CAPÍTULO 5 / TEMA 3

TIPOS DE FRACCIONES

Aunque todas las fracciones se caracterizan por tener dos números divididos con una raya fraccionaria, no todas son iguales. Hay clasificaciones de fracciones que dependen de la relación que existe entre sus denominadores, entre ellas están las fracciones homogéneas y las fracciones heterogéneas. Otras clasificaciones dependen de la relación que existe entre los numeradores y denominadores, y pueden ser fracciones propias e impropias.

Las fracciones representan la parte de un todo que ha sido dividida en partes iguales. Todas ellas tienen un denominador, que indica el número de partes iguales en las que está dividido un todo; y un numerador, que indica qué partes de ese todo hemos considerado. En este ejemplo, 2 es el numerador y 8 es el denominador.

VER INFOGRAFÍA

fracciones homogéneas

Dos o más fracciones son homogéneas si tienen el mismo denominador. En estas fracciones el entero está dividido en la misma cantidad de partes.

\boldsymbol{\frac{1}{4}} y \boldsymbol{\frac{3}{4}} son fracciones homogéneas porque tienen el mismo denominador: 4.

– Ejemplos:

  • \boldsymbol{\frac{8}{10}} y \boldsymbol{\frac{3}{10}}

 

  • \boldsymbol{\frac{12}{9}}\boldsymbol{\frac{7}{9}} y \boldsymbol{\frac{20}{9}}

 

  • \boldsymbol{\frac{4}{20}}\boldsymbol{\frac{9}{20}} y \boldsymbol{\frac{1}{20}}

fracciones heterogéneas

Dos o más fracciones son heterogéneas si tienen diferentes denominadores, es por esto que el entero estará dividido en distintas partes según la fracción.

\boldsymbol{\frac{2}{3}} y \boldsymbol{\frac{3}{6}} son fracciones heterogéneas porque sus denominadores son diferentes.

– Ejemplos:

  • \boldsymbol{\frac{10}{12}}\boldsymbol{\frac{8}{9}} y \boldsymbol{\frac{1}{2}}

 

  • \boldsymbol{\frac{20}{3}}\boldsymbol{\frac{8}{5}} y \boldsymbol{\frac{3}{12}}

 

  • \boldsymbol{\frac{2}{9}} y \boldsymbol{\frac{8}{18}}

El ying y el yang en las fracciones

Los chinos representaban las fracciones con varillas, estas podían ser de bambú, hueso u otros materiales. A los elementos de una fracción le asignaban un rol femenino y otro masculino. Se referían al numerador como “el hijo” y al denominador como “la madre”. Este uso del ying y el yang los hacía seguir a la perfección las clasificaciones de fracciones y ser expertos conocedores de las operaciones con fracciones.

fracciones propias

Las fracciones propias son aquellas en las que el numerador es menor que el denominador. Estas fracciones también reciben el nombre de fracciones puras. Las fracciones de este tipo son menores a un entero y se encuentran entre el 0 y el 1.

Para comprender mejor que estas fracciones siempre se encuentran entre el 0 y el 1 mostramos algunos ejemplos representados en una recta numérica:

– Ejemplos:

  • \boldsymbol{\frac{5}{12}}

 

  • \boldsymbol{\frac{12}{20}}

 

  • \boldsymbol{\frac{9}{15}}

¿Sabías qué?
El símbolo “<” significa “menor que” y el símbolo “>” significa “mayor que”.
Cuando seguimos las instrucciones de una receta de cocina, usualmente fraccionamos los ingredientes, por ejemplo, media taza de leche (½) o tres cuartos de azúcar (¾). También usamos fracciones cuando ordenamos alimentos, como un cuarto de kilo de café (¼), medio kilo de queso (½) o litro y medio de gaseosa (1 ½).

fracciones impropias

Las fracciones impropias son aquellas cuyo numerador es mayor que el denominador. Se las conoce también como fracciones impuras. Estas fracciones siempre son mayores a un entero, es decir mayores a 1.

En una recta numérica las fracciones impropias o impuras siempre se ubican del 1 en adelante porque son mayores a este, para entender mejor, observa los siguientes ejemplos:

– Ejemplos:

  • \boldsymbol{\frac{10}{8}}

 

  • \boldsymbol{\frac{25}{9}}

 

  • \boldsymbol{\frac{9}{2}}

 

Hay expresiones que en cada país se dicen de maneras distintas pero que significan lo mismo, como por ejemplo “fresa” y “frutilla”. En el ámbito de la matemática sucede lo mismo, depende del país se utilizarán los términos “fracción propia” o “fracción pura” para el mismo tipo de fracción; y “fracción impropia” o “fracción impura” para el mismo tipo de fracción.

¡A practicar!

  1. Determina si la siguientes fracciones son homogéneas o heterogéneas.
  • \boldsymbol{\frac{3}{7}} y \boldsymbol{\frac{5}{9}}
Solución
Heterogéneas
  • \boldsymbol{\frac{2}{5}} y \boldsymbol{\frac{16}{5}}
Solución
Homogéneas
  • \boldsymbol{\frac{62}{6}}; \boldsymbol{\frac{95}{66}} y \boldsymbol{\frac{17}{36}}
Solución
Heterogéneas
  • \boldsymbol{\frac{33}{13}}; \boldsymbol{\frac{57}{13}} y \boldsymbol{\frac{25}{13}}
Solución
Homogéneas

 

2. Determina si las fracciones a continuación son propias o impropias.

  • \boldsymbol{\frac{11}{12}}
Solución
Propia
  • \boldsymbol{\frac{8}{5}}
Solución
Impropia
  • \boldsymbol{\frac{7}{3}}
Solución
Impropia
  • \boldsymbol{\frac{21}{18}}
Solución
Impropia

 

3. Observa las fracciones en la recta numérica y responde.

a) ¿Cuál o cuáles son las fracciones que están entre 0 y 1? ¿Qué tipo de fracciones son?

Solución
Las fracciones que están entre 0 y 1 son 1/3 y 2/3. Son fracciones propias.

b) ¿Cuál o cuáles son las fracciones mayores que 1? ¿Qué tipo de fracciones son?

Solución
Las fracciones mayores a 1 son 5/3 y 7/3. Son fracciones impropias.

c) ¿Hay fracciones heterogéneas? ¿Cuáles?

Solución
No hay fracciones heterogéneas.

d) ¿Hay fracciones homogéneas? ¿Cuáles?

Solución
Sí, todas las fracciones de la recta son homogéneas.
RECURSOS PARA DOCENTES

Artículo “Clasificación de fracciones”

Este recurso te permitirá profundizar las características y los criterios para clasificar las fracciones.

VER

 

CAPÍTULO 3 / TEMA 6 (REVISIÓN)

Fracciones | ¿Qué aprendimos?

¿Qué son las fracciones?

Una fracción está formada por dos términos principales: el numerador y el denominador. Estos son números enteros que están separados por una línea horizontal denominada raya divisoria o raya fraccionaria. Una fracción es la división de un entero o una unidad en partes iguales. El numerador indica las partes a considerar de esa división y el denominador indica las partes en las que se dividió el entero o unidad. Estos números son más antiguos que lo que se piensa y están relacionados con la división.

Las fracciones están presentes en la vida cotidiana, sobre todo en las mediciones usadas en la cocina, pero también están presentes en algunas monedas.

Fracciones diversas

De acuerdo a la relación que exista entre el numerador y el denominador, las fracciones pueden ser propiasimpropias. Las fracciones propias son aquellas en las que el numerador es menor que el denominador, contrario a las fracciones impropias, en las que el numerador es mayor que el denominador. Por otro lado, si comparamos dos o más fracciones, estas pueden ser homogéneas o heterogéneas. Las fracciones homogéneas son las que poseen el mismo denominador, las heterogéneas, en cambio, presentan diferentes denominadores.

Las fracciones pueden expresarse en forma de gráfica o viceversa. Lo emocionante de ellas es que las usamos a diario para dividir cosas o cantidades.

Gráficas de fracciones

Las fracciones suelen expresarse en gráficos para interpretar de manera más sencilla los datos. La forma para representar estos gráficos dependen del tipo de fracción. Si la fracción es propia elegimos cualquier figura, la dividimos en partes iguales según el denominador y señalamos las partes que indique el numerador. Cuando se trata de una fracción impropia dividimos una figura geométrica en las partes que señale el denominador, pero debido a que en este tipo de fracción el numerador es mayor que el denominador, serán necesarias más de una figuras.

Los números mixtos son un tipo de número fraccionario que posee una parte entera y otra fraccionaria.

Orden de fracción

Las fracciones presentan un sentido de orden, es decir, hay fracciones que son mayores o menores que otras. Una herramienta muy útil para reconocer este orden es la recta numérica. Se trata de un gráfico en forma de línea horizontal en el que los números están ordenados de menor a mayor. Para ubicar fracciones propias en la recta numérica dividimos la unidad en segmentos iguales según indique el denominador y la fracción se ubicaría en el número de segmento indicado por el numerador. Las fracciones impropias, por su parte, deben ser transformadas en números mixtos.

En la recta numérica, si se toma un número como referencia, los números de su izquierda son menores a él y los de la derecha mayores.

Problemas con fracciones

Las fracciones, además de ayudarnos a resolver problemas que impliquen proporciones, nos permiten resolver las operaciones básicas matemáticas como la adición, la sustracción, la multiplicación y al división. En el caso de la adición y la sustracción de fracciones debemos tener en cuenta su tipo: si las fracciones son homogéneas sumamos o restamos los numeradores y colocamos el denominador, si son heterogéneas usamos el método de cruz para resolverlas. Las multiplicaciones se resuelven de forma lineal, al multiplicar los numeradores y los denominadores.

La adición y sustracción de fracciones heterogéneas suele realizarse por el método en cruz que permite calcular de manera directa fracciones equivalentes.