Producto y división de polinomios

Los polinomios son expresiones algebraicas con las que se pueden realizar diversas operaciones matemáticas, como la suma o adición, la resta o sustracción, la multiplicación y la división, entre otras. Tanto la división como la multiplicación de polinomios se ajustan a determinadas reglas especiales que se deben conocer al momento de la resolución de ejercicios.

Las operaciones básicas con polinomios son: suma o adición, resta o sustracción, multiplicación y división.

En esta ocasión se desarrollarán los temas multiplicación o producto de polinomios y división de polinomios. Si necesitas repasar la suma y resta puedes ingresar al contenido de Adición y Sustracción de polinomios.

PRODUCTO DE POLINOMIOS

Las propiedades que intervienen en la multiplicación o producto de polinomios son las siguientes:

  • Propiedad distributiva de la multiplicación con respecto a la suma.
  • Propiedades del producto.
  • Propiedades de la potenciación.

EJEMPLO 1: 

Hallar el producto P(x)·Q(x). Si P(x) = x3+2x+1 y Q(x) = 3x

P(x)·Q(x)= (x3+2x+1)·(3x)

Se procede a realizar la propiedad distributiva. Se comienza de la siguiente manera:

P(x)·Q(x)=3x+…..

Obsérvese que se aplicó la propiedad de multiplicación de potencias: “El resultado del producto de potencias de igual base es igual a la misma base elevada a la suma de los exponentes”.

En este caso x3 .2x

La potencia de 2x es 1, por lo tanto:

x3 .2x1=2x3+1=2x4

Al realizar la propiedad distributiva para cada uno de los términos de P(x) se obtiene el producto:

P(x)·Q(x)=3x4+6x2+3x

GRADO DEL POLINOMIO PRODUCTO

Dados dos polinomios P(x) y Q(x), se verifica que:

grado de [P(x)·Q(x)] = grado [P(x)]·grado[Q(x)]

EJEMPLO 2:

Hallar el producto P(x)·Q(x). Si P(x) = 2x3+x2+1 y Q(x) = x+5

P(x)·Q(x)= (2x3+x2+1)·(x+5)

En primer lugar se realiza la propiedad distributiva entre el primer término de Q(x) y el polinomio P(x), comenzando de izquierda a derecha:

P(x)·Q(x)= 2x4+x3+x+…

Luego se distribuye el segundo término de Q(x) por el polinomio P(x).

P(x)·Q(x)= 2x4+x3+x+10x3+5x2+5

Finalmente se agrupan términos que compartan la misma parte literal (incluida su potencia),en este ejercicio son x3 y 10x3, al sumarlos queda 11x3.

P(x)·Q(x)= 2x4+11x3+5x2+x+5

Observar que los términos se ubicaron en forma decreciente con respecto a sus potencias.

DIVISIÓN DE POLINOMIOS

La división de polinomios se realiza del mismo modo que con números.

              Dividendo = divisor · cociente + resto

IMPORTANTE: el polinomio dividendo debe estar ordenado en forma decreciente de potencias de “x” y completo. En caso de no estar completo se debe completar utilizando el 0 (0x4, 0x3, 0x2, etc.)

POLINOMIO NO ORDENADO POLINOMIO ORDENADO INCOMPLETO POLINOMIO ORDENADO Y COMPLETO
P(x)= 2x4+5-x3+x P(x)= 2x4-x3+x+5 P(x)= 2x4-x3+0X2+x+5
A(x)= x+5x2-x5+8 A(x)= -x5+5x2+x+8 A(x)= -x5+0x4+0x3+5x2+x+8

EJEMPLO 3:

Dados P(x)=3x3-2x2-1 y Q(x)= x2-x+1, hallar el polinomio cociente C(x).

Como P(x) está incompleto, se debe completar:

3x3-2x2+0x-1

Luego se escribe la división del mismo modo que con números:

3x3-2x2+0x-1     ⌊ x2-x+1         

Se divide el primer término del dividendo por el primer término del divisor:

3x3: x2= 3x  Se aplicó la propiedad de división de potencias: “El cociente de potencias de igual base es igual a la misma base elevada a la resta de los exponentes”.


El resultado es el primer término del cociente:

3x3-2x2+0x-1     ⌊ x2-x+1
                         3x

Luego se realiza la distributiva entre 3x y el divisor. Los resultados se colocan debajo del dividendo con signo contrario:

3x3-2x2+0x-1     ⌊ x2-x+1
-3x3+3x2-3x         3x

Se procede a realizar las sumas algebraicas correspondientes:

3x3-2x2+0x-1     ⌊ x2-x+1
-3x3+3x2-3x         3x

 0x3+x2-3x

Luego se “baja” el siguiente término, que en este caso es el independiente:

3x3-2x2+0x-1     ⌊ x2-x+1
-3x3+3x2-3x         3x

        x2-3x -1

Nuevamente se divide el primer término que aparece en el dividiendo, entre el primer término del divisor:

x2: x2=1

Por lo tanto el segundo termino del cociente es 1.

3x3-2x2+0x-1     ⌊ x2-x+1
-3x3+3x2-3x         3x +1

        x2-3x -1

Se procede una vez más a realizar la propiedad distributiva, esta vez entre el segundo término del cociente y el divisor. Se obtiene de esta forma el resto de la operación.

3x3-2x2+0x-1     ⌊ x2-x+1
-3x3+3x2-3x         3x +1

        x2-3x -1
     -x2+x – 1

      0x2-2x -2

Resto: R(x)=-2x-2

Cociente: C(x)=3x +1

Se finaliza la división cuando grado del resto es menor que el grado del divisor o cero. En este caso el grado de -2x-2 es menor al grado de x2-x+1.

IMPORTANTE

– La división entre dos polinomios P(x) y Q(x) es posible si grado [P(x)]≥grado [Q(x)].

– grado [C(x)]=[P(x)]-grado [Q(x)]. El grado del cociente es igual al grado del dividendo menos el grado del divisor.

Otra forma de división es la regla de Ruffini, pero sólo se utiliza para casos especiales.

A PRACTICAR LO APRENDIDO

  1. Hallar el producto entre los siguientes polinomios:
    a) P(x) = x4+3x2-2x+1 y Q(x) = 2x
    b) P(x) = 2x2+2x+1 y Q(x) = 3x +4
  2. Hallar el cociente C(x) y el resto R(x) entre los siguientes polinomios:
    a) P(x) = x2+12x+4 y Q(x) = x-2
    b) P(x) = 8x3+36x2+15x+13 y Q(x) = 4x2+12x+9

RESPUESTAS

1.
a) P(x)·Q(x)=2x5+6x3-4x2+2x
b) P(x)·Q(x)=6x3+14x2+11x+4

2.
a) C(x)= x+14, R(x)=32
b) C(x) =2x+3, R(x)= -39x-14

¿Sabías qué...?
La diferencia entre los cuadrados de dos números naturales consecutivos es igual al doble del número menor más 1. Ejemplo: 92-82 =(8·2)+1.

 

Producto vectorial de Gibbs

En el producto vectorial, como su nombre lo indica, intervienen vectores. También es conocido como producto cruz y tiene variadas aplicaciones, tanto en matemática como en física e ingeniería.

Dados tres vectores \vec{u}, \vec{v} y \vec{w}, existen tres clases de multiplicación que pueden efectuarse utilizando algunos o todos ellos:

  1. Producto escalar
    u · v, u · w, v·w
  2. Producto vectorial
    uxv, uxw, vxw
  3. Producto mixto
    v·uxw, w·uxv, u·vxw

En el caso 1 y 3 el resultado es siempre un escalar, pero en el caso 2 el resultado de dicha operación es siempre un nuevo vector, \vec{r}.

En esta oportunidad se estudiará el producto vectorial (caso 2). Se sabe que el resultado es un vector y por lo tanto tiene su propia dirección, sentido y modulo. Si los vectores a multiplicar son  , para hacer el producto vectorial sería  .

producto vectorial

Características

  • La dirección del vector resultante es siempre perpendicular al plano que forman los vectores . Es decir:.
VECTORES PERPENDICULARES

Cuando dos vectores son perpendiculares (ortogonales) su producto escalar es igual a cero. 

  • El sentido del vector resultante se obtiene al usar la “regla de la mano derecha”, la cual nos dice que si se abarca el menor ángulo entre \vec{u}y\vec{v} con los dedos índice y anular, el pulgar indica el sentido de \vec{r}.
Regla de la mano derecha, se puede utilizar para determinar sentidos y direcciones vectoriales.
  • El modulo del vector resultante es el área del paralelogramo que forman los vectores  y se calcula con la siguiente fórmula:
    r=u·v·sen αSiendo α el ángulo comprendido entre .

Cálculo analítico del producto vectorial

Dados dos vectores:

\vec{i},\vec{j},\vec{k} son versores ubicados en los ejes x, y, z respectivamente.

Versor: vector unitario con módulo igual a uno.

Componentes de un vector

\fn_cm \small _{u_{x}},_{u_{y}},_{u_{z}} son las componentes del vector \fn_cm \small \vec{u}.

\fn_cm \small _{v_{x}},_{v_{y}},_{v_{z}} son las componentes del vector \fn_cm \small \vec{v}.

Vector expresado en sus componentes x, y, z

 

Imagen realizada con calculadora gráfica 3D, Geogebra.

Se calcula el producto vectorial de la siguiente manera:

Se forma una matriz 3×3, en la cual la primera fila corresponde a los versores unitarios \vec{i}, \vec{j}, \vec{k} . En la segunda fila se colocan las componentes del primer vector y en la tercera fila se ubican las componentes del último vector.

Se aplica la regla de Sarrus (método para matrices de 3×3) para hallar el determinante de la matriz:

“En el producto vectorial el orden de los factores sí afecta el producto. Es decir que \fn_cm \small \vec{u}x\vec{v}\neq \vec{v}x\vec{u}“.

Ejemplo 1:

Dados dos vectores:

Estos dos vectores se pueden reescribir en sus coordenadas:

Se conforma una matriz 3×3:

Luego se procede a aplicar la fórmula, teniendo en cuenta que cada matriz 2×2 se conforma de la siguiente forma:

Se resuelven las matrices. Observar que los términos con signo + corresponden a los productos de las multiplicaciones de las diagonales:

Y se restan los productos de las diagonales que tienen la siguiente dirección:

Se realizan las operaciones correspondientes:

De esta forma se obtiene el resultado del producto vectorial \fn_cm \small \vec{u}x\vec{v}:

Ejemplo 2:

Utilizando los mismos vectores que en el ejemplo anterior se realizará el producto vectorial \fn_cm \small \vec{v}x\vec{u}:

 que puede expresarse como 

En los ejemplos anteriores se ha visto un ejemplo sobre la propiedad que indica que el orden de los factores sí afecta al producto vectorial. En dichos ejemplos se observa:

≠ 

Observar que ambos vectores son distintos, uno es el opuesto del otro.

VECTORES OPUESTOS

Dos vectores opuestos son aquellos que tienen el mismo módulo y dirección, pero sentidos opuestos. 

aplicaciones del PRODUCTO VECTORIAL EN FÍSICA

  • Velocidad tangencial en un momento circular:

  • Momento angular con respecto al origen:

  • Torque respecto a un origen:

  •  Fuerza magnética sobre una carga:

A PRACTICAR LO APRENDIDO

1. 

2.

3.

RESPUESTAS

1. (-3, 3, 1)

2. (-3,7, -1)

3. (-1, 2, 3)

¿Sabías qué...?
Pierre Frédéric Sarrus estaba indeciso con respecto a qué estudios superiores realizar, se debatía entre Medicina y Matemáticas. Finalmente ingresó a Matemáticas porque no cumplió con los requisitos solicitados en 1815 para iniciar Medicina, dado que era protestante y bonapartista.

 

Cálculo de áreas mediante ecuaciones

Área es la medida de una superficie, es decir, en ocasiones se utilizan como sinónimos, pero estrictamente no lo son. En otras palabras, la superficie es una región de un plano y el área es un número acompañado de una unidad de medida. Para el cálculo de áreas se utilizan las fórmulas correspondientes y se aplican determinados procedimientos matemáticos.

Fórmulas de áreas y perímetros de figuras poligonales.

Antes de comenzar a resolver ejercicios y problemas que impliquen cálculos de áreas es indispensable repasar las fórmulas correspondientes y revisar en qué unidades se pueden medir. Si deseas repasar dicho contenido puedes ingresar a la Enciclopedia de Matemática: Geometría.

CÁLCULO DE ÁREAS

Cuando se tienen los datos numéricos para calcular el área de una figura simplemente se realizan los reemplazos correspondientes en las fórmulas y se obtienen los resultados. Ejemplos:

Calcular el área de la siguiente figura:

En primer lugar se debe identificar qué fórmula hay que aplicar.

Como se trata de un rectángulo la fórmula es A = a · b o A = b · h.

A = a · b significa que se multiplica el largo (a) por el ancho (b).

A = b · h representa que se multiplica la base (b) por la altura (h).

Ambas expresiones significan lo mismo en cuanto a operaciones matemáticas se refiere.

Sustitución de datos en la fórmula:

A = a · b

A = 6 cm · 4 cm = 24 cm (observar que la unidad de área es igual a la longitud al cuadrado)

 

Hallar el área de un triángulo cuya base mide 4 m y su altura 3,75 m.

Primero se dibuja la figura para identificar qué datos brinda el enunciado.

DATOS:

b = 4 m

h = 3,75 m

Se escribe la fórmula correspondiente:

A=b·h2

Y finalmente se reemplazan los datos en la fórmula:

A= 4 m · 3,75m2= 15 m22=7,5 m2

Respuesta: el área es 7,5 m2.

Las longitudes se pueden medir en mm, cm, m, etc. Las áreas en cambio son unidades al cuadrado: mm2, cm2 y mentre otras.

PROBLEMAS GEOMÉTRICOS CON ECUACIONES

Este tipo de problemas requiere conocer las fórmulas geométricas para cálculo de áreas y perímetros. Además, se necesita tener práctica con la resolución de ecuaciones y comprender el lenguaje coloquial.

EJEMPLOS 1: 

El perímetro de un terreno rectangular es de 250 m. Si el largo es el triple de su ancho:

a) ¿Cuáles son sus dimensiones?
b) ¿Cuál es el área del terreno?

El primer paso es esquematizar y escribir los datos:

DATOS:

P = 250 m
ancho = x
largo = 3x

a) Para hallar sus dimensiones es necesario conocer el valor de x. Como se tiene el dato del perímetro, en primer lugar se debe utilizar la fórmula de perímetro de un rectángulo:

P = 2a + 2b

Es decir:

P = 2 · largo + 2 · ancho

250 m = 2 · 3x + 2 · x

250 m = 6x + 2x

250 m = 8x

31,25 m = x

Al escribir se deja la incógnita del lado izquierdo:

x = 31,25 m

Como la x es igual al ancho y 3x es el largo, ya se pueden obtener ambas medidas:

largo = 3x = 3·31,25 m = 93,75  m

largo = 93,75  m

ancho = 31,25 m

b) Con los datos obtenidos en a) se calcula el área del terreno:

A= a·b

A = 93,75 m · 31,25 m

A ≅ 2929,69 m2

El símbolo ≅ significa “aproximadamente” y se utiliza cuando la respuesta ha sido redondeada.

EJEMPLO 2: 

Calcular el área de un rectángulo sabiendo que uno de sus lados mide 3 metros menos que el otro y su perímetro es de 38 metros.

En primer lugar se realiza el esquema y se extraen los datos del enunciado:

DATOS:

P = 38 m
ancho = x – 3 m
largo = x

En segundo lugar se deben calcular sus dimensiones:

38 m = x + x – 3 m + x + x -3 m

38 m = 4x -6 m

38 m + 6 m = 4x

44 m = 4x

44 m : 4 = x

x = 11 m

Medidas de las dimensiones:

largo = x = 11 m

largo = 11 m

ancho = x − 3m = 11m − 3 m = 8 m (se elige a este dato como ancho dado que su medida es menor a la del otro lado).

ancho = 8 m

Finalmente se calcula el área:

A = a · b

A = 11 m · 8 m = 88 m2

A = 88 m2

En los ejemplos anteriores la resolución se hacía por medio de ecuaciones lineales, pero podría suceder que se requiera resolver ecuaciones cuadráticas, como en el caso del siguiente ejemplo:

EJEMPLO 3: 

Calcular la medida de la base y la altura del paralelogramo si su área es de 75 m2. Su base mide el triple que su altura.

Primero se esquematiza y se escriben los datos:

DATOS:

área = 75 m2
base = 3x
altura = x

Se reemplazan los datos en la fórmula del área de un paralelogramo:

A = b · a

75 m2 = 3x · x

75 m2 = 3x2

75 m2 : 3= x2

25 m2 = x2

x=25 m2

x= 5 m

Dimensiones:

h = x

h = 5 m

b = 3x = 3· 5m = 15 m

b = 15 m

a practicar lo aprendido

  1. Si el perímetro de un rectángulo es 50 m y la base es 5 m más larga que la altura, ¿cuáles son las dimensiones del rectángulo? ¿Cuál es su área?
  2. Un triángulo equilátero de lado x tiene un perímetro de 30 m. Si su altura mide 11 m, ¿cuál es su área?
  3. Calcular la medida de la base y la altura del paralelogramo si su área es de 8 cm2.

RESPUESTAS

  1. 150 m2
  2. 55 m2
  3. h = 2 cm; b = 4 cm
¿Sabías qué...?
El símbolo para representar raíz cuadrada surgió en 1525, antes se expresaba mediante palabras “raíz de…”. Christoph Rudolff  ideó este símbolo   porque se asemejaba a una r estilizada.

 

Ecuaciones con valor absoluto o módulo

El valor absoluto o módulo con frecuencia es utilizado para representar distancia, por lo tanto, siempre se lo considera un número positivo. Las ecuaciones con módulo se resuelven de manera particular, para ello es necesario conocer todas las propiedades del valor absoluto.

El valor absoluto se simboliza con dos barras verticales | |. Puede contener números o expresiones algebraicas:

|8|, |−5|, |2x + 1|, etc.

DEFINICIÓN de valor absoluto

Este concepto se define como:

a=a, si a 0a, si a < 0

“Si un número es positivo o cero, su valor absoluto coincide con dicho número. Si en cambio el número es negativo, su valor absoluto es el inverso aditivo del mismo (es decir un número positivo)”.

Ejemplos:

|12| = 12

|1/2| = 1/2

|3| = 3

|−3| = 3

En el caso de |3|, a = 3 siendo a > 0, a es positivo, por lo tanto:

|3| = 3

Por otra parte en |−3|, a = −3 siendo a < 0, a es negativo, entonces:

|−3| = −(−3) = 3         −(−3) es el inverso aditivo de 3

En definitiva, el valor absoluto siempre es positivo.

VALOR ABSOLUTO Y DISTANCIA

Al observar la recta numérica se puede apreciar que la distancia de un número al origen es siempre es positiva.

|x| representa la distancia de x a 0. Entonces:

  • La distancia de x al 0 es x, si x es positivo.
  • La distancia de x al 0 es -x, si x es negativo.

La notación para la distancia de x al cero es:

d(x;0) = |x|

También puede expresarse en forma de módulo la distancia entre dos números cualesquiera:

d(a;b) = |a − b|

Se puede observar que la distancia entre “a” y “b” corresponde al módulo de a-b.

Ejemplo:

Calcular la distancia entre −2 y 5.

d(a;b) = |a − b|

d(-2;5) = |−2 − 5| = |−7| = 7

PROPIEDADES DEL VALOR ABSOLUTO

  1. |a · b| = |a| · |b|
  2. |a/b|= |a|/|b|
  3. |a + b| ≤ |a| + |b|  Desigualdad triangular
  4. |−a| = |a|
  5. |a|2 = a2
Las nociones de valor absoluto fueron postuladas por Euclides 300 años antes de Cristo.

RAÍZ CUADRADA Y VALOR ABSOLUTO

a2=|a|

Un error común cuando se intenta resolver una raíz par es aplicar la raíz al radicando y dar como respuesta un único resultado.

radicandoíndice= raíz

Por ejemplo:

4  = 2

El resultado es correcto, pero no el único, se estaría omitiendo otra posible solución. Entonces, debería resolverse de la siguiente forma:

4 = 22

4 =(-2)2

Por lo tanto:

4=22 4=(2)2 

Esto significa que las respuestas son dos:

22=2(2)2=2

Por ello se utiliza el concepto de valor absoluto en estos casos:

a2=|a|

 

4=22=(2)2=|2|

Al ser una raíz cuadrada tiene dos soluciones:

x1=2 x2 =2

Ejercicios resueltos de valor absoluto

Expresar sin los símbolos de valor absoluto:

Ejercicio 1:|x-3|

Caso 1

|x−3| = x − 3

Cuando x − 3 ≥ 0,  x ≥ 3.

Caso 2

|x − 3| = −(x − 3) = −x + 3

Cuando x − 3 < 0, x < 3.

La respuesta se expresa de la siguiente forma:

 

x3=x3, si x3x+3, si x<3

 

Ejercicio 2: |x2 + 1|

En este caso, la expresión dentro de las barras de valor absoluto corresponde a un número positivo, dado que para cualquier valor de x su cuadrado es positivo.

Y si a un valor positivo se le suma 1, se obtiene otro valor positivo. Entonces x2 + 1 > 0. De esta forma:

|x2 + 1| =  x2 + 1 Es la única respuesta posible.

RESOLUCIÓN DE ECUACIONES CON VALOR ABSOLUTO

Antes de trabajar con ecuaciones de valor absoluto es necesario tener en cuenta las siguientes reglas para modificar cualquier ecuación:

  • Si se suma o resta una cantidad a ambos lados de una ecuación, las soluciones no se modifican.

EJEMPLO:

2x + 3 = x + 1

2x + 3 − x = x + 1− x

x + 3 = 1

x + 3 − = 1 − 3

x = 2

  • Cuanto se divide o multiplica un mismo número (distinto de cero) a ambos lados de la ecuación, las soluciones no se modifican.

EJEMPLO:

2x = 8

2x : 2 = 8 : 2

x = 4

Estos pasos pueden realizarse simplificando el procedimiento, lo que da como resultado las reglas:

  • Todo lo que está sumando de un lado de la igualdad pasa restando y viceversa.
  • Todo lo que está multiplicando de un lado de la igualdad pasa dividiendo y viceversa.

Ejercicios resueltos de ecuaciones con valor absoluto

Ejercicio 1: |x − 6| = 3

Existen dos posibilidades |x − 6| = |3| o |x − 6| = |−3|, entonces:

x6=3              x6=3x6=3

Al resolver cada una de las ecuaciones se obtiene:

x − 6 = 3

x = 3 + 6

x = 9

 

x − 6 = −3

x = −3 + 6

x = 3

Entonces las respuestas posibles son:

x1 = 9 o x2 = 3

VERIFICACIÓN:

|x − 6| = 3

Para x1 = 9:

|9 − 6| = 3

|3| = 3

3 = 3

Para x2 = 3:

|3 − 6| = 3

|−3| = 3

3 = 3

Queda demostrado que ambos valores verifican la igualdad.

Ejercicio 2: |2 (x − 1)| = |x − 1|+ 2

Se aplica la propiedad número 1 del valor absoluto,dado que hay una multiplicación |2(x − 1)|. Entonces la ecuación se puede reescribir de la siguiente forma:

|2||x − 1| = |x − 1| + 2

2|x − 1|− |x − 1| = 2  Se pasa el valor absoluto de la derecha al lado izquierdo.

Como las expresiones dentro del valor absoluto son iguales, se pueden asociar (en este caso se restan).

|x − 1| = 2  

Y para hallar la respuesta se tiene que:

x − 1 = 2   o  x − 1 = −2

Se resuelve cada ecuación por separado:

x = 2 + 1        x = −2 + 1

x = 3            x = −1

Los resultados se pueden expresar como:

x1 = 3 o  x2 = −1

La verificación se podría realizar del mismo modo que en ejercicio anterior. Puedes intentarlo si deseas.

A PRACTICAR LO APRENDIDO

  1. Escribir cada expresión sin los símbolos de valor absoluto:

a) |x + 4|=

b) |x3 + 1|=

2. Hallar la distancia:

a) Entre 2 y 3.

b) d(−3;8)

3. Resolver las siguientes ecuaciones:

a) |x − 5| = 4

b) |−3x| + |−x| = 4

c) x2 = 64

RESPUESTAS

a)

x + 4, si x  4x  4, si x < 4

 

b)

x3 + 1, si x 1x3 1, si x < 1

 

2.

a) 1

b) 11

3.

a) x= 1 o x= 9

b) x= 1 o x= −1

c) x= −8 o x= 8

¿Sabías qué...?
La obra de Euclides Los elementos ordena y contiene postulados de conocimientos sobre geometría y matemática en la Antigüedad. Es el matemático más leído de la historia de las ciencias.

 

 

Ecuaciones de segundo grado

Las ecuaciones algebraicas de segundo grado o ecuaciones cuadráticas son aquellas en las cuales al menos una de sus incógnitas se encuentra elevada al cuadrado, siendo éste el mayor grado que pueden tener. Este tipo de ecuaciones se requieren no solo en aplicaciones del campo de la matemática, también son de gran utilidad para la resolución de problemas de física, entre otros.

La forma típica de las ecuaciones de segundo grado es:

ax2+bx+c=0

 

Siendo x la incógnita; a, b y c los coeficientes. La incógnita es un valor variable, mientras que los coeficientes son constantes y a≠0 (a debe ser distinta a cero).

Algunas ecuaciones cuadráticas son fácilmente reconocibles, mientras que otras requieren algunas transformaciones algebraicas para identificarlas.

Ejemplos

Ecuación cuadrática con a, b y c distintos de cero:

2x2+5x+1=0

Ecuación cuadrática con b=0:

3x21=0

Ecuación cuadrática con c=0:

x2+4x=0

 

En los tres ejemplos anteriores, la ecuación cuadrática se obtuvo al igualar a cero un trinomio de segundo grado, ya sea completo o incompleto.

TRINOMIO DE SEGUNDO GRADO

Es un polinomio de grado dos que consta de tres monomios. Ej:

P(x)=ax2+bx+c, siendo a0.

Si ningún coeficiente tiene como valor cero, la fórmula es completa. Es incompleta en los siguientes casos:

ax2+c=0   (b=0)ax2+bx=0  (c=0)ax2=0         (b=c=0)

En caso de que la ecuación no esté presentada en la forma típica, se deben realizar operaciones algebraicas, por ejemplo:

x2=1

 

Se realizan las transformaciones necesarias para que del lado derecho de la igualdad quede cero:

x21=0

 

De este modo se puede identificar que dicha ecuación es cuadrática, pero su coeficiente b=0.

Otro ejemplo que requiere transformaciones aritméticas:

4x2+8=2x2 +x

 

Se llevan los términos de la derecha hacia el lado izquierdo, cambiando sus signos:

4x2+82x2x=0

 

Se agrupan términos con la misma parte literal y mismo grado:

4x2 2x2x+8=0

 

Se resuelve:

2x2x+8=0

 

En esta oportunidad se observa un trinomio completo de segundo grado.

Por último, puede ocurrir que a simple vista no se observen términos cuadráticos, pero al resolver la siguiente ecuación el resultado será un trinomio de segundo grado:

x+2x3=5

 

Se resuelve la multiplicación de los dos binomios:

x23x+2x6=5x2x 65=0x2x11=0

 

Al escribir la ecuación cuadrática en la forma típica se pueden identificar sus coeficientes y resolver por medio de la fórmula resolvente o de Bhaskara.

resolución de ecuaciones de segundo grado incompletas

Las ecuaciones cuadráticas incompletas se resuelven de manera sencilla, despejando la incógnita, x.

Existen algunas reglas que permiten trabajar con ecuaciones. Las reglas simplificadas de transposición de términos son las siguientes:

  • Si un término está sumando en un miembro de la igualdad, pasa al otro restando y viceversa. Por ejemplo:
    4x +5 =3x2+94x +5 +3x2=9
  • Si un término se encuentra multiplicando en un miembro de la igualdad, pasa al otro dividiendo y viceversa. Por ejemplo:
    3x=6x=6:3
  • Si un término está elevado a una potencia de un lado de la igualdad, esa potencia pasa al otro lado como una raíz cuyo índice es la potencia y viceversa. Por ejemplo:
    x3=8x=83

Ejemplo 1:

x24=0x2=4|x| =4|x|=2x1=2 , x2=2

Cuando una potencia par se pasa al otro miembro de la igualdad como raíz, hay dos valores de x que resuelven la igualdad. Por ello se utiliza el módulo, |x|.

Ejemplo 2:

3x2+2x=0

 

Una forma sencilla de resolver esta ecuación es extraer factor común x:

x(3x+2)=0

 

Para que el producto x(3x+2) sea igual a cero, uno de sus factores debe ser cero. Entonces, la ecuación anterior es válida si:

x=0,3x+2=0

 

De este modo se pueden hallar los dos valores de x que satisfacen la ecuación:

x1=0

(no se requieren cálculos)

Para x2 se debe despejar la segunda ecuación (segundo factor).

3x+2=03x=2x=23x2=23

RESOLUCIÓN DE ECUACIONES DE SEGUNDO GRADO COMPLETAS

Fórmula resolvente o de Bhaskara

x1,x2=b±b24ac2a

La fórmula de Bhaskara permite obtener las raíces de una ecuación de segundo grado. De la aplicación de la fórmula puede ocurrir que el resultado sea:

  • Dos raíces reales distintas.
    b24ac >0
  • Dos raíces reales iguales.
    b24ac=0
  • No tenga raíces reales.
    b24ac <0

Ejemplo 3: Resolver la ecuación

2x2+5x3=0

Primero se identifican los coeficientes a, b y c, siendo éstos:

a=2b=5c=3

 

Se reemplaza en la fórmula:

x1,x2=5±524·2·32·2x1,x2=5±25+244x1,x2=5±494x1,x2=5±74x1=5+74=24=12x2=574=124=3

Por lo tanto:

x1=12 , x2=3

 

También se puede utilizar la fórmula de Bhaskara para ecuaciones cuadráticas incompletas.

A PRACTICAR LO APRENDIDO

Resolver las siguientes ecuaciones:

1) x2+6x+8=02) x225=03) x2=2x4) x2+2x8=0

RESPUESTAS

1) x1=2 , x2=42)  x1=5 , x2=53)  x1=0 , x2=24)  x1=2 , x2=4

 

¿Sabías qué...?
El matemático y astrónomo Bhaskara nació en la India en el siglo XII y encontró respuestas a las resoluciones cuadráticas varios siglos antes que matemáticos de Europa.

Cálculo de perímetros aplicando ecuaciones

En ocasiones el lenguaje algebraico permite organizar la información que se tiene y obtener respuestas mediante una serie de procedimientos matemáticos. Las ecuaciones algebraicas son de uso frecuente para determinados problemas, como pueden ser los cálculos de perímetros o áreas.

Para realizar este tipo de cálculos se requiere revisar los conceptos y fórmulas relacionadas con perímetros, además es necesario haber practicado antes la resolución de ecuaciones sencillas.

Este tipo de problema puede ser verbales únicamente o incluir gráficos. En cualquier caso es importante:

  • Realizar una lectura comprensiva del enunciado, si se requiere releer hasta haber comprendido qué datos se tienen y qué se desea averiguar.
  • Si el problema no tiene imagen y es necesario, esquematizar.
  • Extraer los datos del problema y asignar una incógnita al valor o los valores desconocidos.
  • Utilizar el lenguaje algebraico para escribir la ecuación y/o fórmulas que se utilizarán en la resolución.
  • Resolver la o las ecuaciones.
  • Analizar los resultados (identificar si la respuesta es coherente o no).
  • Se recomienda verificar.
  • Escribir la respuesta destacándola del resto de la resolución, ya sea remarcándola con colores, subrayándola, circulándola, etc.

aplicación de ecuaciones a problemas de geometría

Los problemas de geometría pueden incluir gran cantidad de temas, como el cálculo de ángulos, de áreas, volúmenes, etc. Esta explicación se acotará a perímetros, cuya resolución se realiza con ecuaciones de primer grado.

Problemas verbales

Los problemas verbales no incluyen imágenes, por ejemplo:

PROBLEMA 1: Si el largo de un rectángulo es el triple del ancho y su perímetro es de 56 cm. Hallar sus dimensiones.

Luego de leer el problema detenidamente, se realiza un dibujo representativo y en él se colocan los datos.

PREGUNTAS:

Se solicita hallar las dimensiones.

ancho: ?

largo: ?

En este problema la incógnita es la letra x, que representa al ancho de la figura.

Para poder escribir la ecuación que resuelve este problema es necesario recordar la fórmula del perímetro de un rectángulo, que puede expresarse de la siguiente manera: P = 2x +2y, siendo “x” e “y” ancho y largo respectivamente.

A continuación se reemplazan los datos en la fórmula:

P = 2x +2y

56 cm = 2x +2(3x)

Se resuelve la ecuación:

56 cm = 2x +6x

56 cm = 8x

56 cm : 8 = x

x = 7 cm

Se tiene entonces que:

ancho = x, por lo tanto el ancho es 7 cm. Como el largo es tres veces el ancho, el largo se calcula así:

largo: 3 ⋅ 7 cm = 21 cm

RTA. Las dimensiones son 7 cm de ancho y 21 cm de largo.

PROBLEMA 2: Hallar el perímetro del cuadrado ABCD tal que AB=5x+5, CD=7x−19. 

La figura que se aplica a este problema es la siguiente:

Una vez realizada la figura correspondiente se analiza qué tipo relación existe entre los lados. Es decir, ¿se puede aplicar alguna fórmula? ¿Se debe realizar una suma? ¿que propiedades tienen los lados?

Como en este problema la figura es un cuadrado se sabe que todos sus lados son iguales, por lo tanto, el lado AB es igual al lado CD. Por lo tanto:

5x + 5 = 7x – 19

Despejando x:

5 + 19 = 7x – 5x

24 = 2x

24 : 2 = x

x = 12 (se escribe en forma ordenada, la x a la izquierda)

¡ATENCIÓN!

El procedimiento aún no ha finalizado, solamente se ha hallado el valor de x, que debe ser reemplazado en alguna de las ecuaciones de los lados. Ej:

AB= 5⋅12 + 5 = 60 + 5 = 65

Como es un cuadrado, la fórmula del perímetro que corresponde es P = 4l, siendo “l” la medida de un lado.

P = 4⋅65 = 260

RTA. El perímetro del cuadrado es 260. (No se indicaron unidades en la consigna, por lo tanto no se colocan tampoco en respuesta).

VERIFICACIÓN

Para realizar la verificación del resultado de un problema resuelto con ecuaciones se reemplaza el valor de x obtenido en la ecuación original.

En el segundo problema sería:

5x + 5 = 7x – 19

5⋅12+5 = 7⋅12 -19

65 = 65

Si se obtienen resultados iguales a ambos lados del signo = entonces se ha verificado la respuesta.

Problemas gráficos

Este tipo de problemas suele contener una consigna que requiere estar acompañada de un gráfico o imagen para ser comprendida. Ejemplo:

PROBLEMA 3: Hallar la base del triángulo isósceles dado, si su perímetro es 11. 

En este caso se conoce la variable (x) y el perímetro de la figura. Al ser un triángulo isósceles cuenta con dos lados iguales.

DATOS:

base: x-3

lado: x-2

perímetro: 11

Aplicando la fórmula para perímetro de triángulos isósceles se obtiene:

P = 2x + y , siendo  la “x” uno de los lados iguales y la “y” la base.

P = 2⋅ (x-2) + (x-3)

11 = 2x – 4 + x – 3

11 + 4 + 3 = 2x + x

18 = 3x

18:3 = x

x = 6

Como se pide hallar la base en el enunciado, entonces se procede a reemplazar en la expresión algebraica que corresponde a la misma:

base = x-3

base = 6-3

base = 3

RTA. La longitud de la base es igual a 3.

A PRACTICAR LO APRENDIDO

  1. Si un rectángulo tiene un perímetro de 46 cm y la base es 3 cm más larga que la altura. Calcular la longitud de la base.
  2. Si el perímetro de un rectángulo mide 30 cm. Calcular sus dimensiones sabiendo que el largo mide 7 cm más que el ancho.
  3. Hallar la medida de un lado del siguiente rombo cuyo perímetro es 40.

RESPUESTAS

  1. 13 cm
  2. ancho: 4 cm; largo: 11 cm
  3. 10 cm
¿Sabías qué...?
Los egipcios y los babilonios eran capaces de resolver algunos tipos de ecuaciones: lineales, cuadráticas y algunas de tercer grado.

Regla de tres

La regla de tres es una operación que se fundamenta en el estudio de las proporciones y que consiste en calcular un término conociendo los demás datos. Es de gran utilidad y aplicación en la vida cotidiana.

La regla de tres puede ser directa o inversa. Cuando las magnitudes que intervienen son directamente proporcionales es directa, y cuando, por el contrario, dichas magnitudes son inversamente proporcionales, la regla de tres es inversa.

MAGNITUDES DIRECTAMENTE PROPORCIONALES

Magnitud: es aquello que se puede contar o medir.

Las magnitudes que aumentan o disminuyen en la misma proporción al relacionarlas entre sí se llaman magnitudes directamente proporcionales. La forma para expresar la función de proporcionalidad directa es y= kx. Un ejemplo de magnitud directamente proporcional sería el costo de comprar panes.

Si un pan cuesta 5 pesos, ¿cuál es el precio de 3 panes? La respuesta es 15 pesos. ¿Por qué?

En este caso la magnitud es directamente proporcional y ambas variables aumentan en forma creciente, es decir, a medida que aumenta la cantidad de panes, aumenta el precio:

CANTIDAD DE PANES (x) PRECIO (y) FUNCIÓN y=5x
1 $5 y=5⋅1
2 $10 y=5⋅2
3 $15 y=5⋅3

                                                k=5 

Una magnitud directamente proporcional también puede identificarse cuando ambas variables disminuyen sus valores en relación constante.

Ejemplo:

Si dos kilos de comida para gatos alcanza para que un gato se alimente durante 28 días. ¿Cuántos días se podrá alimentar al gato con 1 kilogramo de alimento?

KILOS DE ALIMENTO PARA GATOS (x) DÍAS (y) FUNCIÓN y= 14x
2 28 y=14⋅2
1 14 y=14⋅1
1/2 7 y=14⋅1/2

                                     k= 14

 

¿CÓMO HALLAR EL VALOR DE K?

La forma de identificar el valor de k es despejar k de la fórmula y=kx:

k= y/x

k= 28/2 =14

k= 14/1 = 14

Y así con cualquier valor de x.

magnitudes INVERSAMENTE proporcionales

Dos magnitudes son inversamente proporcionales cuando al aumentar una dos, tres, cuatro o más veces, la otra disminuye en la misma proporción (dos, tres, cuatro o más veces). Del mismo modo en el caso inverso, cuando una disminuye, la otra aumenta manteniendo la misma relación. La fórmula que se aplica en estos casos es y=k/x

Ejemplo:

Si 10 albañiles pueden realizar una construcción en 30 días, ¿cuánto demorarán en realizar la misma construcción 20 albañiles? La respuesta es 15 días. ¿Por qué?

Utilizando el pensamiento lógico se puede decir que a más obreros, se requiere menos tiempo. En este caso, mientras una magnitud crece, la otra decrece, lo que determina que es un caso de magnitudes inversamente proporcionales.

CANTIDAD DE ALBAÑILES (x) DÍAS (y) FUNCIÓN y=300/x
10 30 y=300/10
20 15 y=300/20
30 10 y=300/30

      k=300

Del mismo modo que se realiza en las magnitudes directamente proporcionales, se calcula k en caso de inversamente proporcionales. Se despeja la fórmula y=k/x

k=y⋅x

k=30⋅10

k=300

 regla de tres directa

Como su nombre lo indica, en ella intervienen magnitudes directamente proporcionales. Por ejemplo:

Si dos botellas de agua mineral cuestan 60 pesos, ¿cuál sera el costo de 6 botellas?

En primer lugar se analizan las variables. Si se desea comprar más cantidad se pagará más, por lo tanto se confirma que es un problema de regla de tres directa, ya que sus magnitudes son directamente proporcionales.

Luego se realiza la regla de tres simple, escribiendo los datos de la siguiente forma:

Para resolver la regla de tres directa se multiplica en “forma cruzada” y el valor restante se utiliza como divisor:

x= 6 ⋅ 60 /2

x= 180 pesos 

Utilizando proporciones

Otra forma de calcular la respuesta es utilizando proporciones, para el ejercicio anterior sería del siguiente modo:

2/60 =6/x

Y despejando x:

2⋅x=6⋅60

x=360/2

x=180

regla de tres inversa

En este caso, las magnitudes son inversamente proporcionales y por lo tanto la forma de resolver es distinta. Por ejemplo:

Si una empleada puede fabricar un paquete de cajas en 8 horas de trabajo, ¿cuánto demorarán en realizar la misma tarea dos empleadas?

En primer lugar se identifican las variables: empleadas y tiempo necesario para la tarea, luego se escribe la regla de tres:

Luego se realiza una multiplicación, pero en caso de ser inversa las variables que intervienen en la multiplicación son las siguientes:

x = 1 ⋅ 8/ 2

x = 4 

A más empleadas, la tarea se realiza en menos tiempo.

Utilizando proporciones

En este caso se realiza de la siguiente forma:

1⋅8 = 2⋅ x

Despejando x:

x= 8/2

x=4

a practicar lo aprendido

Resolver las siguientes situaciones problemáticas.

  1. Si 4 kilos de harina cuestan $ 120, ¿cuál es el valor de 12 kilos?
  2. Si cuatro trabajadores pintan una escuela en 6 días. ¿Cuánto demorarán 2 trabajadores en pintar la misma escuela?
  3. En un campo 12 caballos consumen una determinada cantidad de alimento en 3 días. Si la cantidad de caballos se duplica, ¿para cuántos días alcanza el alimento?
  4. Una docena de huevos cuesta 40 pesos. ¿Cuánto cuestan 6 huevos?

respuestas

  1. 360 pesos
  2. 12 días
  3. 1 día y medio
  4. 20 pesos
¿Sabías qué...?
Los egipcios fueron los primeros en tratar de establecer un sistema de proporciones para el cuerpo humano, para ellos el cuerpo perfecto debía tener las siguientes proporciones con respecto al tamaño del puño de la persona: la cabeza dos veces, seis veces para las piernas, de los hombros a las rodillas diez veces y la longitud de pies a cabeza debería ser de 18 puños en total.

Si deseas aprender más sobre la regla de tres ingresa en el artículo Regla de tres simple y compuesta.

Perímetro de triángulos y cuadriláteros

El perímetro de una figura geométrica es la suma de todos sus lados. Existen fórmulas particulares para determinadas figuras, como son el triángulo equilátero que tiene todos sus lados iguales, el rectángulo y el rombo, entre otras.

perímetros de triángulos

Los triángulos son figuras geométricas que cuentan con tres lados y tres ángulos. Para calcular el perímetro nos importa conocer sus lados y saber qué tipo de triángulo es.

Escalenos

Cuando los triángulos son escalenos (tienen todos sus lados distintos) simplemente se suman sus lados y se obtiene el perímetro de dicha figura.

Hallar el perímetro del siguiente triángulo:

Equiláteros

Los triángulos equiláteros tienen sus tres lados iguales, por lo tanto, se puede aplicar la siguiente fórmula para calcular el perímetro:

PER = 3⋅l

siendo “l” el valor de cada lado.

Al ser un triángulo equilátero todos los lados son iguales, se aplica la fórmula:

Isósceles

Estos triángulos tienen dos lados iguales y uno desigual. En este caso, la fórmula a utilizar es:

PER = 2⋅l + b

PER = 2⋅ lados iguales + lado desigual

Se puede calcular el perímetro aplicando la fórmula:

cuadriláteros

Los cuadriláteros se clasifican en paralelogramos, trapecios y trapezoides.

CLASIFICACIÓN DE CUADRILÁTEROS

Paralelogramos

Cuadriláteros que tienen los lados paralelos de a dos.

Trapecios

Tienen dos lados paralelos denominados base menor (la superior) y base mayor (la inferior).

Trapezoides

No tienen ningún lado paralelo ni de la misma medida.

PERÍMETROS DE CUADRILÁTEROS

FÓRMULAS
FIGURA PERÍMETRO
Cuadrado   4⋅l
Rectángulo 2⋅l +2⋅b
Romboide 2⋅l1 + 2⋅l2
Rombo 4⋅l
Trapecio rectángulo o escaleno b + B +l1+l
Trapecio isósceles b + B + 2⋅l

REFERENCIAS: l=lado; b= base (en trapecio base menor); l1= lado 1; l2= lado 2; B= base mayor.

Cuadrados

Tienen cuatro lados iguales, dado que tienen cuatro ángulos rectos. Es sencillo calcular su perímetro. Ejemplo:

Calcular el perímetro del siguiente cuadrado:

Se aplica la fórmula: PER = 4⋅l = 4⋅4 cm

PER = 16 cm

Rectángulos

Poseen lados iguales de a dos y cuatro ángulos rectos.

Calcular el perímetro del siguiente rectángulo:

l= 4 cm

b = 6 cm

Se reemplazan los datos en la fórmula:

PER = 2⋅l +2⋅b

PER = 2⋅4 cm +2⋅6 cm

PER = 8 cm + 12 cm

PER = 20 cm

Romboides

Tienen lados iguales de a dos. Su perímetro se calcula en forma similar al del rectángulo, pero se utiliza la fórmula: PER = 2⋅l1 + 2⋅l2

l= 3 cm

l2 = 5 cm

Por lo tanto:

PER = 2⋅ 3 cm + 2⋅ 5 cm

PER = 6 cm + 10 cm

PER = 16 cm

Rombos

Estas figuras tienen los cuatro lados iguales y sus diagonales forman cuatro ángulos rectos.

Calcular el perímetro de un rombo de lado 2cm.

PER = 4⋅ 2 cm

PER = 8 cm

Trapecios isósceles

Los trapecios isóceles tienen sus lados oblicuos iguales.

Calcular el perímetro del siguiente trapecio:

Se utiliza la fórmula:

PER = b + B + 2⋅l

PER = 5 cm + 7 cm + 2⋅ 3 cm

PER = 12 cm + 6 cm

PER = 18 cm

Trapecios rectángulos y escalenos

Los trapecios rectángulos, como su nombre lo indica, poseen un ángulo recto; en los trapecios escalenos todos los lados son de diferente longitud.

Calcular el perímetro del siguiente trapecio rectángulo:

PER = b + B +l1+l

PER = 4 cm + 6 cm + 2,5 cm + 3 cm

PER = 15,5 cm

Trapezoides

Al tener todos sus lados distintos, para hallar el perímetro simplemente se suman las longitudes de sus lados.

PER = 1 cm + 4 cm + 3 cm + 6 cm

PER = 14 cm

LOS BARRILETES Y LA GEOMETRÍA

Los barriletes son originarios de China, se fabricaban con fines militares hacia el año 1.200, aunque se considera que fueron inventados mucho antes. En el siglo XII se comenzaron a utilizar como juguetes. Existen muchos tipos de barrillete, algunos se construyen siguiendo estructuras geométricas, otros representan formas como pueden ser aves o peces.

A PRACTICAR LO APRENDIDO

Calcular el perímetro de las siguientes figuras:

  1. Triángulo equilátero

2. Trapecio isósceles

3. Trapecio escaleno

4. Triángulo isósceles

respuestas

  1. 18 cm
  2. 36 cm
  3. 17 cm
  4. 58 cm
¿Sabías qué...?
El triángulo es una de las figuras geométricas más utilizadas en la construcción, ya que las estructuras que se basan en esta forma son más resistentes debido a que el triángulo es el único polígono que no se deforma al estar sometido a una fuerza.

 

Perímetro de polígonos

Los polígonos son figuras planas y cerradas, compuestas por al menos tres segmentos rectilíneos. La línea que forma el contorno de estas figuras se denomina poligonal. Existen polígonos regulares y no regulares, esta clasificación es muy importante al momento de calcular perímetros.

Las figuras geométricas se encuentran en todas partes, en la naturaleza y en juguetes por ejemplo. Además, gran variedad de objetos pueden estar compuestos por las mismas, como pueden ser las cajas. Conocer el cálculo de perímetros tiene muchas aplicaciones en la vida cotidiana.

ELEMENTOS DE LOS POLÍGONOS

Lado: cada uno de los segmentos que conforman la forma poligonal. Ej:  

Perímetro: es la suma de las longitudes de los lados de la figura.

Vértices: corresponden a las intersecciones de los segmentos que configuran la poligonal. Ej: A, B, C, etc.

Diagonal: es el segmento que uno dos vértices no consecutivos. La cantidad total de diagonales en un polígono se calcula por la fórmula:

D = n(n-3)/2, siendo n la cantidad de lados de la figura.

Diagonal AD.
Apotema: es un segmento perpendicular a un lado, se traza desde el centro de un polígono.

r: radio; a:apotema

Radio: corresponde al segmento trazado desde el centro del polígono hasta uno de sus vértices. En el caso de los polígonos regulares es igual al radio de la circunferencia en la cual se lo puede circunscribir.

Altura: es la distancia desde un vértice al lado opuesto en polígonos sin lados paralelos. Cuando los polígonos tienen lados paralelos, la altura es la distancia entre dichos lados.

Ángulo interior: es cada uno de los ángulos determinados por lados consecutivos. En los polígonos convexos se puede calcular la suma de los ángulos interiores mediante la fórmula S=180⋅(n-2).

Ángulo exterior: se forma por un lado y la prolongación del lado contiguo.

Ángulo central: su vértice se ubica en el centro del polígono y los lados pasan por los extremos de un lado de la figura (vértices).

polígonos convexos

Los polígonos convexos, ya sean regulares o no, se nombran de acuerdo a la cantidad de ángulos o lados:

  • Triángulos (3 lados)
  • Cuadriláteros (4 lados)
  • Pentágonos (5 lados)
  • Hexágonos (6 lados)

Cuando los polígonos son regulares (lados iguales) se los nombra escribiendo la palabra regular:

  pentágono regular                              hexágono regular

Si sus lados son distintos, simplemente se cuentan cuántos son y se nombra:

 pentágono

La forma geomètrica que presentan los panales de abejas se debe a que la misma permite almacenar mas miel que otras con su mismo perímetro.

polígonos cóncavos

Los polígonos cóncavos se subclasifican en dos grupos: los equiláteros (estrellados) y los no equiláteros.

 polígono estrellado          polígono cóncavo no equilátero (pentágono)

PERÍMETROS EN POLÍGONOS REGULARES

Para el caso particular de los polígonos regulares existen fórmulas que permiten calcular sus perímetros y áreas.

En el artículo Perímetros de triángulos y cuadriláteros puedes ver ejemplos de cómo hallar perímetros en dichas figuras. Sin embargo, todos los polígonos obedecen a la siguiente fórmula para calcular sus perímetros:

P = n⋅ l

P= perímetro

n: número de lados

l: medida del lado

Aplicación de la fórmula para calcular perímetro en polígonos regulares

Hallar el perímetro del siguiente octágono regular:

n = 8  (por ser un octágono)

l = 5cm

P = n⋅ l

P = 8⋅ 5cm

P = 40 cm

Con todo lo aprendido se pueden hallar perímetros de figuras específicas, como pueden ser algunos moldes de vestimenta, desarrollo de volúmenes, etc.

DESARROLLO DE UN CUBO

Cubo.

Un cubo es un poliedro, es decir, un cuerpo formado por caras planas que encierra un volumen. Para construir un cubo se necesita realizar su desarrollo en el plano.

El cubo se construye con seis cuadrados dispuestos de la siguiente forma:

Desarrollo del cubo.

A PRACTICAR LO APRENDIDO

Calcular los perímetros de las siguientes figuras:

  1. Pentágono regular 
  2.  Decágono regular
  3.  Estrella de 12 lados y medida del lado 3cm
  4.  Pentágono irregular 

respuestas

  1. 17,5 m
  2. 20 cm
  3. 36 cm
  4. 28 cm
¿Sabías qué...?
Las abejas construyen las celdillas de sus colmenas con forma circular, éstas adquieren la forma hexagonal debido al efecto de compresión al cual están sometidas.

Si deseas seguir aprendiendo sobre geometría ingresa a la Enciclopedia de Matemática Secundaria, Tomo 1.

¿Qué son los teoremas?

Hay teoremas que se hicieron famosos como el de Pitágoras, Thales y el del binomio; éstos son proposiciones cuya verdad puede ser demostrada dentro de un sistema formal. A continuación vamos a explicar qué es un teorema y qué proponen algunos de ellos.

Los teoremas cuentan con un número de premisas que pueden ser demostradas por medio de la matemática o la lógica. Generalmente contemplan un número de condiciones que pueden ser enumeradas o anticipadas de antemano, a las cuales se las denomina respuestas. Luego está la conclusión, la cual es verdadera en función a las condiciones propuestas por el teorema.

No todas las afirmaciones matemáticas se convierten en teoremas, para que lleguen a tener la categoría de tales deben ser lo suficientemente interesante dentro de la ciencia para su posterior aplicación en las situaciones de la vida. Cuando las afirmaciones no llegan al rango de teoremas, se convierten en un lema, corolario o proposición.

Lema: es una proposición que forma parte de un teorema más largo.
Corolario: es una afirmación que sigue a un teorema. Puede ser demostrado usando las propiedades del teorema anteriormente comprobado.
Proposición: es un resultado que no está asociado a ningún teorema en especial.

Un teorema se demuestra dentro de un marco lógico que consiste en un conjunto de axiomas y un proceso de inferencia. A su vez, se denomina demostración de ese teorema a la secuencia finita de fórmulas lógicas bien formadas.

Hay otras ciencias, como la física o la economía, que utilizan teoremas para producir afirmaciones que se deducen a partir de otras y que se las llama también teoremas.

Teorema de Pitágoras

Un triángulo rectángulo tiene un ángulo recto. Los lados que forman el ángulo recto se denominan catetos y el lado mayor del triángulo se llama hipotenusa.

Sabiendo ello, el teorema dice: En un triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos.

¿Sabías qué...?
Pitágoras enseñaba que la Tierra estaba situada en el centro del universo.

Pitágoras (569 – 500 a. C)

Nació en la Isla de Samos, Grecia y fue discípulo de Thales de Mileto. Fundó una escuela en Crotona que además de ser filosófica era religiosa y política. Seguían algunas costumbres algo curiosas, debían abstenerse de ingerir alimentos de origen animal, ayunar frecuentemente, vestir de color blanco, realizar actividad física y tener todos sus bienes en común. Quienes ingresaban a la escuela lo hacían con la categoría de “iniciados” y debían pasar arduos exámenes para llegar al segundo nivel denominado “oyente”. Los alumnos que no respondían a las exigencias pitagóricas eran eliminados de la escuela.

Con respecto a la matemática, los pitagóricos no estaban interesados en resolver problemas sino en establecer principios y conocer conceptos como el de número o triángulo.

Teoremas de Thales

El Teorema de Thales demuestra la relación de proporcionalidad entre los segmentos que delimitan rectas secantes sobre rectas paralelas. Es de gran utilidad cuando se quiere dividir un segmento en partes iguales o proporcionales a otros segmentos.

De acuerdo a este teorema: si tres rectas paralelas (a, b y c), cortan a dos rectas secantes (s y t); los segmentos que delimitan son proporcionales.

Thales de Mileto (624 – 546 a.C)

Fue el primer matemático griego que inició el estudio de la Geometría y uno de los “siete sabios” de la antigüedad. Obtuvo reconocimiento social por sus investigaciones en astronomía y por haber podido predecir el eclipse de Sol que ocurrió el 28 de mayo del 585 a.C.

Intentó dar una explicación física del Universo, y afirmó que todo nacía del agua, la cual era el elemento básico del que estaban hechas todas las cosas.

Se atribuye a Thales el uso de sus conocimientos de geometría para medir las dimensiones de las pirámides de Egipto y calcular la distancia desde la costa hasta barcos en alta mar.