Gráfico de barras

Los gráficos o técnicas gráficas son herramientas empleadas en la estadística para la representación de datos. Estos nos permiten visualizar fácilmente la información, uno de los más utilizados es el gráfico de barras, que representa los datos a través de barras rectangulares. 

¿Qué es un gráfico de barras?

Es un gráfico que nos permite representar un conjunto de datos cualitativos a través de barras rectangulares, la longitud de las barras indica la frecuencia de ese dato que representa, sirven para comparar dos o más valores. Está compuesto por dos ejes:

  • El eje horizontal o eje de las abscisas: este se representa con la letra “x”, en este eje generalmente se coloca la variable, es decir, una característica o cualidad de un individuo o elemento que puede adquirir diferentes valores que pueden medirse. Por ejemplo, la edad de una persona, el color de cabello, el lugar de nacimiento, la estatura, etc.
  • El eje vertical o eje de las ordenadas: este se representa con la letra “y”, en este eje se coloca la frecuencia del dato.

Sin embargo, el gráfico puede estar orientado de forma vertical u horizontal, dependiendo del eje en el que se ubiquen los datos de la variable. Observa:

¿Sabías qué?
Una variable es una característica o cualidad de un individuo o elemento que puede adquirir valores que pueden medirse, estas pueden ser cualitativas, que no pueden medirse con números, por ejemplo, el color de cabello y también pueden ser cuantitativas, que si pueden medirse con números, por ejemplo el peso.

tipos de gráficos de barras

Existen diferentes tipos de gráficos de barras

  • Gráficos de barras sencillo: representa los datos de una única serie o conjunto de datos. 

  • Gráficos de barras agrupado: compara los datos de dos o más series o conjunto de datos, cada serie se representa con el mismo color y las barras se colocan una al lado de la otra por categoría de la variable para poder comparar las series de datos.

  • Gráficos de barras apilado: compara los datos de dos o más series o conjunto de datos. Cada serie se representa con el mismo color y cada barra representa una categoría de la variable, dividiéndola en segmentos que representan cada una de las series de datos.

Tablas de frecuencia

Las tablas de frecuencia o tablas estadísticas nos permiten organizar datos con su frecuencia respectiva. La frecuencia es el número de veces que se repite un dato, las tablas nos suministran información y permiten relacionar los datos que en ellos se encuentran.

Por ejemplo, hacemos una encuesta a 25 niños y les preguntamos su sabor de helado preferido: 5 responden vainilla, 10 chocolate, 7 fresa y 3 naranja, estos resultados podemos representarlos en la tabla de siguiente forma:

Casi todo tipo de información puede organizarse en una tabla de frecuencia y ser representada en algún tipo de gráfico.

¿Cómo se construye un gráfico de barras?

Para la construcción de un gráfico de barras, es necesario seguir los siguientes pasos:

Recopilación de datos

Para elaborar un gráfico de barras debemos tener los datos: las variables y las frecuencias, para obtener estos datos podemos emplear la encuesta.

La encuesta es una técnica de investigación donde se estudian y se analizan las preferencias de un grupo de personas; las encuestas se realizan a través de cuestionarios, que son preguntas orientadas a un tema en específico.

Veamos un ejemplo:

Se realizó una encuesta a un grupo de 30 estudiantes para conocer cuál es la asignatura preferida por ellos, las respuestas fueron registradas en una tabla de frecuencia.

Cada linea representa un alumno que eligió cada asignatura, el total de votos para cada asignatura es la frecuencia y las asignaturas son las variables, datos con los cuales podemos construir el gráfico de barras.

 Ejes del gráfico

Para construir el gráfico debemos iniciar con el trazado de dos rectas perpendiculares, estas son los ejes del gráfico, el de las abscisas (eje horizontal) y el de las ordenadas (eje vertical).

Una vez trazados los ejes, debemos identificarlos, en uno colocaremos las variables y en el otro la frecuencia, en este caso vamos a hacer un gráfico de barras vertical, por lo tanto, las variables (asignaturas) las colocaremos en el eje de las abscisas (horizontal) y las frecuencias en el eje de las ordenadas (vertical), estos valores podemos representarlos de diferentes formas, pero siempre deben comenzar desde el cero, que es el punto de intersección de las dos rectas.

Barras

Ahora vamos a dibujar las barras que representan los valores de cada variable. Cada barra llegará hasta el punto donde se encuentra el valor de la frecuencia de la variable que representa.

Por ejemplo, la barra que corresponde a la variable “Matemáticas” debe llegar hasta el punto en el que se encuentra el número 5. Las barras tienen que tener el mismo ancho y no deben superponerse unas a otras.

Interpretación de los datos

La representación visual de la información es útil para responder las preguntas sobre los datos, la altura de cada barra representa la frecuencia (número de estudiantes) de cada variable (asignatura).

Respondamos las siguientes preguntas:

  • ¿Cuál es la asignatura favorita de los estudiantes?

La asignatura favorita es la que fue seleccionada por una mayor cantidad de estudiantes, en el gráfico podemos verla como la barra más alta, por lo tanto, la asignatura favorita es Biología, que fue elegida por 9 estudiantes.

  • ¿Cuántos estudiantes eligieron Lengua?

La barra de esta asignatura tiene una altura de 7, por lo tanto fue elegida por 7 estudiantes.

  • ¿Cuál asignatura fue la que obtuvo menos votos?

La asignatura que obtuvo menos votos está representada por la barra de menor altura, en este caso es Historia, que fue elegida por 4 estudiantes.

¿Sabías qué?
William Playfair fue el primero en presentar por primera vez el gráfico de barras en su obra Commercial and Political Atlas, publicado en 1786.
Las tablas de frecuencia y los gráficos representan e interpretan información procedente de diferentes fuentes, de forma clara, precisa y ordenada.

aplicaciones de los gráficos de barras

Los gráficos de barras son empleados cuando queremos mostrar una distribución de datos o realizar una comparación de medidas de diferentes grupos. A partir de ellos, podemos ver qué grupos son los más altos o los más comunes, además de ver cómo otros grupos se comparan con los demás.

Los gráficos de barras son bastante utilizados por:

  • Profesionales
  • Analistas
  • Consultores
  • Académicos
  • Estadísticos
  • Investigadores
  • Periodistas.

Gráfico circular

Los datos estadísticos pueden observarse de forma clara si los representamos en gráficos, de los cuales el circular es uno de los más usados. Este tipo de representación consiste es un círculo dividido en áreas proporcionales a la frecuencia de datos o porcentajes de una categoría. Son de gran ayuda para comparar partes de un todo.
Los gráfico estadísticos son herramientas visuales que nos permiten organizar y expresar datos de forma sencilla y clara; pueden ser lineales, de barras o circulares.

¿Qué es el gráfico circular?

Un gráfico circular, también denominado diagrama de pastel o gráfico de torta, es una representación gráfica en forma de círculo que se usa para comparar porcentajes o frecuencias respecto a un total de datos. El área de todo el círculo es igual al total de datos (100 %) y el área de cada porción del círculo representa el porcentaje de una categoría.

Los gráficos circulares tienen un título, una leyenda y unas etiquetas que muestran los porcentajes o valores de las variables.

– Ejemplo:

En este gráfico podemos ver que el 60 % de la población mundial reside en Asia, el 17 % en África, el 10 % en Europa, el 8 % en Latinoamérica y el Caribe; y el 5 % en América del Norte y Oceanía.

¿Sabías qué?
La invención del gráfico circular se le atribuye al ingeniero escocés y economista político William Playfair.

Tipos de gráficos circulares

Los diagramas de torta no siempre son iguales. Además del circular, también los hay de anillo, semicirculares o irregulares.

¿Cómo construir un gráfico circular?

1. Organiza las frecuencias relativas y absolutas de los datos.

Esta tabla muestra las edades de 30 estudiantes de un curso de inglés.

Edad Frecuencia absoluta Frecuencia relativa
14 5 5/30 = 0,2
15 12 12/30 = 0,4
16 10 10/30 = 0,3
17 3 3/30 = 0,1
Total 30 1

La frecuencia absoluta corresponde a la cantidad de veces que se repite una variable, por ejemplo, en el curso de inglés hay 5 estudiantes con 14 años. Por otro lado, la frecuencia relativa corresponde a la parte del total que representa cada valor de la variable. La suma de todas las frecuencias relativas es igual a 1.

 

2. Halla el porcentaje de cada variable.

Las frecuencias relativas pueden expresarse como un porcentaje si se multiplica cada valor por 100.

Edad Frecuencia absoluta Frecuencia relativa Porcentaje
14 5 5/30 ≈ 0,2 20 %
15 12 12/30 = 0,4 40 %
16 10 10/30 ≈ 0,3 30 %
17 3 3/30 = 0,1 10 %
Total 30 1 100 %

 

3. Calcula el ángulo central de cada variable.

Los círculos tienen 360°, así que para ilustrar los datos en un gráfico circular debemos conocer los grados que representa cada sector de una variable en dicho círculo. Este cálculo consiste en multiplicar la frecuencia relativa por 360°. Por ejemplo, 0,2 × 360° = 72°.

Edad Frecuencia absoluta Frecuencia relativa Porcentaje Grados
14 5 5/30 ≈ 0,2 20 % 72°
15 12 12/30 = 0,4 40 % 144°
16 10 10/30 ≈ 0,3 30 % 108°
17 3 3/30 = 0,1 10 % 36°
Total 30 1 100 % 360°

 

4. Traza una circunferencia y uno de sus radios.

Usa el compás para dibujar una circunferencia, luego traza una línea recta desde el centro hasta el borde de la figura, ese será el radio.

5. Mide los ángulos.

A partir del radio, y con la ayuda de un transportador, marca los grados calculados anteriormente. Hazlo de mayor a menor y en sentido horario. Asigna a cada área de la circunferencia un color diferente.

 

6. Identifica cada sector del gráfico.

Escribe las etiquetas de los datos en porcentaje, el título y la leyenda según los colores que hayas usado en cada sector.

De esta manera podemos observar fácilmente que el 40 % de los estudiantes del curso de inglés tiene 15 años, mientras que el 30 % tiene 16 años, el 20 % tiene 14 años y el 10 % tiene 17 años.

– Ejemplo:

La siguiente tabla muestra la cantidad de diversos sabores de helado en una heladería, así como el porcentaje de cada variable y los grados que representan.

Sabor de helado Frecuencia absoluta Frecuencia relativa Porcentaje Grados
Chocolate 60 60/250 ≈ 0,2 20 % 72°
Mantecado 90 90/250 ≈ 0,4 40 % 144°
Fresa 50 50/250 = 0,2 20 % 72°
Colita 50 50/250 = 0,2 20 % 72°
Total 250 1 100 % 360°

 

El gráfico circular se muestra a continuación:

 

¿Cuándo utilizar gráficos circulares?

Este tipo de gráfico estadístico es muy útil para contrastar proporciones de un total siempre y cuando las categorías sean pocas, pues no es recomendable usarlo si hay muchas variables ya que genera confusión y el resultado podría ser incomprensible.

Ecosistemas acuáticos, ecosistemas terrestres y ecosistemas aeroterrestres

Se entiende por ecosistema  a un conjunto de comunidades que interactúan entre sí y con el medio abiótico en el que viven. Existen tres tipos principales: los ecosistemas acuáticos, los ecosistemas terrestres y los ecosistemas aeroterrestres. 

Ecosistemas acuáticos Ecosistemas terrestres  Ecosistemas aeroterrestres
Definición Son aquellos cuyo medio físico es el agua. Son aquellos cuyo medio físico es la tierra. Son aquellos que albergan organismos que se desarrollan tanto en el agua como en la tierra.
Medio donde están los organismos Agua. Tierra. Tierra y aire.
Productores  Fitoplancton y plantas acuáticas. Plantas terrestres. Plantas terrestres.
Consumidores Peces, mamíferos acuáticos, aves acuáticas, anfibios, reptiles, nematodos, platelmintos, cnidarios, equinodermos y artrópodos. Mamíferos, aves, anfibios, reptiles, nematodos, platelmintos y artrópodos. Aves, artrópodos y mamíferos voladores.
Condiciones ambientales Estables. Variables. Variables.
Factores abióticos importantes Temperatura, luz, salinidad y oxígeno disuelto. Temperatura, luz, humedad y tipo de suelo. Temperatura, luz, humedad y tipo de suelo.
Penetración de la luz Después de los 50 m o 100 m la luz no es capaz de penetrar. La luz es capaz de penetrar hasta los bosques más densos. La luz es capaz de penetrar hasta los bosques más densos.
Tipos de ecosistemas  Océanos, mares, ríos y lagunas. Desiertos, bosques, praderas, tundras y montañas. Desiertos, bosques, praderas, tundras y montañas.

 

La estadística

Se pusieron a pensar alguna vez qué procedimientos se siguen para determinar, por ejemplo, el porcentaje de personas con trabajo en una población o la magnitud de un grupo con ciertos ideales políticos. La ciencia que se encarga se dar respuesta a esos interrogantes por medio de un determinado procedimiento es la estadística.

La estadística es una rama de las matemáticas que se ocupa de reunir y organizar datos relacionados con fenómenos colectivos. Estudia características o propiedades de los individuos, objetos o acontecimientos que integran un conjunto determinado, al que se denomina genéricamente población.

Para que dichas características o propiedades puedan ser objeto de estudio estadístico, es preciso obtener previamente una medida de las mismas; en estadística, se puede definir la medición como un procedimiento para asignar un número a cada uno de los miembros de la población estudiada, de acuerdo con unas reglas determinadas. Según esto, una variable estadística será cualquier característica o propiedad de los miembros de una población susceptible de tomar determinados valores mediante un procedimiento de medición, de modo que dichos valores puedan ser clasificados exhaustivamente en un cierto número de categorías posibles. Por ejemplo, la estatura de los alumnos de un determinado centro de enseñanza será una variable estadística que tendrá como valores, el número de centímetros atribuido a cada uno de ellos como medida de su estatura.

La información obtenida es representada en gráficos para su posterior análisis. Las conclusiones que se extraen de este procedimiento son idóneas para la toma de decisiones. De este modo la estadística se vuelve una herramienta auxiliar de muchas ciencias y actividades humanas tales como, la sociología, psicología, geografía humana, economía, etc.

Pasos a seguir

Para comprender mejor el estudio estadístico vamos a identificar los tres pasos principales que se siguen en el proceso:
1. Recolección de datos. Ordenación y recuento.
2. Cálculo de las medidas de centralización y de dispersión.
3. Representación gráfica.

Conceptos y variables

Para evitar errores de resultado debemos tener en cuenta la diferencia de ciertos conceptos y las variables que convienen emplear de acuerdo al objeto de estudio. Existen cuatro términos estadísticos muy importantes para tener en cuenta:

Población: conjunto formado por todos los elementos del estudio.
Individuo: cada uno de los elementos del estudio estadístico.
Muestra: parte de la población que se toma como base para el análisis del conjunto que se desea estudiar.
Tamaño de muestra: número de elementos de una muestra.

Se denomina variable estadística al conjunto de características o cualidades que poseen los individuos de una población. Vamos a diferenciar dos tipos de variables:

Cualitativas: Los valores de las variables son cualidades. Por ejemplo: tendencia política, gustos literarios, opinión sobre un determinado tema, etc.
Cuantitativas: Se toman valores con variable numérica. Por ejemplo: edad, altura, peso, valor de sueldos, cantidad de días, etc. Estas variables se pueden dividir en:
Discretas: En cada tramo, la variable sólo puede tomar un número determinado de valores. Por ejemplo, las veces que una persona viajó al exterior puede ser 1 o 2, pero no 1,5.
Continuas: Las variables pueden tomar tantos variables como queramos. Por ejemplo: el peso puede ser 50,5; 60,3; 100,9…

Tomamos una muestra

¡Atención! Cuando realizamos un estudio estadístico tomamos una muestra cuando la población es muy extensa y no se puede encuestar, entrevistar o analizar a todos los individuos.

La muestra debe escogerse de modo que sea representativa; es decir, que las conclusiones arribadas de su estudio se puedan aplicar a toda la población.

Por ejemplo, tenemos que realizar un estudio para determinar cuántas personas de una localidad de 10.000 habitantes fuma. Si queremos obtener una muestra representativa, tenemos que descartar a bebes y niños debido a que no tienen esos hábitos. Si sólo le preguntamos a 30 personas y de ellas 20 tienen doce años obtendremos un resultado erróneo. Al respecto existen diferentes técnicas de muestreo para determinar cuál será el tamaño de la muestra.

Veamos un ejemplo

Supongamos que queremos realizar un estudio estadístico para determinar el porcentaje de personas que están de acuerdo con la política medio ambiental que se está aplicando en su ciudad la cual consta de 200.000 habitantes.

En este caso, se denomina población a la cantidad de habitantes: 200.000.

Individuo sería cada uno de los habitantes de la ciudad que estudiamos, no de otra.

La muestra podría ser personas que viven en el barrio centro y norte; el tamaño de la muestra sería la cantidad de personas que vamos a encuestar, por ejemplo: 110.000.

Inecuaciones

Las inecuaciones son expresiones matemáticas ampliamente usadas por muchas disciplinas y su solución, a diferencia de la mayoría de las ecuaciones, no comprende valores concretos sino que abarca un conjunto de números.

¿Qué es una inecuación?

Es una expresión matemática que contiene al menos una variable y está caracterizada por incluir signos de desigualdad, de manera que su resultado es un conjunto de valores que la variable puede tomar para que se cumpla la desigualdad planteada.

El conjunto solución de una solución se denomina intervalo.

Símbolos de desigualdad

La desigualdad es una expresión algebraica que sirve para relacionar dos cantidades semejantes mediante signos. Los signos matemáticos más usuales para establecer estas relaciones son:

Símbolo Significado Ejemplo
> Mayor que 15 > 4
< Menor que 3 < 7
Mayor o igual que* a ≥ b
Menor o igual que* b ≤ a

*a y b pueden ser valores iguales o diferentes que permitan hacer cumplir la desigualdad.

Elementos de una inecuación

Algunos elementos son similares entre las ecuaciones y las inecuaciones. Pero se tratan de expresiones algebraicas distintas. Quizá el elemento más resaltante de toda inecuación es el signo de desigualdad. Debido a éste, la solución de dichas expresiones suelen variar un poco de la manera en la que se resuelven las ecuaciones.

  • Miembros: son las partes de una inecuación que están separadas por el signo de la desigualdad. En la imagen el primer miembro corresponde a 4x – 1 mientras que el segundo término corresponde a 2x + 1.
  • Términos: son las expresiones literales o numéricas separadas por los signos más (+) o menos (-). Son términos de la inecuación mostrada: 4x, -1, 2x y 1.
  • Variable: es la letra que representa al conjunto de valores que satisfacen la desigualdad.
  • Grado de la inecuación: se encuentra indicado por el mayor exponente que posea la variable. En el caso del ejemplo mostrado, se trata de una inecuación de primer grado porque su mayor exponente es 1. Si el mayor exponente fuera 2 sería una inecuación de segundo grado y así sucesivamente.
Las inecuaciones pueden presentarse de varias formas como fracción o valor absoluto.

Resolución de ecuaciones de primer grado

El objetivo de la resolución de una inecuación es encontrar todos los valores de la variable para los cuales es válida la expresión. Estos valores pueden pertenecer a uno o más intervalos que pueden graficarse en la recta real.

Al operar con inecuaciones se pueden observar las siguientes reglas:

  1. La inecuación no varía cuando se suma o resta un mismo valor en ambos miembros de la desigualdad.

Por ejemplo:

Si se suma 3 a ambos miembros se obtiene:

Al sumar y restar los términos semejantes se obtiene:

El conjunto solución son todos los valores mayores a 4.

  1. Si se multiplica o divide a ambos miembros de una inecuación por un mismo número positivo, la inecuación que resulta es equivalente a la inicial.

Se multiplican ambos miembros por 2:

Se resuelven las operaciones:

De esta forma, la ecuación

Es equivalente de la ecuación

y puede resolverse a través de la regla 1 explicada anteriormente.

  1. Si se multiplica o divide a ambos miembros de una inecuación por un mismo número negativo, la inecuación que resulta cambiará de sentido en su signo de desigualdad y la misma será equivalente de la inecuación inicial.

Por ejemplo:

Se multiplica ambos miembros de la igualdad por -1:

Se resuelve la multiplicación y se cambia el sentido de la desigualdad:

De manera que

Es una inecuación equivalente de

Y es la misma que se resolvió en el ejemplo de la regla 1.

Las inecuaciones serán válidas para unos valores y no serán válidas para otros.

Problemas

Para resolver problemas con inecuaciones se deben aplicar las reglas explicadas anteriormente de forma tal que la variable quede localiza en un miembro de la inecuación y los términos constantes en otro.

En este caso, para eliminar el -3 del primer miembro se debe sumar a ambos miembro el número 3:

Para eliminar la x del segundo miembro se debe restar –x a ambos miembros de la inecuación:

Se resuelven las operaciones:

Por lo tanto, el resultado de la inecuación 

 Es decir, todos los números menores o iguales a 8.

Se puede comprobar el resultado al seleccionar un número menor igual a 8 y luego reemplazarlo en la inecuación, al final debería obtenerse una desigualdad válida.

Por ejemplo, si se selecciona el 5 que es menor a 8, y se reemplaza en la inecuación se obtiene:

Como el 7 es menor que 10, entonces 5 es parte del conjunto solución de la desigualdad.

En caso de que se consideren a los valores diferentes al conjunto solución, la desigualdad que se obtiene no será lógica.

Por ejemplo, se sabe que la solución de este problema son todos los números menores o iguales a 8. Para comprobar si es cierto, seleccionamos un número mayor a 8, para este caso seleccionaremos el 9.

Se cumplen los mismos pasos anteriores:

Como 15 no es menor a 14, entonces 9 no pertenece al conjunto solución de la inecuación.

Hay problemas que involucran paréntesis y se debe aplicar en lo posible alguna propiedad matemática como la distributiva para eliminarlos.

Se multiplican ambos miembros por 3 para eliminar el denominador de la fracción:

Se dividen ambos miembros entre -10, como es un número negativo, la dirección de la desigualdad cambia:

Se multiplican ambos lados por 5 para eliminar el denominador de la variable:

La expresión anterior también puede escribirse de forma inversa. Sólo se debe intercambiar el signo de la desigualdad:

Para tener una mejor idea del conjunto solución se suele convertir la fracción a decimal, de este modo

Lo que quiere decir que el conjunto solución son todos los números mayores o iguales a 9,5.

Una de las aplicaciones de las inecuaciones es para calcular el costo, ingreso y utilidad de una empresa.

Sistemas de ecuaciones

En matemáticas y en otras disciplinas, el empleo de ecuaciones para calcular variables es frecuente y de gran ayuda. El conjunto de dos o más ecuaciones se conoce como sistema de ecuaciones, y según sea el caso, puede tener o no solución.

¿Qué es una ecuación?

Una ecuación es una igualdad matemática entre dos expresiones que contienen una o más variables. Se encuentran formadas por dos miembros separados por el signo igual.

El símbolo igual “=” fue inventado por Robert Recorde en 1557. Su forma hace alusión a dos rectas paralelas del mismo tamaño que representan la igualdad.

Estas expresiones matemáticas presentan valores conocidos o datos, además de elementos desconocidos denominados incógnitas y que son usualmente representados por letras del alfabeto.

El conjunto de valores que satisfacen a una ecuación se denomina solución. De este modo, una ecuación puede también definirse como una igualdad condicionada en la que sólo algunos valores de las incógnitas la hacen cierta.

Un ejemplo es la siguiente ecuación:

2x-1=3

La solución de la ecuación es 2, ya que es el único valor que puede tomar la incógnita para hacer cumplir la igualdad:

Cuando una ecuación incluye únicamente sumas y restas con una variable elevada a la primera potencia (sin presentar productos entre éstas) se denomina ecuación lineal.
Desde la Antigüedad

Sorprendentemente, muchos fundamentos básicos del álgebra que hoy en día usamos ya eran conocidos en el Antiguo Egipto y eran empleados para calcular problemas matemáticos en los cuales existía un valor desconocido.

El conocimiento avanzado de los egipcios en las matemáticas les permitió realizar cálculos que otras culturas desconocían.

Ecuaciones lineales

Las ecuaciones matemáticas pueden ser tan diversas como los números mismos. Se clasifican de acuerdo al máximo exponente al cual se encuentre elevada la incógnita o variable en lo que se denomina grado de la ecuación. Por ejemplo, 2x-3=4-x es una ecuación de primer grado porque el máximo exponente al cual se encuentra elevada la es 1. Por otro lado, una ecuación del tipo: 5x²-3x+1=0 es de segundo grado, por ser 2 el máximo exponente de la incógnita.

Adicionalmente, existen ecuaciones que incluyen funciones matemáticas como las trigonométricas, logarítmicas y exponenciales, entre otras. En estos casos se utiliza una metodología diferente para su resolución de acuerdo a las características de las funciones involucradas.

Las ecuaciones de segundo grado presentan la forma ax2 + bx + c y pueden resolverse con la fórmula mostrada.

Sistema de ecuación

Es un conjunto formado por dos o más ecuaciones que contienen varias incógnitas. Un sistema puede tener o no solución, en caso de tenerla consistirá en el valor o conjunto de valores que al ser sustituidos en las ecuaciones del sistema cumplen con la igualdad del sistema.

Las ecuaciones con una sola incógnita se resuelven a través de despejes. Para ecuaciones con dos o más incógnitas se recurre a los sistemas de ecuaciones.

Clasificación de los sistemas de ecuaciones

Los sistemas de ecuaciones pueden ser clasificados en compatibles o incompatibles de acuerdo a si tienen o no solución.

  • Sistemas compatibles: son aquellos que admiten solución, se subdividen en sistemas compatibles determinados y sistemas compatibles indeterminados. Los primeros se caracterizan por presentar un conjunto finito de valores que satisfacen la igualdad del sistema, es decir, tienen una sola solución. Los segundos por su parte, presentan un número infinito de soluciones.
  • Sistemas incompatibles: son aquellos que no admiten ninguna solución posible.

Métodos para resolver sistemas de ecuaciones lineales

Como se explicó anteriormente, las ecuaciones pueden presentar varios tipos de grado e incluir muchas funciones matemáticas. En este caso, el artículo se centrará en explicar los métodos principales para resolver sistemas de ecuaciones de primer grado, específicamente en ecuaciones lineales.

Los tres métodos más conocidos para su resolución son:

  • Método de reducción
  • Método de sustitución
  • Método de igualación

Sin embargo, existen otros métodos que hacen uso de matrices para resolver sistemas de ecuaciones lineales.

Método de reducción

A través de este método se trata de cancelar una de las variables para calcular la otra por medio de despejes. Para lograrlo se multiplica una de las ecuaciones de manera que al sumar todos los términos semejantes de todas las ecuaciones se elimine una de las incógnitas.

Por ejemplo:

Calcule la solución del siguiente sistema de ecuaciones por el método de reducción.

En la primera ecuación el coeficiente de la variable es 2, mientras que en la segunda es 1. Una forma de eliminar a la variable es multiplicar la segunda ecuación por -2, de esta forma al sumar los términos semejantes que incluyen dicha variable darán como resultado al número cero y de esta forma se cancela la incógnita.

De esta forma el sistema de ecuaciones queda:

Se suman los términos semejantes

De esta forma, se tiene la ecuación:

Con el valor de conocido se sustituye en cualquiera de las dos ecuaciones del sistema y se despeja . Para este caso se seleccionará la primera ecuación del sistema:

De esta forma, el conjunto solución del sistema es x= -1 y y=2 .

En el caso de sistemas con una sola solución, si se sustituyen los valores solución en las ecuaciones se cumple la igualdad en todos los casos.

Método de sustitución

En este método se busca despejar una variable en una ecuación para luego sustituirla en otra de manera de reducir el número de incógnitas.

Por ejemplo:

Calcule la solución del siguiente sistema de ecuaciones por el método de sustitución.

Se despeja cualquiera de las variables de cualquiera de las dos ecuaciones. En este caso se despejará la variable de la primera ecuación:

Se sustituye la variable despejada en la otra ecuación. En este punto, se debe tener cuidado de no sustituir la ecuación despejada en la misma ecuación de la cual se obtuvo.

Se resuelven los cálculos hasta despejar la variable

Se sustituye la incógnita y en cualquiera de las ecuaciones iniciales y se calcula el valor de x. En este método como se despejó dicha incógnita en el primer paso, se puede sustituir directamente en dicha ecuación:

Método de igualación

Este método consiste en despejar una misma incógnita de dos ecuaciones y luego igualarlas para calcular el valor de otra incógnita.

Por ejemplo:

Calcule la solución del siguiente sistema de ecuaciones por el método de igualación.

Se despeja en ambas ecuaciones:

-Primera ecuación

-Segunda ecuación

Se igualan ambas ecuaciones despejadas:

Se despeja el valor de y:

Se sustituye el valor de en cualquiera de las ecuaciones, preferiblemente en cualquiera de las ecuaciones ya despejadas.