CAPÍTULO 5 / TEMA 3

TIPOS DE FRACCIONES

Aunque todas las fracciones se caracterizan por tener dos números divididos con una raya fraccionaria, no todas son iguales. Hay clasificaciones de fracciones que dependen de la relación que existe entre sus denominadores, entre ellas están las fracciones homogéneas y las fracciones heterogéneas. Otras clasificaciones dependen de la relación que existe entre los numeradores y denominadores, y pueden ser fracciones propias e impropias.

Las fracciones representan la parte de un todo que ha sido dividida en partes iguales. Todas ellas tienen un denominador, que indica el número de partes iguales en las que está dividido un todo; y un numerador, que indica qué partes de ese todo hemos considerado. En este ejemplo, 2 es el numerador y 8 es el denominador.

VER INFOGRAFÍA

fracciones homogéneas

Dos o más fracciones son homogéneas si tienen el mismo denominador. En estas fracciones el entero está dividido en la misma cantidad de partes.

\boldsymbol{\frac{1}{4}} y \boldsymbol{\frac{3}{4}} son fracciones homogéneas porque tienen el mismo denominador: 4.

– Ejemplos:

  • \boldsymbol{\frac{8}{10}} y \boldsymbol{\frac{3}{10}}

 

  • \boldsymbol{\frac{12}{9}}\boldsymbol{\frac{7}{9}} y \boldsymbol{\frac{20}{9}}

 

  • \boldsymbol{\frac{4}{20}}\boldsymbol{\frac{9}{20}} y \boldsymbol{\frac{1}{20}}

fracciones heterogéneas

Dos o más fracciones son heterogéneas si tienen diferentes denominadores, es por esto que el entero estará dividido en distintas partes según la fracción.

\boldsymbol{\frac{2}{3}} y \boldsymbol{\frac{3}{6}} son fracciones heterogéneas porque sus denominadores son diferentes.

– Ejemplos:

  • \boldsymbol{\frac{10}{12}}\boldsymbol{\frac{8}{9}} y \boldsymbol{\frac{1}{2}}

 

  • \boldsymbol{\frac{20}{3}}\boldsymbol{\frac{8}{5}} y \boldsymbol{\frac{3}{12}}

 

  • \boldsymbol{\frac{2}{9}} y \boldsymbol{\frac{8}{18}}

El ying y el yang en las fracciones

Los chinos representaban las fracciones con varillas, estas podían ser de bambú, hueso u otros materiales. A los elementos de una fracción le asignaban un rol femenino y otro masculino. Se referían al numerador como “el hijo” y al denominador como “la madre”. Este uso del ying y el yang los hacía seguir a la perfección las clasificaciones de fracciones y ser expertos conocedores de las operaciones con fracciones.

fracciones propias

Las fracciones propias son aquellas en las que el numerador es menor que el denominador. Estas fracciones también reciben el nombre de fracciones puras. Las fracciones de este tipo son menores a un entero y se encuentran entre el 0 y el 1.

Para comprender mejor que estas fracciones siempre se encuentran entre el 0 y el 1 mostramos algunos ejemplos representados en una recta numérica:

– Ejemplos:

  • \boldsymbol{\frac{5}{12}}

 

  • \boldsymbol{\frac{12}{20}}

 

  • \boldsymbol{\frac{9}{15}}

¿Sabías qué?
El símbolo “<” significa “menor que” y el símbolo “>” significa “mayor que”.
Cuando seguimos las instrucciones de una receta de cocina, usualmente fraccionamos los ingredientes, por ejemplo, media taza de leche (½) o tres cuartos de azúcar (¾). También usamos fracciones cuando ordenamos alimentos, como un cuarto de kilo de café (¼), medio kilo de queso (½) o litro y medio de gaseosa (1 ½).

fracciones impropias

Las fracciones impropias son aquellas cuyo numerador es mayor que el denominador. Se las conoce también como fracciones impuras. Estas fracciones siempre son mayores a un entero, es decir mayores a 1.

En una recta numérica las fracciones impropias o impuras siempre se ubican del 1 en adelante porque son mayores a este, para entender mejor, observa los siguientes ejemplos:

– Ejemplos:

  • \boldsymbol{\frac{10}{8}}

 

  • \boldsymbol{\frac{25}{9}}

 

  • \boldsymbol{\frac{9}{2}}

 

Hay expresiones que en cada país se dicen de maneras distintas pero que significan lo mismo, como por ejemplo “fresa” y “frutilla”. En el ámbito de la matemática sucede lo mismo, depende del país se utilizarán los términos “fracción propia” o “fracción pura” para el mismo tipo de fracción; y “fracción impropia” o “fracción impura” para el mismo tipo de fracción.

¡A practicar!

  1. Determina si la siguientes fracciones son homogéneas o heterogéneas.
  • \boldsymbol{\frac{3}{7}} y \boldsymbol{\frac{5}{9}}
Solución
Heterogéneas
  • \boldsymbol{\frac{2}{5}} y \boldsymbol{\frac{16}{5}}
Solución
Homogéneas
  • \boldsymbol{\frac{62}{6}}; \boldsymbol{\frac{95}{66}} y \boldsymbol{\frac{17}{36}}
Solución
Heterogéneas
  • \boldsymbol{\frac{33}{13}}; \boldsymbol{\frac{57}{13}} y \boldsymbol{\frac{25}{13}}
Solución
Homogéneas

 

2. Determina si las fracciones a continuación son propias o impropias.

  • \boldsymbol{\frac{11}{12}}
Solución
Propia
  • \boldsymbol{\frac{8}{5}}
Solución
Impropia
  • \boldsymbol{\frac{7}{3}}
Solución
Impropia
  • \boldsymbol{\frac{21}{18}}
Solución
Impropia

 

3. Observa las fracciones en la recta numérica y responde.

a) ¿Cuál o cuáles son las fracciones que están entre 0 y 1? ¿Qué tipo de fracciones son?

Solución
Las fracciones que están entre 0 y 1 son 1/3 y 2/3. Son fracciones propias.

b) ¿Cuál o cuáles son las fracciones mayores que 1? ¿Qué tipo de fracciones son?

Solución
Las fracciones mayores a 1 son 5/3 y 7/3. Son fracciones impropias.

c) ¿Hay fracciones heterogéneas? ¿Cuáles?

Solución
No hay fracciones heterogéneas.

d) ¿Hay fracciones homogéneas? ¿Cuáles?

Solución
Sí, todas las fracciones de la recta son homogéneas.
RECURSOS PARA DOCENTES

Artículo “Clasificación de fracciones”

Este recurso te permitirá profundizar las características y los criterios para clasificar las fracciones.

VER

 

CAPÍTULO 5 / TEMA 1

NOCIÓN DE FRACCIÓN

Así como usamos los números naturales para representar cantidades y decir que, por ejemplo, tenemos 3 pelotas; también existen otros números que nos permiten expresar partes de un todo. Estos números son conocidos como fracciones, hay varios tipos y tienen más usos de los que te imaginas.

¿qUÉ ES UNA FRACCIÓN?

Una fracción es una división e indica las partes de un entero. Por ejemplo, cuando cortamos una torta en varias partes hacemos una división de un entero, es decir, la torta es el entero y cada una de las partes en las que la cortamos puede ser representada con una fracción.

Si cortas en cuatro partes iguales una pizza y te comes una parte, ¿con qué número representarías ese pedazo? ¡Es muy fácil! Solo debes colocar un número sobre otro con una raya en medio: el número de pedazos que comemos va arriba, y el número de veces que dividimos la pizza va abajo. Entonces, ese pedazo de pizza es igual a 1/4.

¿Sabías qué?
En las culturas babilónicas y egipcias aparecieron inscripciones simbólicas que representaban el uso de fracciones.

Elementos de una fracción

Todas las fracciones están formadas por un numerador y un denominador separados por una línea horizontal llamada raya fraccionaria.

  • El numerador es el número de partes que tomamos del entero.
  • El denominador es el número de partes iguales en las que dividimos al entero.

Observa este gráfico:

  • El denominador es 4 porque el cuadrado está dividido en 4 partes iguales.
  • El numerador es 3 porque solo 3 cuadros están coloreados de rojo.

VER INFOGRAFÍA



Raya fraccionaria: ¿quién la creó?

Las fracciones eran empleadas en la antigüedad por los babilonios, romanos y egipcios. No obstante, fue hasta el siglo XIII que empezaron a usarse tal y como las conocemos en la actualidad. Esto sucedió gracias a los trabajos de Leonardo de Pisa, mejor conocido como Fibonacci. Él fue quien creó la raya para separar al numerador y denominador.

tipos de fracciones

Las fracciones pueden ser propias, impropias y aparentes.

Fracciones propias

Son aquellas en las que el numerador es menor que el denominador. La fracción propia representa un número menor que el entero.

– Ejemplo:

El cuadrado totalmente pintado de verde representa al número entero 1, mientras que el cuadrado con una sola parte pintada de verde representa a la fracción 1/2, es decir, la mitad de 1.

Observa que el gráfico de la fracción tiene menos partes verdes que el de la unidad, es decir, es menor que 1.

Símbolos de relación

Son los que usamos para indicar que una cantidad es mayor, menor o igual a otra. Estos son:

Símbolo Significado
< Menor que
> Mayor que
= Igual a

Fracciones impropias

Son aquellas en las que el numerador es mayor que el denominador. La fracción impropia representa un número mayor que el entero.

– Ejemplo:

El cuadrado totalmente pintado de morado representa al número 1. Para representar la fracción 4/3 fue necesario una unidad (un cuadrado morado) y 1/3 de otra unidad (tomar una parte de otro cuadrado).

Observa que el gráfico de la fracción tiene más partes moradas que el de la unidad, es decir, es mayor que 1.

¡Dibuja una fracción impropia!

\frac{5}{2}  es una fracción impropia porque su numerador es mayor a su denominador. Para graficar la fracción seguimos estos pasos:

1. Tomamos una figura como la unidad, por ejemplo un cuadrado.

2. Como el denominador es 2, dividimos en dos partes iguales el cuadrado.

3. Como el numerador es 5, debemos pintar cinco partes, pero cada figura de la unidad solo tiene 2 partes. Por ello, añadimos más figuras idénticas para poder pintar las cinco partes.

Observa que la fracción \frac{5}{2} es mayor a 1 porque hicieron falta dos unidades completas y la mitad de otra para poder representarla.

Fracciones aparentes

Son aquellas en las que el resultado es igual a un número entero.

– Ejemplo:

Al ver el gráfico nos damos cuenta que 4/2 es igual a 2 enteros.

 

¿De qué tipo son estas fracciones?

Observa estas fracciones y responde:

  • ¿Cuáles fracciones son impropias?
Solución

\frac{9}{2} y \frac{10}{6}

  • ¿Cuáles fracciones son propias?
Solución

\frac{3}{6}\frac{2}{3}\frac{1}{2} y \frac{6}{7}

  • ¿Cuáles fracciones son aparentes?
Solución

\frac{8}{2} y \frac{6}{3}

 

Fracciones egipcias

Hace miles de años los egipcios escribieron cómo utilizaban las fracciones en el papiro de Rhind. Este documento muestra cómo clasificaban y sumaban las fracciones en su época.

fracciones en la vida cotidiana

En muchas actividades que realizamos en el día utilizamos fracciones. Cuando ayudamos en la cocina vemos como una receta tiene sus ingredientes con fracciones, por ejemplo, 1/2 taza de azúcar. También usamos este tipo de números cuando vamos a la panadería y nos venden 3/4 kilo de pan, o en la verdulería 1/4 kilo de tomates. Al repartir comida, golosinas y otras cosas empleamos una parte del todo para que el reparto sea igualitario.

¡A practicar!

1. Observa estas fracciones y responde las preguntas:

  • ¿Cuáles fracciones son propias?
Solución

\frac{6}{12}\frac{5}{6}\frac{15}{18}\frac{12}{20} y \frac{10}{12}

  • ¿Cuáles fracciones son impropias?
Solución

\frac{7}{5}\frac{9}{6}\frac{11}{3} y \frac{5}{4}

  • ¿Cuáles fracciones son aparentes?
Solución

\frac{8}{4}

 

2. Observa estos gráficos, ¿qué fracción representan?

a) 

Solución
  • Partes pintadas: 4
  • Partes en las que se dividió el entero: 9

Fracción: \mathbf{\frac{4}{9}}

 

b) 

Solución
  • Partes pintadas: 6
  • Partes en las que se dividió el entero: 4

Fracción: \mathbf{\frac{6}{4}}

 

c) 

Solución
  • Partes pintadas: 5
  • Partes en las que se dividió el entero: 6

Fracción: \mathbf{\frac{5}{6}}

 

d) 

Solución
  • Partes pintadas: 3
  • Partes en las que se dividió el entero: 8

Fracción: \mathbf{\frac{3}{8}}

RECURSOS PARA DOCENTES

Artículo “Fracciones”

Este artículo permitirá profundizar la información sobre las fracciones.

VER

Artículo “Clasificación de fracciones”

Este recurso permitirá complementar la información sobre la clasificación de fracciones.

VER