CAPÍTULO 5 / TEMA 5 (REVISIÓN)

FRACCIONES | ¿qué aprendimos?

nOCIÓN DE FRACCIÓN

Las fracciones son divisiones sin resolver. Están formadas por una raya de fracción que divide al numerador del denominador. El numerador es la parte que tomamos del entero y el denominador indica las partes en las que se divide al entero. Las fracciones pueden ser propias, impropias y aparentes. Las fracciones propias tienen un numerador menor que el denominador; las impropias tienen un numerador mayor que el denominador; y las aparentes son iguales a un entero.

La porción de pastel que se toma es igual a 1/8. El numerador es la parte tomada (1) y el denominador señala la cantidad de partes en las que se dividió el pastel (8).

representación de fracciones

Para leer una fracción solo tenemos que leer al numerador como cualquier otro número y al denominador según unas simples reglas: medios si es 2, tercios si es 3, cuartos si es 4, quintos si es 5 y así sucesivamente. A partir de números mayores a diez añadimos el sufijo –avos; como onceavos. Los gráficos de las fracciones se representan por medio de figuras divididas en tantas partes como muestra el denominador y con tantas partes pintadas como señala el numerador.

Podemos representar fracciones propias e impropias en gráficos con formas de figuras geométricas.

tipos de fracciones

Dos o más fracciones son homogéneas si comparten el mismo denominador, en cambio, si dos o más fracciones tienen distinto denominador se las llama heterogéneas. También existen las fracciones propias o puras, que son aquellas que tienen un numerador menor que el denominador y siempre son menores a un entero; y las fracciones impropias o impuras, que tienen un numerador mayor que el denominador y son mayores a uno.

Depende del país en el que nos encontramos, la fracción propia se puede llamar también fracción pura.

operaciones con fracciones homogéneas

Para sumar y restar fracciones homogéneas primero sumamos o restamos los numeradores y mantenemos el mismo denominador. Así como ordenamos números naturales, también lo podemos hacer con las fracciones, para esto usamos los símbolos de relación como > (mayor que) y < (menor que). Por otro lado, existen fracciones con distintos numeradores y denominadores pero que representan la misma cantidad, a estas se las conoce como fracciones equivalentes.

Las fracciones propias siempre tienen el numerador menor al denominador y representan una cantidad inferior a la unidad.

CAPÍTULO 5 / TEMA 2

REPRESENTACIÓN DE FRACCIONES

Todas las fracciones representan una división o las partes de un entero. Las usamos día a día cuando queremos repartir chocolates con amigos, una pizza con familiares y hasta picar una torta de cumpleaños para los invitados. Cada vez que organizamos una reunión y pensamos cuántos invitados vendrán, hacemos uso de las fracciones.

lectura de fracciones

Toda fracción tiene un numerador y un denominador. Podemos representarlos en esta caja de rosquillas. ¡Observa! La caja es el entero y lo dividimos en 12 partes iguales porque hay 12 rosquillas. Ese es el denominador. El numerador será igual a las rosquillas repartidas. Si solo repartirmos 4, podemos decir que comimos 4/12 de la caja.

Las fracciones reciben diferentes nombres de acuerdo a los números que aparecen en el numerador y el denominador. El numerador lo leemos como cualquier número natural y el denominador de la siguiente manera:

Denominador Lectura
2 Medios
3 Tercios
4 Cuartos
5 Quintos
6 Sextos
7 Séptimos
8 Octavos
9 Novenos
10 Décimos

A partir del 11 el número se lee terminado en -avos. Por ejemplo, onceavos, doceavos, treceavos y así sucesivamente.

 

– Veamos algunos ejemplos:

  • \boldsymbol{\frac{3}{7}} se lee “tres séptimos”.

 

  • \boldsymbol{\frac{5}{3}} se lee “cinco tercios”.

 

  • \boldsymbol{\frac{7}{12}} se lee “siete doceavos”.

 

  • \boldsymbol{\frac{2}{10}} se lee “dos décimos”.

 

  • \boldsymbol{\frac{8}{2}} se lee “ocho medios”.

¡Es tu turno!

Observa las siguientes fracciones, ¿cómo se leen?

  • \boldsymbol{\frac{9}{4}}
Solución
Nueve cuartos.
  • \boldsymbol{\frac{25}{13}}
Solución
Veinticinco treceavos.
  • \boldsymbol{\frac{5}{8}}
Solución
Cinco octavos.

representación gráfica

En una fracción, el denominador indica las partes en las que se divide al entero y el numerador las partes que se toman.

Estas definiciones son importantes para realizar los gráficos de fracciones.

¿Cómo graficar una fracción propia?

  • Realicemos el gráfico de la fracción \boldsymbol{\frac{3}{5}}

Lo primero que hacemos es dibujar una figura. En este caso dibujaremos un rectángulo. Este será el entero.

Luego dividimos el entero en la cantidad de partes que nos indique el denominador. En este caso, como el denominador es 5, dividimos el rectángulo en 5 partes iguales.

Después pintamos la cantidad de partes que señale el numerador. Como en esta fracción el numerador es 3, pintamos 3 partes. El resultado será el gráfico de la fracción.

 

¿Cómo graficar una fracción impropia?

La fracciones impropias tienen el numerador mayor al denominador y por lo tanto son mayores que 1.

  • Realicemos el gráfico de la fracción \boldsymbol{\frac{6}{4}}

Primero dibujamos un figura que represente al entero. En este caso es un cuadrado.

Ahora dividimos el entero en tantas partes como nos señale el denominador. El denominador de esta fracción es 4, así que dividimos al cuadrado en 4 partes iguales.

Luego pintamos las partes que nos indique el numerador. Como el numerador es 6, no es suficiente con una sola figura, así que dibujamos de nuevo otro cuadrado con 4 partes y pintamos las partes necesarias para llegar a 6. Ese será el gráfico de la fracción.

¿Sabías qué?
Siempre que el numerador sea mayor que el denominador será necesario que dibujemos más de un entero para representar la fracción.

 

¡A practicar!

Representa gráficamente las siguientes fracciones:

  • \boldsymbol{\frac{4}{6}}
Solución

  • \boldsymbol{\frac{1}{4}}
Solución

  • \boldsymbol{\frac{7}{5}}
Solución

representación en la recta numérica

La recta numérica es una línea recta sin principio ni final que contiene a todos los números. Ubicamos los números a partir del cero en segmentos iguales.

Entre el 0 y el 1, el 1 y el 2, o entre cualquier entero podemos encontrar fracciones. Todas estas también se pueden ubicar en la recta numérica.

Para ubicar las fracciones en la recta numérica solo tenemos que dividir la unidad en segmentos iguales según lo que indica el denominador y a partir del cero contamos tantos lugares como indique el numerador. Luego marcamos la fracción.

 

– Ejemplo:

Para representar en la recta numérica la fracción \boldsymbol{\frac{2}{5}} sigue estos pasos:

  1. Divide el espacio entre 0 y 1 en 5 partes iguales.
  2. Cuenta desde el cero dos lugares porque el numerador es 2.
  3. Ubica la fracción.

¿Sabías qué?

Para representar en la recta numérica fracciones impropias se usan fracciones mixtas. Estas fracciones están formadas por una parte entera y una fraccionaria.

Ubica las fracciones

  • ¿Qué fracción se representa en esta recta numérica?

Solución
La fracción \boldsymbol{\frac{7}{8}}.
  • Ubica en una recta numérica la fracción \boldsymbol{\frac{2}{3}}.
Solución

VER INFOGRAFÍA

¿cómo se relacionan las fracciones y las divisiones?

Las fracciones son partes de un todo, es decir, son divisiones de ese todo. Por esta razón están directamente relacionadas una con la otra.

Toda fracción es una división sin resolver entre dos números: el numerador y el denominador.

Entonces, \boldsymbol{\frac{1}{4}} es igual a \boldsymbol{1\div 4}. Las dos son formas correctas de escribir una división.

¿Sabías qué?
Podemos expresar las fracciones con la raya horizontal o con una diagonal, por ejemplo, \boldsymbol{\frac{3}{4}} es igual a \boldsymbol{3/4}.

La representación de las horas

Un reloj analógico marca diferentes fracciones con el paso de las horas. En una hora hay cuatro cuartos de hora, así que, cuando decimos que pasaron 15 minutos después de las 12, realmente decimos que pasó 1/4 de hora. Cuando la aguja de los minutos (aguja larga) llega al 6 significa que pasó media (1/2) hora y a los 45 minutos pasaron 3/4 de una hora.

Actividades

1. ¿Cómo se lee la fracción 3/10? Realiza su gráfico.

Solución
3/10 se lee “tres décimos”.

Su gráfico es igual a este:

2. ¿Cómo se lee la fracción 5/12? Representa la fracción en la recta numérica.

Solución
5/12 se lee “cinco doceavos”.

En la recta se representa así:

3. Une cada fracción con su gráfico:

Solución

4. ¿Qué fracción está representada en la siguiente recta numérica?

Solución
La fracción 3/6.

5. ¿Qué fracción está representada en la siguiente recta numérica?

Solución
La fracción 1/5.
RECURSOS PARA DOCENTES

Artículo “Partes y porciones”

Este recurso permitirá profundizar la representación en la recta numérica.

VER

Video “Cómo se lee una fracción”

Este recurso audiovisual explica, de manera clara, los pasos a seguir para nombrar fracciones al tiempo que las compara con la unidad.

VER