CAPÍTULO 3 / TEMA 6 (REVISIÓN)

Fracciones | ¿qué aprendimos?

noción de fracción

Las fracciones son una forma de representar las partes de un todo. Tienen dos elementos: un numerador y un denominador, ambos separados por una raya fraccionaria. El denominador indica en cuántas partes dividimos el todo y el numerador es igual a las partes que se toman del mismo. Las fracciones las podemos clasificar, de acuerdo a la relación entre el numerador y el denominador, en propias, impropias o aparentes.

Cada vez que cortamos frutas y nos comemos una parte de ellas podemos utilizar una fracción, por ejemplo, “me comí media naranja”.

adición y sustracción de fracciones

Para sumar o restar fracciones homogéneas (aquellas con igual denominador) lo único que debemos hacer es sumar o restar los numeradores y mantener el denominador. En cambio, las fracciones heterogéneas (aquellas con denominadores diferentes) se suman o restan por distintos métodos. Uno consiste en calcular el mcm, otro en hallar una fracción equivalente y otro en multiplicar de forma cruzada.

Las fracciones, como parte de un todo, pueden ordenarse de mayor a menor, compararse, sumarse, restarse, multiplicarse y dividirse.

Multiplicación y división de fracciones

Las multiplicaciones de fracciones son relativamente sencillas. Solo tenemos que multiplicar todos los numeradores de forma lineal y luego multiplicar de la misma manera todos los denominadores, y si es posible simplificamos. La división, en cambio, puede ser resuelta por dos métodos. El primero se trata de invertir la segunda fracción y multiplicarla por la primera, y el segundo es el de la doble c.

Las multiplicaciones y las divisiones son muy utilizadas en los problemas de reparto y porcentaje.

Fracciones y otros números

Muchas situaciones de nuestra vida cotidiana involucran no solo a los números naturales (\mathbb{N}), sino también a los enteros (\mathbb{Z}), los racionales (\mathbb{Q}) y los decimales. Todos ellos, con excepción de algunos decimales, pueden ser representados como una fracción, por ejemplo, el número 25 puede ser representado como 25/1 y el número decimal 0,25 puede representarse como 2/8.

Cuando vamos a comprar podemos pedir medio kilo de pan. Eso lo podemos expresar como fracción 1/2 kg o como número decimal 0,5 kg.

Fracciones y porcentajes

Otra forma de representar fracciones son los porcentajes. Estos son iguales a una fracción con denominador igual a 100. Por ejemplo, 20 % es igual a 20/100. Asimismo, estas expresiones se pueden mostrar como un número decimal, por lo tanto, 20/100 = 0,2. Los porcentajes son muy usados en economía, estadística y tecnología, pues ayudan a simplificar relaciones de una parte de un todo de manera clara.

Los porcentajes suelen estar presentes en los comercios para promocionar un descuento.

CAPÍTULO 1 / TEMA 3

CONJUNTO DE LOS NÚMEROS RACIONALES

El conjunto de los números racionales está conformado por todos aquellos números que pueden ser expresados como una división. Entran en este grupo algunos números decimales y las fracciones. Tienen gran aplicación cotidiana para representar partes de un entero o porciones de una totalidad.

No podemos usar los números enteros para resolver todas las operaciones entre ellos. Por ejemplo, si cortamos una tabla de 1 metro en 2 partes iguales, ¿cuánto mide cada pedazo? La división 1 ÷ 2 no tiene solución dentro de los números enteros, por tal motivo, usamos el conjunto de los números racionales, en el que esta división se representa como 1/2.

¿Sabías qué?
La primera civilización en utilizar los números racionales fueron los egipcios.

¿QUÉ SON LOS NÚMEROS RACIONALES?

Son todos aquellos números que pueden representarse a través de una fracción. De ahí su nombre “racionales”, pues a las fracciones también se las conocen como “razones”.

El conjunto de los números racionales se denota con la letra \mathbb{Q}, que alude al término quotient que significa “cociente”, ya que todo número racional puede ser representado como una fracción con cociente igual a un número decimal.

VER INFOGRAFÍA

Los números racionales como subconjunto de los números reales

Los números racionales (\mathbb{Q}), en conjunto con los números enteros (\mathbb{Z}) y los irracionales (\mathbb{I}), conforman el conjunto de los números reales (\mathbb{R}), donde se encuentran todos los números naturales y decimales.

ELEMENTOS DE LOS NÚMEROS RACIONALES

Los números racionales se forman al dividir dos números enteros que dan como resultado un número decimal. Los números racionales son todos los números del tipo \frac{a}{b} donde a es el numerador y b es el denominador. Ambos elementos, a y b, son número enteros y b es distinto de cero.

Número irracionales

Toda fracción es un número racional. Sin embargo, no todo número decimal pertenece al conjunto de los números racionales, porque no todos tienen una fracción equivalente. Tal es el caso de los decimales no periódicos, los cuales pertenecen al conjunto de los números irracionales, denotados con la letra \mathbb{I}. En esta categoría se encuentran, por ejemplo, \sqrt{7}, \pi o cualquier número con decimales infinitos.

orden de los números racionales

Comparar racionales permite establecer una relación de orden en \mathbb{Q}. Cuando los racionales tienen igual denominador, será mayor aquel con mayor numerador. Por ejemplo, entre \frac{8}{3} y \frac{2}{3}\frac{8}{3} es mayor porque 8 > 2.

Cuando los racionales tienen denominadores diferentes tenemos que convertirlos en fracciones equivalentes de igual denominador y luego comparar. También podemos usar la siguiente regla:

Si \frac{a}{b} y \frac{c}{d} ∈ \mathbb{Q}, con b y d positivos

Se cumple que:

Si  a\times d> b\times c,  entonces   \frac{a}{b}> \frac{c}{d}

Si  a\times d< b\times c,  entonces   \frac{a}{b}< \frac{c}{d}

– Ejemplo:

\frac{8}{5}> \frac{6}{7}   porque  8\times 7> 5\times 6

\frac{4}{7}< \frac{3}{5}  porque  4\times 5< 7\times 3

Fracciones negativas

Si el numerador o el denominador de una fracción es un número negativo podemos escribir el signo “−” antes de la fracción.

\frac{-a}{b}=-\frac{a}{b}

\frac{a}{-b}=-\frac{a}{b}

Las fracciones negativas, al estar más a la izquierda en la recta numérica, son menores que las fracciones positivas.

REPRESENTACIÓN GRÁFICA

Los números racionales se suelen utilizar para expresar partes de una totalidad. Por ejemplo, “un 1/4 de la población mundial utiliza Internet” o “un 1/3 de la población vive en situación de pobreza”, o bien “un 1/2 de los habitantes del planeta son mujeres”. En general, resulta más representativo hablar de fracciones de un total que solo indicar la cantidad de personas.

Para graficar números racionales tenemos que identificar primero qué tipo de fracción es. Si la fracción es propia, es decir, si tiene el numerador menor al denominador, basta con dividir una figura geométrica en tantas partes como indique el denominador y colorear las partes que indique el denominador. Por ejemplo:

\boldsymbol{1=}

\boldsymbol{\frac{2}{2}=}

\boldsymbol{\frac{2}{3}=}

\boldsymbol{\frac{2}{4}=}

\boldsymbol{\frac{2}{5}=}

 

\boldsymbol{\frac{2}{6}=}

\boldsymbol{\frac{2}{7}=}

\boldsymbol{\frac{2}{8}=}

\boldsymbol{\frac{2}{9}=}

\boldsymbol{\frac{2}{10}=}

 

Si la fracción es impropia tenemos que dividir la figura en tantas partes como muestre el denominador y repetirla hasta que se coloreen todas las partes que señale el numerador. Estas fracciones siempre tendrán más de un entero, así que también podemos convertir la fracción impropia en número mixto y seguir los pasos anteriores. Por ejemplo:

\frac{20}{9}=2\frac{2}{9}=

\frac{10}{8}=1\frac{2}{8}=

Fracciones y porcentajes

Los gráficos circulares o de sectores son ampliamente utilizados en estadística y otras áreas en las que son una herramienta de gran utilidad para expresar partes de un todo, por lo que las fracciones son necesarias para determinar las porciones de colores. No obstante, es mucho más práctico hacer estos gráficos con datos mostrados en porcentajes: una forma de representar a una fracción decimal, cuyo denominador es 100.

Convertir fracciones en porcentajes es muy sencillo, solo tenemos que dividir el numerador entre el denominador y después multiplicar por 100 %. Por ejemplo, 1/4 es igual a 25 % porque 1 ÷ 4 = 0,25 y 0,25 × 100 % = 25 %.

¡A practicar!

1. Señala cuáles números son racionales y cuáles son irracionales.

  • \frac{4}{5}
Solución
Es un número racional.
  • \sqrt{2}
Solución
Es un número irracional.
  • \frac{\pi }{3}
Solución
Es un número irracional.
  • \frac{1}{4}
Solución
Es un número racional.

2. Ordena de menor a mayor los siguientes número racionales.

  • \frac{8}{5}\frac{6}{7}\frac{2}{9}\frac{1}{2}
Solución
\frac{2}{9} < \frac{1}{2} < \frac{6}{7} < \frac{8}{5}
  • \frac{10}{3}\frac{6}{8}\frac{2}{3}\frac{5}{2}
Solución
\frac{2}{3} < \frac{6}{8} < \frac{5}{2} < \frac{10}{3}

  • -\frac{8}{4}\frac{3}{7}1\frac{2}{5}
Solución
-\frac{8}{4} < \frac{2}{5} < \frac{3}{7} < 1

3. ¿Qué fracción representan estos gráficos?

Solución
\frac{7}{3}
Solución
\frac{2}{9}
Solución
\frac{8}{5}
Solución
\frac{4}{10}
RECURSOS PARA DOCENTES

Artículo “¿Cómo transformar un número decimal a fracción?”

En este artículo hallará el método y la explicación para obtener la fracción generatriz de un número decimal.

VER

Artículo “La recta numérica”

En este recurso encontrará un método para representar números racionales en la recta real.

VER

Artículo “La clasificación de los números”

En este artículo encontrará la clasificación de los diferentes conjuntos numéricos, a fin de identificar en qué categoría o a qué subconjunto pertenecen los números racionales.

VER

CAPÍTULO 5 / TEMA 5 (REVISIÓN)

FRACCIONES | ¿qué aprendimos?

nOCIÓN DE FRACCIÓN

Las fracciones son divisiones sin resolver. Están formadas por una raya de fracción que divide al numerador del denominador. El numerador es la parte que tomamos del entero y el denominador indica las partes en las que se divide al entero. Las fracciones pueden ser propias, impropias y aparentes. Las fracciones propias tienen un numerador menor que el denominador; las impropias tienen un numerador mayor que el denominador; y las aparentes son iguales a un entero.

La porción de pastel que se toma es igual a 1/8. El numerador es la parte tomada (1) y el denominador señala la cantidad de partes en las que se dividió el pastel (8).

representación de fracciones

Para leer una fracción solo tenemos que leer al numerador como cualquier otro número y al denominador según unas simples reglas: medios si es 2, tercios si es 3, cuartos si es 4, quintos si es 5 y así sucesivamente. A partir de números mayores a diez añadimos el sufijo –avos; como onceavos. Los gráficos de las fracciones se representan por medio de figuras divididas en tantas partes como muestra el denominador y con tantas partes pintadas como señala el numerador.

Podemos representar fracciones propias e impropias en gráficos con formas de figuras geométricas.

tipos de fracciones

Dos o más fracciones son homogéneas si comparten el mismo denominador, en cambio, si dos o más fracciones tienen distinto denominador se las llama heterogéneas. También existen las fracciones propias o puras, que son aquellas que tienen un numerador menor que el denominador y siempre son menores a un entero; y las fracciones impropias o impuras, que tienen un numerador mayor que el denominador y son mayores a uno.

Depende del país en el que nos encontramos, la fracción propia se puede llamar también fracción pura.

operaciones con fracciones homogéneas

Para sumar y restar fracciones homogéneas primero sumamos o restamos los numeradores y mantenemos el mismo denominador. Así como ordenamos números naturales, también lo podemos hacer con las fracciones, para esto usamos los símbolos de relación como > (mayor que) y < (menor que). Por otro lado, existen fracciones con distintos numeradores y denominadores pero que representan la misma cantidad, a estas se las conoce como fracciones equivalentes.

Las fracciones propias siempre tienen el numerador menor al denominador y representan una cantidad inferior a la unidad.

CAPÍTULO 3 / TEMA 1

noción de fracción

En la vida diaria usamos números para decir nuestra edad, dar la hora o para contar. Todos estos números son los que conocemos como números naturales, pero no siempre son útiles. Por ejemplo, si nos comemos medio alfajor, un cuarto de torta, o compramos medio kilo de naranjas, necesitamos emplear otro tipo de números: los fraccionarios.

¿Qué es una fracción?

Una fracción es la forma de representar una parte de un todo. Así, si queremos decir que nos comimos medio alfajor, lo podemos pensar como que a nuestro todo, el alfajor, lo cortamos en dos y de esas dos partes nos comimos una. En forma de fracción lo escribimos como:

 

En el numerador escribimos la cantidad que nos comimos y en el denominador la cantidad en la que cortamos el alfajor.

VER INFOGRAFÍA

¿Sabías qué?
Los egipcios trabajaban con fracciones para indicar la distribución del pan, para la construcción de las pirámides y para estudiar las medidas de la Tierra. Ellos usaban fracciones llamadas “unitarias” porque todas tenían numerador 1.

Para resolver el problema de repartir 6 panes entre 10 hombres ellos decían que a cada uno le tocaba  panes. Esto significaba que cada pan lo dividían en mitades y el último lo hacían en décimos.

¡A practicar!

Escribe las fracciones que están representadas por los gráficos:

Solución

\boldsymbol{\frac{3}{8}}

Cantidad de divisiones: 8

Partes sombreadas: 3

Solución

\boldsymbol{\frac{4}{8}}

Cantidad de divisiones: 8

Partes sombreadas: 4

Solución

\boldsymbol{\frac{5}{8}}

Cantidad de divisiones: 8

Partes sombreadas: 5

Una fracción nos indica dos cosas: las partes en las que se ha dividido un todo y las partes que se han tomado de ese todo. Al primero lo llamamos denominador y al segundo lo llamamos numerador. Por ejemplo, en la imagen vemos un círculo que está dividido en 6 partes iguales, pero solo una, la parte azul, fue tomada. Esa pieza azul representa 1/6 del total.

Tipos de fracciones

Las fracciones se pueden clasificar en:

  • Propias: son las que tienen numerador menor al denominador. Esto quiere decir que representan un número menor a 1 entero. Ejemplo:

\boldsymbol{\frac{2}{5}}=

  • Impropias: son las que tienen el numerador mayor al denominador y representan números mayores a 1 entero. Ejemplo:

\boldsymbol{\frac{9}{4}}=

  • Aparentes: son aquellas en las que el numerador es múltiplo del denominador, por lo cual, al dividirlos resulta un número entero. Ejemplo:

\boldsymbol{\frac{10}{5}}=

También podemos clasificarlas en:

  • Puras: son las que se representan únicamente con una fracción.

Ejemplo: \frac{2}{5}  o  \frac{3}{8}

  • Mixtas: son las que se representan con una parte entera y una parte fraccionaria. Para esto, es necesario que la fracción sea más grande que 1 entero.

Ejemplo: 2\frac{3}{8}  o  4\frac{1}{7}

¡A practicar!

Clasifica las siguientes fracciones en propias, impropias o aparentes

 

Solución
  • Propias

  • Impropias

  • Aparentes

¿Cómo convertimos una fracción impropia pura a una fracción impropia mixta y viceversa?

De impropia pura a mixta

Dividimos el numerador con el denominador y, según los valores obtenidos, los representamos de la siguiente manera:

De impropia mixta a pura

Multiplicamos el denominador por el entero y le sumamos el numerador. Este valor nos da el numerador de la fracción pura, mientras que el denominador de ambas es el mismo.

Una fracción mixta nos da una información más visible que una fracción impropia. Por ejemplo, si nosotros tenemos 7 galletitas para compartir entre tres amigos, sabemos que 7 dividido 3 nos da 2, o sea, 2 galletitas para cada uno. Pero la que nos sobra la partimos en tres partes y nos toca 1 parte a cada uno. Es decir, cada uno comerá 2 1/3 de galletitas.

Fracción irreducible

Una fracción es irreducible cuando su numerador y su denominador solo tienen como divisor común al 1.

Recordemos el mcd

Para calcularlo descomponemos los números en sus factores primos.

– Ejemplo: halla el mcd entre 15 y 18.

Ahora solo debemos elegir los factores que se repiten en ambos y la menor cantidad de veces que aparece. En este caso, el que se repite es el 3 y aparece una sola vez en el 15.

Entonces:

mcd(15, 18) = \boldsymbol{3}

Veamos algunas fracciones para ver si son irreducibles:

– Ejemplo 1:

\frac{15}{4}

Como ya vimos, podemos escribir los números como descomposición de sus factores primos y calcular su mcd:

15 = 5\: \times 3

4 = 2^{2}

Entonces, los números 15 y 4 no tienen factores en común por lo tanto la fracción es irreducible.

– Ejemplo 2:

\frac{6}{8}

Descomponemos cada número en sus factores primos y calculamos el mcd.

6 = 2\: \times 3

8 = 2^{3}

Los números 6 y 8 tienen un factor en común, el número 2, por lo tanto la fracción no es irreducible. Para convertirla en una fracción irreducible lo único que tenemos que hacer es dividir al numerador y denominador por el factor que tienen en común.

Y ahora la fracción que se obtuvo es irreducible.

¡A practicar!

Señala cuáles de las siguientes fracciones son irreducibles

Solución

simplificación de fracciones

Simplificar una fracción significa “achicarla” tanto como podamos, o sea, hacerla irreducible. Como lo vimos antes, para convertir una fracción en irreducible hay que dividir el numerador y el denominador por un número que sea divisor de ambos (mcd).

Este valor lo podemos buscar por medio de los factores primos, o si nos damos cuenta, podemos calcular por cuáles números se pueden dividir ambos. Podemos dividir tantas veces como consideremos necesarias hasta lograr la fracción irreducible.

También usamos las fracciones para decir la hora. Por ejemplo, si dividimos el reloj a la mitad como en la foto, podemos decir que son las nueve y media. Pero también lo podemos dividir en cuatro partes. Entonces, cuando la aguja de los minutos esté en el 3 diremos que son las nueve y cuarto, y cuando esté en el 9 diremos que falta un cuarto de hora para la diez.

Hagamos algunos ejemplos:

– Ejemplo 1:

\frac{25}{35} = \frac{5}{7}

Ambas fracciones fueron divididas por 5.

– Ejemplo 2:

\frac{14}{36}=\frac{7}{18}

Ambas fracciones fueron divididas por 2.

– Ejemplo 3:

\frac{45}{105}=\frac{9}{21}=\frac{3}{7}

Ambas fracciones fueron divididas primero por 5 y después por 3.

¡A practicar!

1. Simplifica las siguientes fracciones hasta su fracción irreducible.

  • \boldsymbol{\frac{24}{36}}
Solución

\frac{2}{3}

  • \boldsymbol{\frac{40}{24}}
Solución

\frac{5}{3}

  • \boldsymbol{\frac{18}{63}}
Solución

\frac{2}{7}

2. Clasifica las siguientes fracciones, en caso de que sea impropia escríbela como fracción mixta. Luego, indica si la fracción es irreducible. Si no lo es, simplifica.

  • \boldsymbol{\frac{24}{36}}
Solución

Fracción propia. No es irreducible.

Simplificación: \frac{2}{3}

  • \boldsymbol{\frac{40}{24}}
Solución

Fracción impropia. No es irreducible.

Fracción mixta: 1\frac{2}{3}

  • \boldsymbol{\frac{6}{9}}
Solución

Fracción propia. No es irreducible.

Simplificación: \frac{2}{3}

  • \boldsymbol{\frac{23}{4}}
Solución

Fracción impropia. Es irreducible.

La fracción mixta es: 5\frac{3}{4}

  • \boldsymbol{\frac{21}{50}}
Solución

Fracción propia. Es irreducible.

  • \boldsymbol{\frac{18}{63}}
Solución

Fracción propia. No es irreducible.

Simplificación: \frac{2}{7}

  • \boldsymbol{\frac{120}{40}}
Solución

Fracción aparente. No es irreducible.

La fracción es igual a 3.

  • \boldsymbol{\frac{42}{9}}
Solución

Fracción impropia. No es irreducible.

Fracción mixta: 4\frac{2}{3}

  • \boldsymbol{\frac{90}{50}}
Solución

Fracción impropia. No es irreducible.

Fracción mixta: 1\frac{4}{5}

RECURSOS PARA DOCENTES

Artículo sobre “Fracciones”

Es un artículo didáctico con más ejemplos sobre la representación y clasificación de las fracciones.

VER

Libro de “Matemáticas primaria”

El mismo cuenta con ejercicios, explicaciones y ejemplos de los temas vistos en este capítulo para poder ampliar en clase.

VER

CAPÍTULO 5 / TEMA 1

NOCIÓN DE FRACCIÓN

Así como usamos los números naturales para representar cantidades y decir que, por ejemplo, tenemos 3 pelotas; también existen otros números que nos permiten expresar partes de un todo. Estos números son conocidos como fracciones, hay varios tipos y tienen más usos de los que te imaginas.

¿qUÉ ES UNA FRACCIÓN?

Una fracción es una división e indica las partes de un entero. Por ejemplo, cuando cortamos una torta en varias partes hacemos una división de un entero, es decir, la torta es el entero y cada una de las partes en las que la cortamos puede ser representada con una fracción.

Si cortas en cuatro partes iguales una pizza y te comes una parte, ¿con qué número representarías ese pedazo? ¡Es muy fácil! Solo debes colocar un número sobre otro con una raya en medio: el número de pedazos que comemos va arriba, y el número de veces que dividimos la pizza va abajo. Entonces, ese pedazo de pizza es igual a 1/4.

¿Sabías qué?
En las culturas babilónicas y egipcias aparecieron inscripciones simbólicas que representaban el uso de fracciones.

Elementos de una fracción

Todas las fracciones están formadas por un numerador y un denominador separados por una línea horizontal llamada raya fraccionaria.

  • El numerador es el número de partes que tomamos del entero.
  • El denominador es el número de partes iguales en las que dividimos al entero.

Observa este gráfico:

  • El denominador es 4 porque el cuadrado está dividido en 4 partes iguales.
  • El numerador es 3 porque solo 3 cuadros están coloreados de rojo.

VER INFOGRAFÍA



Raya fraccionaria: ¿quién la creó?

Las fracciones eran empleadas en la antigüedad por los babilonios, romanos y egipcios. No obstante, fue hasta el siglo XIII que empezaron a usarse tal y como las conocemos en la actualidad. Esto sucedió gracias a los trabajos de Leonardo de Pisa, mejor conocido como Fibonacci. Él fue quien creó la raya para separar al numerador y denominador.

tipos de fracciones

Las fracciones pueden ser propias, impropias y aparentes.

Fracciones propias

Son aquellas en las que el numerador es menor que el denominador. La fracción propia representa un número menor que el entero.

– Ejemplo:

El cuadrado totalmente pintado de verde representa al número entero 1, mientras que el cuadrado con una sola parte pintada de verde representa a la fracción 1/2, es decir, la mitad de 1.

Observa que el gráfico de la fracción tiene menos partes verdes que el de la unidad, es decir, es menor que 1.

Símbolos de relación

Son los que usamos para indicar que una cantidad es mayor, menor o igual a otra. Estos son:

Símbolo Significado
< Menor que
> Mayor que
= Igual a

Fracciones impropias

Son aquellas en las que el numerador es mayor que el denominador. La fracción impropia representa un número mayor que el entero.

– Ejemplo:

El cuadrado totalmente pintado de morado representa al número 1. Para representar la fracción 4/3 fue necesario una unidad (un cuadrado morado) y 1/3 de otra unidad (tomar una parte de otro cuadrado).

Observa que el gráfico de la fracción tiene más partes moradas que el de la unidad, es decir, es mayor que 1.

¡Dibuja una fracción impropia!

\frac{5}{2}  es una fracción impropia porque su numerador es mayor a su denominador. Para graficar la fracción seguimos estos pasos:

1. Tomamos una figura como la unidad, por ejemplo un cuadrado.

2. Como el denominador es 2, dividimos en dos partes iguales el cuadrado.

3. Como el numerador es 5, debemos pintar cinco partes, pero cada figura de la unidad solo tiene 2 partes. Por ello, añadimos más figuras idénticas para poder pintar las cinco partes.

Observa que la fracción \frac{5}{2} es mayor a 1 porque hicieron falta dos unidades completas y la mitad de otra para poder representarla.

Fracciones aparentes

Son aquellas en las que el resultado es igual a un número entero.

– Ejemplo:

Al ver el gráfico nos damos cuenta que 4/2 es igual a 2 enteros.

 

¿De qué tipo son estas fracciones?

Observa estas fracciones y responde:

  • ¿Cuáles fracciones son impropias?
Solución

\frac{9}{2} y \frac{10}{6}

  • ¿Cuáles fracciones son propias?
Solución

\frac{3}{6}\frac{2}{3}\frac{1}{2} y \frac{6}{7}

  • ¿Cuáles fracciones son aparentes?
Solución

\frac{8}{2} y \frac{6}{3}

 

Fracciones egipcias

Hace miles de años los egipcios escribieron cómo utilizaban las fracciones en el papiro de Rhind. Este documento muestra cómo clasificaban y sumaban las fracciones en su época.

fracciones en la vida cotidiana

En muchas actividades que realizamos en el día utilizamos fracciones. Cuando ayudamos en la cocina vemos como una receta tiene sus ingredientes con fracciones, por ejemplo, 1/2 taza de azúcar. También usamos este tipo de números cuando vamos a la panadería y nos venden 3/4 kilo de pan, o en la verdulería 1/4 kilo de tomates. Al repartir comida, golosinas y otras cosas empleamos una parte del todo para que el reparto sea igualitario.

¡A practicar!

1. Observa estas fracciones y responde las preguntas:

  • ¿Cuáles fracciones son propias?
Solución

\frac{6}{12}\frac{5}{6}\frac{15}{18}\frac{12}{20} y \frac{10}{12}

  • ¿Cuáles fracciones son impropias?
Solución

\frac{7}{5}\frac{9}{6}\frac{11}{3} y \frac{5}{4}

  • ¿Cuáles fracciones son aparentes?
Solución

\frac{8}{4}

 

2. Observa estos gráficos, ¿qué fracción representan?

a) 

Solución
  • Partes pintadas: 4
  • Partes en las que se dividió el entero: 9

Fracción: \mathbf{\frac{4}{9}}

 

b) 

Solución
  • Partes pintadas: 6
  • Partes en las que se dividió el entero: 4

Fracción: \mathbf{\frac{6}{4}}

 

c) 

Solución
  • Partes pintadas: 5
  • Partes en las que se dividió el entero: 6

Fracción: \mathbf{\frac{5}{6}}

 

d) 

Solución
  • Partes pintadas: 3
  • Partes en las que se dividió el entero: 8

Fracción: \mathbf{\frac{3}{8}}

RECURSOS PARA DOCENTES

Artículo “Fracciones”

Este artículo permitirá profundizar la información sobre las fracciones.

VER

Artículo “Clasificación de fracciones”

Este recurso permitirá complementar la información sobre la clasificación de fracciones.

VER