Bacterias beneficiosas y bacterias perjudiciales

Las bacterias pueden sobrevivir en condiciones extremas y están en todas partes: en nuestro entorno, en la piel, en la boca y en el intestino. Millones de de bacterias buenas viven en nuestro cuerpo, pero también existe un porcentaje menor que causa enfermedades y, en algunas ocasiones, hasta la muerte.

Bacterias beneficiosas Bacterias perjudiciales
¿Qué causan? Beneficios al cuerpo humano, también pueden ser inocuas. Enfermedades.
¿Cuáles son sus funciones? Proporcionar nutrientes esenciales y ayudar a proteger el cuerpo de las infecciones. Causar infecciones o envenenamiento al organismo.
¿Cuál es su abundancia en el cuerpo humano? Muy abundantes. Casi el 85 %. Poco abundantes. Casi el 15 %.
¿Dónde se pueden encontrar? En alimentos fermentados, algunos productos lácteos, medicamentos, entre otros. En alimentos, el aire, el agua y otros seres vivos.
Ejemplos
Lactobacillus acidophilus, probiótico que se agrega a alimentos fermentados.

 

Enterococcus faecalis, parte de la flora intestinal normal.
Bifidobacterium animalis subsp. lactis, que se encuentra en los intestinos y produce ácido láctico y acético.
Yersinia pestis, bacteria que provocó la peste negra.

 

Salmonella, presente en distintos alimentos, como la carne de pollo y de res.

 

Vibrio cholerae, que provoca el cólera en los humanos.

 

Gráfico circular

Los datos estadísticos pueden observarse de forma clara si los representamos en gráficos, de los cuales el circular es uno de los más usados. Este tipo de representación consiste es un círculo dividido en áreas proporcionales a la frecuencia de datos o porcentajes de una categoría. Son de gran ayuda para comparar partes de un todo.
Los gráfico estadísticos son herramientas visuales que nos permiten organizar y expresar datos de forma sencilla y clara; pueden ser lineales, de barras o circulares.

¿Qué es el gráfico circular?

Un gráfico circular, también denominado diagrama de pastel o gráfico de torta, es una representación gráfica en forma de círculo que se usa para comparar porcentajes o frecuencias respecto a un total de datos. El área de todo el círculo es igual al total de datos (100 %) y el área de cada porción del círculo representa el porcentaje de una categoría.

Los gráficos circulares tienen un título, una leyenda y unas etiquetas que muestran los porcentajes o valores de las variables.

– Ejemplo:

En este gráfico podemos ver que el 60 % de la población mundial reside en Asia, el 17 % en África, el 10 % en Europa, el 8 % en Latinoamérica y el Caribe; y el 5 % en América del Norte y Oceanía.

¿Sabías qué?
La invención del gráfico circular se le atribuye al ingeniero escocés y economista político William Playfair.

Tipos de gráficos circulares

Los diagramas de torta no siempre son iguales. Además del circular, también los hay de anillo, semicirculares o irregulares.

¿Cómo construir un gráfico circular?

1. Organiza las frecuencias relativas y absolutas de los datos.

Esta tabla muestra las edades de 30 estudiantes de un curso de inglés.

Edad Frecuencia absoluta Frecuencia relativa
14 5 5/30 = 0,2
15 12 12/30 = 0,4
16 10 10/30 = 0,3
17 3 3/30 = 0,1
Total 30 1

La frecuencia absoluta corresponde a la cantidad de veces que se repite una variable, por ejemplo, en el curso de inglés hay 5 estudiantes con 14 años. Por otro lado, la frecuencia relativa corresponde a la parte del total que representa cada valor de la variable. La suma de todas las frecuencias relativas es igual a 1.

 

2. Halla el porcentaje de cada variable.

Las frecuencias relativas pueden expresarse como un porcentaje si se multiplica cada valor por 100.

Edad Frecuencia absoluta Frecuencia relativa Porcentaje
14 5 5/30 ≈ 0,2 20 %
15 12 12/30 = 0,4 40 %
16 10 10/30 ≈ 0,3 30 %
17 3 3/30 = 0,1 10 %
Total 30 1 100 %

 

3. Calcula el ángulo central de cada variable.

Los círculos tienen 360°, así que para ilustrar los datos en un gráfico circular debemos conocer los grados que representa cada sector de una variable en dicho círculo. Este cálculo consiste en multiplicar la frecuencia relativa por 360°. Por ejemplo, 0,2 × 360° = 72°.

Edad Frecuencia absoluta Frecuencia relativa Porcentaje Grados
14 5 5/30 ≈ 0,2 20 % 72°
15 12 12/30 = 0,4 40 % 144°
16 10 10/30 ≈ 0,3 30 % 108°
17 3 3/30 = 0,1 10 % 36°
Total 30 1 100 % 360°

 

4. Traza una circunferencia y uno de sus radios.

Usa el compás para dibujar una circunferencia, luego traza una línea recta desde el centro hasta el borde de la figura, ese será el radio.

5. Mide los ángulos.

A partir del radio, y con la ayuda de un transportador, marca los grados calculados anteriormente. Hazlo de mayor a menor y en sentido horario. Asigna a cada área de la circunferencia un color diferente.

 

6. Identifica cada sector del gráfico.

Escribe las etiquetas de los datos en porcentaje, el título y la leyenda según los colores que hayas usado en cada sector.

De esta manera podemos observar fácilmente que el 40 % de los estudiantes del curso de inglés tiene 15 años, mientras que el 30 % tiene 16 años, el 20 % tiene 14 años y el 10 % tiene 17 años.

– Ejemplo:

La siguiente tabla muestra la cantidad de diversos sabores de helado en una heladería, así como el porcentaje de cada variable y los grados que representan.

Sabor de helado Frecuencia absoluta Frecuencia relativa Porcentaje Grados
Chocolate 60 60/250 ≈ 0,2 20 % 72°
Mantecado 90 90/250 ≈ 0,4 40 % 144°
Fresa 50 50/250 = 0,2 20 % 72°
Colita 50 50/250 = 0,2 20 % 72°
Total 250 1 100 % 360°

 

El gráfico circular se muestra a continuación:

 

¿Cuándo utilizar gráficos circulares?

Este tipo de gráfico estadístico es muy útil para contrastar proporciones de un total siempre y cuando las categorías sean pocas, pues no es recomendable usarlo si hay muchas variables ya que genera confusión y el resultado podría ser incomprensible.

Microsoft Excel

El cálculo matemático ha sido una de las disciplinas ante las cuales el hombre ha sentido la necesidad de abastecerse de tecnologías que facilitasen su resolución y, ya desde la antigüedad, instrumentos como el ábaco han ido restando complejidad al acto de “hacer cuentas”, elemento crucial en la conformación de las sociedades modernas. A partir del siglo XXI, un software que ha ayudado mucho al hombre y sus cálculos matemáticos es Microsoft Excel, del cual hablaremos en este artículo.

Hojas de cálculo

Las hojas de cálculo, al permitir una serie de relaciones lógicas entre cifras según las cuales la disminución o aumento de un valor provoca la variación automática de otros valores a él subordinados, es el paso decisivo en favor de la simplificación de la matemática contable. A través de un lenguaje simple que permite la fácil introducción de fórmulas y funciones, programas como Microsoft Excel convierten la tarea de llevar al día la contabilidad de un negocio o bien el recuento de un stock en un verdadero juego de niños.

La interfaz de Excel

Una hoja de cálculo de Microsoft Excel está formada por una o más cuadrículas de extensión agrupadas en un libro, de modo que puedan englobarse distintas tablas referentes a un mismo asunto en un solo archivo.

Cada hoja de nuestro libro es accesible a través de las pestañas situadas en la parte inferior izquierda de la pantalla, justo encima de la barra de estado. Podemos nombrar las distintas hojas o bien añadir hojas nuevas mediante la pulsación del botón derecho del ratón sobre una de las pestañas existentes, que despliega un sencillo menú contextual.

Determinada la estructura de hojas de nuestro libro, podemos proceder al rellenado de la cuadrícula de cada una de las mismas. Pulsando sobre una casilla cualquiera podemos teclear un valor numérico o bien una cadena de texto. A continuación, y al igual que ocurría con Word, con la barra de formato podemos moldear esta información.

Introducción de funciones en una hoja de cálculo

La verdadera utilidad de una hoja de cálculo no radica en la posibilidad de plasmar en formato tabla una serie de datos y cifras, sino en la capacidad del programa de hacer cálculos que relacionen estas cifras y de que estas fórmulas se muestren sensibles a la modificación de los valores de los que parten. Esto se consigue gracias a la introducción de funciones, accesible a través de la opción “Función…” del menú Insertar o bien por medio del icono de función de la barra estándar. Estos parámetros dan paso a un cuadro de diálogo en el que se pide al usuario que escoja qué tipo de cálculo desea realizar entre un extenso inventario de operaciones matemáticas. Una vez decidido, un segundo cuadro nos permite introducir que tipo de intervalo de celdas van a estar envueltas en la operación matemática, dándonos también la posibilidad de marcar por medio del ratón de qué celdas de la cuadrícula se trata.

Las fórmulas pueden introducirse asimismo de forma manual en los campos en los que deben figurar sus resultados, tecleando en los mismos la fórmula a realizar precedida por el símbolo igual (por ejemplo, para sumar los valores de las celdas A4 y A5 y que el resultado figure en la celda A6, deberíamos teclear en esta última celda = A4 + A5).

Las bases de datos

A lo largo de nuestra vida, por motivos diferentes y casi sin darnos cuenta trabajamos con montones de bases de datos, desde colecciones de discos o listines telefónicos a inventarios de calificaciones académicas o listas de elementos relacionadas con casi cualquier ámbito laboral; es común la necesidad de tener ordenados, según distintos criterios, e interconectados entre sí una serie de datos. Los programas de gestión de bases de datos, con Microsoft Access como claro estándar, permiten precisamente la correcta gestión de los datos de esta naturaleza.

 

Logo de Excel

Estructura de una base de datos

La fuente principal a partir de la cual se vertebra una base de datos, como se extrae de lo que acabamos de decir, es una o varias relaciones entre elementos, o lo que es lo mismo, uno o varios listados que vinculen dos o más datos.

Una tabla en la que se encuentren los nombres de nuestros amigos, la dirección y el teléfono de cada uno de ellos constituye el esqueleto de una base de datos, por ejemplo.

Por todo ello, el requisito principal para la constitución de una base de datos, y por tanto su elemento indispensable, es la tabla.

Una vez introducidas en el programa una o más tablas (de forma manual o bien importando una tabla desde otro programa de la suite de Office), podemos modificar los criterios de ordenación de sus campos y la cantidad de los mismos que deseamos que aparezcan en pantalla creando una consulta. Esta función es también útil para conectar entre sí dos o más tablas con algún dato en común.

Establecidas estas relaciones y determinados los órdenes por los que se regirá la información, podemos conseguir vistosas presentaciones para impresora, o bien crear páginas intuitivas para la introducción de nuevos registros o modificación de los registros existentes por medio de los denominados formularios.

Estas cuatro categorías, junto con las macros y los módulos (que sirven, respectivamente, para englobar una serie de procedimientos avanzados en una única acción y para la incorporación a la base de instrucciones en lenguaje Visual Basic) constituyen los medios que permitirán obtener el mayor rendimiento de una base de datos.