Gráfico circular

Los datos estadísticos pueden observarse de forma clara si los representamos en gráficos, de los cuales el circular es uno de los más usados. Este tipo de representación consiste es un círculo dividido en áreas proporcionales a la frecuencia de datos o porcentajes de una categoría. Son de gran ayuda para comparar partes de un todo.
Los gráfico estadísticos son herramientas visuales que nos permiten organizar y expresar datos de forma sencilla y clara; pueden ser lineales, de barras o circulares.

¿Qué es el gráfico circular?

Un gráfico circular, también denominado diagrama de pastel o gráfico de torta, es una representación gráfica en forma de círculo que se usa para comparar porcentajes o frecuencias respecto a un total de datos. El área de todo el círculo es igual al total de datos (100 %) y el área de cada porción del círculo representa el porcentaje de una categoría.

Los gráficos circulares tienen un título, una leyenda y unas etiquetas que muestran los porcentajes o valores de las variables.

– Ejemplo:

En este gráfico podemos ver que el 60 % de la población mundial reside en Asia, el 17 % en África, el 10 % en Europa, el 8 % en Latinoamérica y el Caribe; y el 5 % en América del Norte y Oceanía.

¿Sabías qué?
La invención del gráfico circular se le atribuye al ingeniero escocés y economista político William Playfair.

Tipos de gráficos circulares

Los diagramas de torta no siempre son iguales. Además del circular, también los hay de anillo, semicirculares o irregulares.

¿Cómo construir un gráfico circular?

1. Organiza las frecuencias relativas y absolutas de los datos.

Esta tabla muestra las edades de 30 estudiantes de un curso de inglés.

Edad Frecuencia absoluta Frecuencia relativa
14 5 5/30 = 0,2
15 12 12/30 = 0,4
16 10 10/30 = 0,3
17 3 3/30 = 0,1
Total 30 1

La frecuencia absoluta corresponde a la cantidad de veces que se repite una variable, por ejemplo, en el curso de inglés hay 5 estudiantes con 14 años. Por otro lado, la frecuencia relativa corresponde a la parte del total que representa cada valor de la variable. La suma de todas las frecuencias relativas es igual a 1.

 

2. Halla el porcentaje de cada variable.

Las frecuencias relativas pueden expresarse como un porcentaje si se multiplica cada valor por 100.

Edad Frecuencia absoluta Frecuencia relativa Porcentaje
14 5 5/30 ≈ 0,2 20 %
15 12 12/30 = 0,4 40 %
16 10 10/30 ≈ 0,3 30 %
17 3 3/30 = 0,1 10 %
Total 30 1 100 %

 

3. Calcula el ángulo central de cada variable.

Los círculos tienen 360°, así que para ilustrar los datos en un gráfico circular debemos conocer los grados que representa cada sector de una variable en dicho círculo. Este cálculo consiste en multiplicar la frecuencia relativa por 360°. Por ejemplo, 0,2 × 360° = 72°.

Edad Frecuencia absoluta Frecuencia relativa Porcentaje Grados
14 5 5/30 ≈ 0,2 20 % 72°
15 12 12/30 = 0,4 40 % 144°
16 10 10/30 ≈ 0,3 30 % 108°
17 3 3/30 = 0,1 10 % 36°
Total 30 1 100 % 360°

 

4. Traza una circunferencia y uno de sus radios.

Usa el compás para dibujar una circunferencia, luego traza una línea recta desde el centro hasta el borde de la figura, ese será el radio.

5. Mide los ángulos.

A partir del radio, y con la ayuda de un transportador, marca los grados calculados anteriormente. Hazlo de mayor a menor y en sentido horario. Asigna a cada área de la circunferencia un color diferente.

 

6. Identifica cada sector del gráfico.

Escribe las etiquetas de los datos en porcentaje, el título y la leyenda según los colores que hayas usado en cada sector.

De esta manera podemos observar fácilmente que el 40 % de los estudiantes del curso de inglés tiene 15 años, mientras que el 30 % tiene 16 años, el 20 % tiene 14 años y el 10 % tiene 17 años.

– Ejemplo:

La siguiente tabla muestra la cantidad de diversos sabores de helado en una heladería, así como el porcentaje de cada variable y los grados que representan.

Sabor de helado Frecuencia absoluta Frecuencia relativa Porcentaje Grados
Chocolate 60 60/250 ≈ 0,2 20 % 72°
Mantecado 90 90/250 ≈ 0,4 40 % 144°
Fresa 50 50/250 = 0,2 20 % 72°
Colita 50 50/250 = 0,2 20 % 72°
Total 250 1 100 % 360°

 

El gráfico circular se muestra a continuación:

 

¿Cuándo utilizar gráficos circulares?

Este tipo de gráfico estadístico es muy útil para contrastar proporciones de un total siempre y cuando las categorías sean pocas, pues no es recomendable usarlo si hay muchas variables ya que genera confusión y el resultado podría ser incomprensible.

Números mixtos

Las fracciones representan una parte de un todo, así que son útiles para expresar, por ejemplo, la cantidad de trozos de pizza que nos comimos. Cuando el numerador es mayor que el denominador se dicen que son impropias y se pueden expresar como un número mixto: una combinación de un número natural con una fracción propia.

recordemos las fracciones

Una fracción es una división de un entero en partes iguales. Está formada por un numerador y un denominador.

  • El numerador es el número de partes que se ha tomado del total.
  • El denominador es el número de partes en las que se dividió la unidad.
Las fracciones propias son aquellas cuyo numerador es menor que el denominador, mientras que las fracciones impropias tienen su numerador mayor al denominador.

¿qué son los números mixtos?

Los números mixtos, también conocidos como fracciones mixtas, están formados por un número natural (parte entera) y una fracción propia (parte fraccionaria).

Los números mixtos son otra forma de representar fracciones impropias, las cuales siempre son mayores que la unidad.

Gráficas de fracciones impropias

Son una manera visual de ver las fracciones. Para realizar estas representaciones gráficas basta con dividir una figura en tantas partes como indique el denominador. Luego repetimos esta figura hasta poder colorear la cantidad de partes que señala el numerador.

– Ejemplos:

  • \boldsymbol{\frac{5}{3}}==\boldsymbol{1\frac{2}{3}}
  • \boldsymbol{\frac{11}{5}}==\boldsymbol{2\frac{1}{5}}
  • \boldsymbol{\frac{10}{4}}==\boldsymbol{2\frac{2}{4}}

Observa que la cantidad de partes enteras de las gráficas es igual al valor de la parte entera del número mixto, mientras que la última gráfica determina la parte fraccionaria. Así que el número mixto resulta de sumar un entero y una fracción propia.

¿Cómo transformar una fracción impropia a un número mixto?

Lo primero que debemos hacer es dividir el numerador entre el denominador de la fracción, el cociente será igual a la parte entera, mientras que el resto será igual al numerador de la parte fraccionaria y el denominador será igual al de la fracción impropia inicial.

– Ejemplo:

– Otros ejemplos:

Fracción impropia División Número mixto
\frac{8}{5} 8 : {\color{Red} 5}={\color{Blue} 1}\: \: \: resto ={\color{DarkOrange} 3} \boldsymbol{{\color{Blue} 1}\frac{{\color{DarkOrange} 3}}{{\color{Red} 5}}}
\frac{11}{4} 11 : {\color{Red} 4} = {\color{Blue} 2}\: \: resto={\color{DarkOrange} 3} \boldsymbol{{\color{Blue} 2}\frac{{\color{DarkOrange} 3}}{{\color{Red} 4}}}
\frac{5}{3} 5:{\color{Red} 3}={\color{Blue} 1}\: \: resto={\color{DarkOrange} 2} \boldsymbol{{\color{Blue} 1}\frac{{\color{DarkOrange} 2}}{{\color{Red} 3}}}

 

¿cómo transformar un número mixto a una fracción impropia?

En esta conversión tenemos que multiplicar la parte entera por el denominador de la parte fraccionaria y sumar a ese resultado el numerador. Luego, colocamos como denominador de la fracción impropia el mismo denominador de la parte fraccionaria del número mixto.

– Ejemplo:

\boldsymbol{{\color{Blue} 1}\frac{{\color{DarkOrange} 4}}{{\color{Red} 5}}} {\color{Blue} 1}\times {\color{Red} 5}=5+{\color{DarkOrange} 4}=\boldsymbol{9} \boldsymbol{\frac{9}{{\color{Red} 5}}}

 

– Otros ejemplos:

Número mixto Operación Fracción impropia
\boldsymbol{{\color{Blue} 1}\frac{{\color{DarkOrange} 3}}{{\color{Red} 5}}} {\color{Blue} 1}\times {\color{Red} 5}=5+{\color{DarkOrange} 3}=\boldsymbol{8} \boldsymbol{\frac{8}{{\color{Red} 5}}}
\boldsymbol{{\color{Blue} 2}\frac{{\color{DarkOrange} 3}}{{\color{Red} 4}}} {\color{Blue} 2}\times {\color{Red} 4}=8+{\color{DarkOrange} 3}=\boldsymbol{11} \boldsymbol{\frac{11}{{\color{Red} 4}}}
\boldsymbol{{\color{Blue} 1}\frac{{\color{DarkOrange} 2}}{{\color{Red} 3}}} {\color{Blue} 1}\times {\color{Red} 3}=3+{\color{DarkOrange} 2}=\boldsymbol{5} \boldsymbol{\frac{5}{{\color{Red} 3}}}

Números mixtos en la vida cotidiana

Muchas veces usamos números mixtos para expresar cantidad de ingredientes o tiempo, por ejemplo:

  • Un partido de fútbol dura hora o un partido de fútbol dura una hora y media.
  • Faltan horas para la película o faltan dos horas y cuarto para la película.
  • El postre necesita cucharadas de azúcar o el postre necesita tres cucharadas y media de azúcar.

¿Sabías qué?
Para sumar y restar números mixtos de forma sencilla primero debemos convertirlos en fracciones impropias.

números mixtos en la recta numérica

Para ubicar números mixtos en la recta numérica consideramos inicialmente la parte entera, esta nos indicará entre cuáles números está la parte fraccionaria. Como la parte fraccionaria consta de una fracción propia, solo tenemos que dividir el segmento entre los dos números enteros en la cantidad de partes que señale el denominador, luego contamos tantos espacios como muestre el numerador y marcamos el número mixto o su equivalente fracción impropia.

– Ejemplo:

Ubiquemos en la recta numérica el número mixto 1\frac{4}{5}.

  • La parte entera es 1, así que solo dibujamos la recta entre 1 y 2.

  • Como el denominador de la parte fraccionaria es 5, dividimos el segmento entre 1 y 2 en 5 partes iguales.

  • Contamos 4 espacios desde el número 1 porque el numerador de la parte fraccionaria es 4.

  • Escribimos el número mixto o su fracción impropia equivalente \frac{9}{5} en ese punto.

¡A practicar!

1. ¿Qué número mixto representan estos gráficos?

a. 

b. 

c. 

2. Convierte los siguientes números mixtos a fracciones impropias.

a.   3\frac{2}{5} b.   1\frac{6}{7} c.   2\frac{3}{5}

3. Convierte las siguientes fracciones impropias a números mixtos.

a.   \frac{4}{3} b.   \frac{10}{7} c.   \frac{15}{4}

4. Ubica los siguientes número mixtos en la recta numérica.

a.   3\frac{3}{4} b.   1\frac{1}{3} c.   2\frac{3}{5}

Respuestas

1a.  3\frac{3}{4}

 

1b.  1\frac{1}{5}

 

1c.  2\frac{4}{7}

2a.   \frac{17}{5}

 

2b.   \frac{13}{7}

 

2c.   \frac{13}{5}

3a.   1\frac{1}{3}

 

3b.   1\frac{3}{7}

 

3c.   3\frac{3}{4}

4a. 

4b. 

4c.