no homólogo. Algunos tipos de leucemia son provocados por translocaciones.
    Mutación de tipo translocación.
    Mutación de tipo translocación.

    Mutaciones genómicas

    También conocidas como mutaciones numéricas, son aquellas que afectan el número total de cromosomas de un individuo. Dentro de este tipo se pueden destacar:

    • Poliploidía: es aquella condición en la que un organismo diploide adquiere uno o más juegos de cromosomas adicionales. La poliploidía se produce como consecuencia de la no separación o separación incompleta de los cromosomas durante la mitosis o meiosis.
    • Aneuploidía: en este caso la mutación se produce en uno o varios cromosomas pero no afecta el juego completo, como en el caso de la poliploidía. La aneuploidía genera un número anormal de algún cromosoma. De acuerdo a esto, las aneuploidias pueden ser de tipo, monosomías, trisomías y tetrasomías, entre otras, de acuerdo al número de cromosomas que se dupliquen.
    El síndrome de Down se produce porque hay 3 cromosomas del tipo 21, por eso también se conoce como trisomía 21.
    El síndrome de Down se produce porque hay 3 cromosomas del tipo 21, por eso también se conoce como trisomía 21.
    • Haploidía: son aquellas en las que se produce una disminución en el juego total de cromosomas de un individuo.

    Efectos de las mutaciones

    Los efectos de las mutaciones pueden ser beneficiosos, perjudiciales o neutrales, todo depende del contexto y de la ubicación donde ocurra la misma.

    La mayoría de las mutaciones no neutrales son deletéreas, es decir, afectan la capacidad de un individuo sin causarle la muerte. Generalmente, cuanto mayor es el número de bases afectadas por una mutación, mayor será el efecto de la misma sobre el individuo.

    Las mutaciones pueden variar en efecto, algunas pueden tener efectos enormes, mientras que otras, tienen efectos pequeños que pueden generar cambios evolutivos.

    La mayoría de las veces en las que ocurre una mutación, se logra invertir por los procesos de reparación del ADN, los cuales están en constante trabajo para evitar cualquier error. Sin embargo, algunos cambios pueden permanecer y son los potencialmente generaran una enfermedad.

    Los virus

    Los virus son seres vivos tan pequeños que no pueden verse con el microscopio óptico, por lo que para observarlos hay que recurrir al microscopio electrónico.

    En 1892 los trabajos llevados a cabo por Dimitri Ivanovsky en el jugo de las hojas atacadas por el mosaico del tabaco demostraron que los agentes causantes de esa enfermedad eran organismos ultramicroscópicos. Ivanovsky observó que si se hacían pasar extractos de estas hojas por filtros con poros muy finos (capaces de retener todas las bacterias conocidas hasta entonces), estos extractos seguían conservando su poder infeccioso, aunque no dio importancia a este hecho. Seis años más tarde, Löffler y Frosch describieron la existencia de agentes patógenos ultramicroscópicos y filtrables, a los que llamaron virus. La virología es la ciencia que se ocupa del estudio de los virus.

     

    Dimitri Ivanovsky fue un científico ruso, el primero en descubrir la existencia de los virus, en 1892.

    Los virus no son verdaderas células, su estructura es muy simple y consiste en un ácido nucleico rodeado de una envoltura de proteínas llamada cápsida, y en ocasiones una envoltura de carácter membranoso.

    Según la forma de la cápsida, distinguimos varios tipos de virus:

    • Icosaédricos, cuando forman un poliedro con veinte caras de forma triangular.
    • Helicoidales, cuando su cápsida tiene forma de cilindro hueco en cuyo interior se encuentra el ácido nucleico. A este tipo pertenece el virus del mosaico del tabaco.
    • Complejos, cuando tienen formas muy típicas y específicas.

    Los más conocidos son los virus de la serie T, que se caracterizan por presentar una cola con simetría helicoidal y una cabeza formada por un prisma hexagonal en cuyos extremos se disponen dos pirámides hexagonales (simetría icosaédrica). Al final de la cola, que puede ser contráctil, presentan una placa distal que está conectada en sus vértices con seis fibras que salen a modo de patas y que constituyen los órganos de reconocimiento del huésped.

    Al ser tan simples, los virus no son capaces de vivir por sí solos. Necesitan permanecer en el interior de una célula, gracias a la cual son capaces de reproducirse.

    Según el tipo de célula parasitada, los virus se pueden dividir en bacteriófagos o fagos (si infectan bacterias), virus de vegetales y virus de animales.

     

    ¿Lo sabías? Los virus no son organismos capaces de vivir por sí solos.

     

    Para obtener poblaciones de virus en el laboratorio es necesario cultivarlos en los organismos vivos adecuados. Para los virus de vegetales se utilizan como sustratos células del meristemo de la raíz; los virus de animales se siembran en embriones de pollo o en cultivos de tejidos animales. Por último, en el caso de los fagos hay que contar con un cultivo de la bacteria específica a la que parasitan.

    Cuando un fago se pone en contacto con una bacteria y la reconoce, inyecta su ácido nucleico mediante la contracción de la vaina. Una vez dentro de la bacteria, utiliza su propia información genética para bloquear la síntesis de ADN, ARN y de proteínas bacterianas. Apropiándose de la maquinaria sintética (ribosomas, enzimas…) dirige la síntesis de su ácido nucleico y de las proteínas de su cápsida, que en un momento dado se ensamblan formando nuevos virus. De este modo se acumulan gran cantidad de fagos en el interior de la célula huésped. Cuando las cápsidas están formadas, con los ácidos nucleicos en su interior, la pared de la bacteria se rompe de forma violenta (lisis) y numerosos fagos, dispuestos a infectar nuevas bacterias, son liberados al medio.

     

    La infección por microorganismos constituye una de las causas más frecuentes de enfermedad en todas las sociedades.

     

    Cuando un cultivo de bacterias ha sido infectado por un virus se observan unas “calvas” llamadas halos de lisis.

    Los virus de vegetales y animales actúan de forma muy parecida, “matando” a las células que parasitan una vez que han conseguido multiplicarse a sus expensas. Esto es un ciclo lítico.

    La mayoría de los virus perjudican más o menos a la célula que los hospeda (célula huésped) y producen enfermedades llamadas virosis, tanto en plantas -el virus del mosaico del tabaco-, como en animales -el virus de la mixomatosis en los conejos-. Otro tipo de ciclo es el ciclo lisogénico: no destruyen la célula huésped, sino que el ácido nucleico se incorpora al ADN celular. Son virus atenuados o profagos. La célula receptora se llama lisógena. Es un ciclo que puede permanecer así latente hasta que se produce un estímulo del profago y se inducirá el ciclo lítico.

    Enfermedades humanas tales como el sarampión, las paperas, la gripe o el sida son también producidas por virus.

    Las enfermedades producidas por microorganismos pueden denominarse enfermedades infecciosas porque están provocadas por la “infección” o entrada de estos en el organismo.

    Un individuo enfermo puede transmitir la enfermedad a otro sano, y entonces se habla de contagio. Esto puede ocurrir directamente, de un individuo a otro de la misma especie, o bien a través de un intermediario. Como ejemplos de enfermedades transmitidas por contagio se hallan la mordedura de un perro rabioso, que nos puede producir la rabia; la picadura de un mosquito, la fiebre amarilla y el paludismo.

    Decimos entonces en el primer caso que se ha producido un contagio directo. En el segundo de los casos se habla de contagio indirecto y el medio por el que se transmite la enfermedad (el mosquito, la ropa, el aire, el agua, etc.) es denominado agente propagador o agente infeccioso, que no tiene que padecer la enfermedad que transmite.