CAPÍTULO 4 / TEMA 3

elementos geométricos

Para dibujar elementos geométricos en una hoja de papel podemos inspirarnos en elementos que vemos a nuestro alrededor. Por ejemplo, un clavo en la pared, la senda peatonal o el cable de luz que atraviesa nuestra calle.

El plano, el punto y la recta son algunos de los elementos geométricos con los que podemos dibujar figuras. Cada una de ellas tienen dimensiones distintas: el plano tiene dos, la recta tiene una y el punto no tiene. Sobre un plano podemos trazar rectas, y estas rectas no son más que una sucesión de puntos. ¡Intenta hacer rectas en una hoja de papel!

El punto

El punto sirve para indicar una posición y se nombra con una letra mayúscula.

¿Sabías qué?
El matemático griego Euclides fue el primero en dar una definición del punto en geometría.

la recta

La recta es una sucesión infinita de puntos orientada en una misma dirección. No tiene principio ni final y la longitud es su única dimensión. Con dos puntos podemos trazar una recta y la nombramos con una letra minúscula.

Según la posición que tomen las rectas en un plano estas pueden ser paralelas o secantes. También existen las coincidentes que se representan una sobre otra.

Dos rectas son paralelas cuando no se cortan en ningún punto por más que intentemos extenderlas.

Dos rectas son secantes cuando se cortan en un punto y pueden ser perpendiculares u oblicuas. Las rectas perpendiculares son aquellas que al cortarse en un punto forman cuatro ángulos rectos, mientras que las rectas oblicuas son aquellas que al cortarse en un punto no forman ángulos rectos.

Veremos un ejemplo para entender más cómo se cortan las rectas. El siguiente esquema representa las calles de una ciudad, cada una lleva un nombre para poder identificarlas.

  • Francia y Neuquén son calles paralelas, observa que nunca se cortan.
  • Italia y España son perpendiculares. Notarás que las rectas se cortan en forma de cruz, lo que formará cuatro ángulos rectos.
  • Peña y Quiroga son oblicuas porque al cruzarse no forman ángulos rectos.

¡A practicar!

  1. ¿Cómo son las calles Roca y Neuquén?
    Solución
    Son perpendiculares.
  2. ¿Como son las calles Italia y Quiroga?
    Solución
    Son oblicuas.
  3. ¿Cómo son las calles Peña y Roca?
    Solución
    Son paralelas.
  4. ¿Peña y Francia son calles paralelas?
    Solución
    No. Son perpendiculares.
  5. Si extendemos más la calle Roca hasta que se cruce con Quiroga, ¿estas calles serán oblicuas?
    Solución
    Sí.
  6. ¿Italia y Francia son paralelas?
    Solución
    Sí, nunca se cortan.
  7. ¿España y Peña son perpendiculares?
    Solución
    No. Son paralelas.
  8. ¿Neuquén y Quiroga pueden ser calles oblicuas?
    Solución
    Sí, al extender las dos calles demostramos que se cortan.

El rayo

El rayo, también conocido como semirrecta, tiene un punto de origen pero no tiene fin, se extiende hacia el infinito.

el segmento

El segmento es la distancia que existe entre dos puntos de una recta, esto quiere decir que tiene un origen y un final. Además expresa gráficamente una medida.

Podemos marcar infinitos segmentos en una recta. Observa este ejemplo y anota los segmentos:

Desde el punto A al D hay tres segmentos: AB, AC y AD. Desde el punto B al D hay dos segmentos: BC y BD y por último nos queda el segmento CD. Por lo tanto, en la recta hay 6 segmentos.

¡A practicar!

  1. En la recta k, ¿cuántos segmentos hay?
    Solución
    Hay 3 segmentos.
  2. ¿Qué segmentos se forman en la recta k?
    Solución
    AB, AC y BC.
  3. En la recta s, ¿cuántos segmentos hay?
    Solución
    Hay 3 segmentos.
  4. ¿Qué segmentos se forman en la recta s?
    Solución
    FC, FG y CG.
  5. ¿En todas las rectas se forman la misma cantidad de segmentos?
    Solución
    Sí.
  6. ¿Qué segmentos se forman en la recta t?
    Solución
    DE, DB y BE.
  7. ¿Cuántos segmentos se forman en total?
    Solución
    9 segmentos.

elementos geométricos en la vida cotidiana

La geometría forma parte de nuestras vidas, a donde miremos hay figuras y cuerpos geométricos e incluso puntos que marcan donde estamos o dónde queremos ir. Las rectas pueden estar representadas por las calles de la ciudad, los cables de energía eléctrica, hasta el rayo o semirrecta se forma si un auto viaja desde un punto de inicio, por ejemplo una estación de servicio en línea recta. Los segmentos los podemos encontrar en los barrotes de una reja, todo lo que nos rodea puede convertirse en un elemento geométrico.

Las rectas pueden estar representadas por las calles de la ciudad, los cables de energía eléctrica, hasta el rayo o semirrecta se forma si un auto viaja desde un punto de inicio, por ejemplo una estación de servicio en línea recta. Los segmentos los podemos encontrar en los barrotes de una reja o en los rieles de un tren.

Al estilo de Mondrian

Para el pintor Piet Mondrian el arte era representado a través de líneas rectas y colores primarios, creía que mostraba el orden armonioso del universo. Si observamos esta imagen al estilo de las pinturas de Mondrian, las líneas rectas se convierten en rectas que al cortarse unas con otras obtenemos segmentos. Algunas de las rectas que se forman son paralelas y otras perpendiculares.

Actividades

Observa la siguiente imagen y responde.

  1. ¿Cuáles de las siguientes rectas son paralelas?
    Solución
    Las rectas a, b, c y d son paralelas entre sí.
  2. ¿Cuáles de las siguientes rectas son perpendiculares?
    Solución
    La recta “e” es perpendicular con a, b, c y d.
  3. ¿Cuáles de las siguientes rectas son oblicuas?
    Solución
    La recta f es oblicua con a, b y c.
  4. Si extendemos la recta f, ¿las recta d y e también son oblicuas con ella?
    Solución
    Sí.
RECURSOS PARA DOCENTES

Artículo “Rectas”

El siguiente recurso le permitirá profundizar la información brindada sobre las rectas.

VER

CAPÍTULO 1 / TEMA 3

NÚMEROS ENTEROS

¿Te has preguntado qué números utilizarías para representar temperaturas por debajo de 0 ºC? o ¿qué números utilizarías para indicar la altura del monte Everest? Para describir estas situaciones usamos los números enteros, un conjunto numérico que abarca desde los números negativos hasta los positivos.

Muchas situaciones de la vida cotidiana requieren el uso de los números enteros. Un ejemplo de ello es la economía a nivel mundial, la cual necesita de estos para poder registrar las entradas y salidas de dinero (las entradas serán enteros positivos y las salidas enteros negativos). Esto es con el fin de poder contabilizar las ganancias o las pérdidas.

¿QUÉ SON los NÚMEROS ENTEROS?

Los números enteros abarcan todos los números naturales \mathbb{N}, así como también el cero y los números negativos o menores que cero. Matemáticamente, el conjunto de números enteros es representado con la letra \mathbb{Z} y se expresa de la siguiente manera:

\mathbb{Z}=\left \{ ...,\, -3,\, -2,\, -1,\, 0,\, +1,\, +2,\, +3,...\right \}

Estos números continúan hasta infinito, tanto del lado de los positivos como del lado de los negativos.

Por lo general, los números enteros positivos \mathbb{Z}^{+} no requieren el uso del signo más (+) para resaltarlos, caso contrario ocurre con los enteros negativos \mathbb{Z}^{-}, que sí requieren el uso obligatorio del signo menos (−) para diferenciarlos.

Por ejemplo:

Los siguientes números enteros positivos+3.674 y +5.876.541 se pueden escribir de dos formas:

  • Con el signo positivo antes del número: +3.674 +5.876.541.
  • Sin el signo positivo antes del número: 3.674 y 5.876.541.

Por otra parte, los números enteros negativos 614 y 9.780 requieren el uso obligatorio del signo menos (−) antes de ellos. No colocar el signo negativo antes del número lo convierte en un número positivo.

 

LA RECTA NUMÉRICA

También es conocida como la recta real y se representa con una línea recta. Esta contiene todos los números reales \mathbb{R}.

¿Cómo dibujar una recta numérica?

Traza una línea de forma horizontal con flechas en ambos extremos como la siguiente:

Divide la línea en segmentos iguales con la misma distancia entre ellos:

Coloca el número cero (0) en el centro de la recta:Comienza a colocar los números en cada intervalo: del lado derecho del cero van los enteros positivos y del lado izquierdo van los enteros negativos.

Ubicación de los números en la recta numérica

La recta numérica puede contener:

    1. Enteros positivos y negativos como: −17 y +11.
    2. Números decimales o en forma de fracción como: −8/5 que es igual a −1,6 y 4/5 que es igual a 0,8.

¿Sabías qué?
La línea recta fue introducida por John Wallis, un matemático Inglés que alrededor del año 1670 la empleó para representar de modo gráfico los números naturales.

¡A practicar!

Ubica estos número en la recta numérica:

  • +150
Solución
  • −180
Solución
  • +19
Solución
  • 3/2
Solución

  • −0,5
Solución

APLICACIÓN DE NÚMEROS ENTEROS

Los números enteros son utilizados en muchas situaciones de nuestra vida, algunos ejemplos son los siguientes:

  • Para indicar la altitud o altura sobre el nivel del mar.

En todo nuestro planeta existen distintas altitudes, tal son los casos del monte Everest en el Himalaya, el cual posee una altitud de +8.848 msnm y la costa del mar Muerto que se encuentra a unos 417 msnm.

  • Para indicar los pisos de un edificio.

Al caminar por el centro de la ciudad habrás visto algún edificio, estos están divididos por pisos y cada piso corresponde a un número. El piso que se encuentra en el mismo nivel de la calle es la planta baja, le corresponde el número 0. Los niveles que están arriba de él se indican con enteros positivos y los que se encuentra debajo, llamados subterráneos o sótanos, se señalan con los negativos.

Otras aplicaciones

  • Para realizar mediciones de temperatura.

¿Has escuchado hablar del Polo Sur y el Polo Norte de nuestro planeta tierra? La temperatura en esos lugares puede variar entre los 89 ºC y los 0 ºC. A esos valores, por lo general se les llama temperaturas bajo 0.

Por otra parte, existen lugares como Kuwait con temperaturas que pueden llegar a los +63 ºC.

  • Para contabilizar pérdidas o ganancias.

Las cuentas bancarias realizan registros de entradas de dinero con números enteros positivos, y los retiros o pagos con los números enteros negativos.

Por ejemplo:

Una persona recibe 2.000 $ en su cuenta y luego realiza una transferencia de 1.000  $ para pagar una computadora. ¿Cuánto dinero tendrá en la cuenta luego de la transferencia?

Recibe dinero: +2.000 $

Transferencia de dinero: 1.000 $

Total de dinero en la cuenta: +2.000 $  1.000 $ = +1.000 $

Entonces, el dinero que la persona tendrá en su cuenta luego de realizar la transferencia será 1.000 $.

  • Para dibujar ejes de coordenadas o eje cartesiano se emplean los números enteros
Ejercicios

  • Juan se encuentra al nivel del mar y quiere escalar una montaña. Decide subir 50 m, luego desciende 25 m para tomar una herramienta que se le cayó. Al agarrar la herramienta decide terminar su escalada y sube 80 m. ¿A qué altura sobre el nivel del mar se encuentra?
Solución

Ubicación de Juan sobre el nivel del mar: 0 m

Juan sube: +50 m

Juan desciende: −25 m

Juan vuelve a subir: +80 m

Altura que escaló juan: 50 m − 25 m + 80 m = 105 m

Juan se encuentra a 105 metros sobre el nivel del mar.

  • Romina decide comprar un teléfono celular que cuesta 1.850 $, pero en su cuenta bancaria solo tiene 1.100 $. Decide decirle a su papá que le transfiera el dinero que le falta para comprar el teléfono y él le transfiere a su cuenta 1.350 $. ¿Cuánto dinero le quedó a Romina en su cuenta luego de comprar el teléfono?
Solución

Cuenta bancaria de Romina: +1.100 $

Transferencia del papá de Romina: +1.350 $

Compra del teléfono: −1.850 $

Total después de la compra: +1.100 $ + 1.350 $ − 1.850 $ = +600 $

A Romina le quedaron 600 $ en su cuenta luego de comprar el teléfono.

  • Felipe se encuentra parado en la posición +2 de una recta numérica, decide avanzar +6 posiciones y luego vuelve 11 posiciones atrás. ¿En qué posición quedó Felipe?
Solución

+2 + 6 − 11 = −3

Felipe quedó en la posición −3.

RECURSOS PARA DOCENTES

Artículo “La recta numérica”

Este artículo ayuda a complementar la información sobre la recta numérica.

VER

Artículo “La clasificación de los números”

Con este recurso se puede ampliar el conocimiento sobre la clasificación de los números.

VER