CAPÍTULO 3 / TEMA 5 (REVISIÓN)

FRACCIONES Y PORCENTAJES |¿QUÉ APRENDIMOS?

ADICIÓN Y SUSTRACCIÓN DE FRACCIONES

La adición y la sustracción de fracciones se realiza con diferentes métodos. El método elegido va a depender del tipo de fracción que se vaya a sumar o a restar. Si las fracciones son homogéneas, se coloca el mismo denominador y se suman o restan sus numeradores. Cuando las fracciones son heterogéneas se pueden emplear diferentes procedimientos como la multiplicación cruzada, la aplicación del mínimo común múltiplo (mcm) a los denominadores de las fracciones o el uso de fracciones equivalentes.

Las fracciones también se pueden sumar o restar con los números enteros, para lo cual se convierte el número entero en fracción.

MULTIPLICACIÓN Y DIVISIÓN DE FRACCIONES

La multiplicación de fracciones se realiza mediante la multiplicación lineal de sus factores, numerador por numerador y denominador por denominador. Por otra parte, la división de fracciones tiene tres formas de resolverse. Una de ellas es de forma cruzada, a través de la multiplicación del numerador de la primera fracción por el denominador de la segunda y el resultado se coloca como numerador de la fracción resultante. Luego se multiplica el denominador de la primera fracción por el numerador de la segunda y el resultado se coloca en el denominador resultante. Otra manera es intercambiar el numerador y el denominador de la segunda fracción para resolverlo de manera lineal como la multiplicación. Y por último, otra opción consiste en el método de la doble c, en el cual la segunda fracción se coloca por debajo de la primera y se multiplican los términos exteriores para obtener el numerador resultante y los interiores para obtener el denominador resultante.

Conocer cómo simplificar fracciones es muy importante para facilitar los cálculos.

FRACCIONES Y DECIMALES

Las fracciones y los números decimales se encuentran muy relacionados, ya que las fracciones se pueden representar de forma decimal y algunos decimales se pueden expresar de forma fraccionaria. Las fracciones se encuentran formadas por el numerador y el denominador separados por una línea horizontal. Los decimales tienen una parte entera y una parte decimal divididas por una coma. Al dividir el numerador entre el denominador de una fracción se obtiene un número decimal (o entero cuando se trata de una fracción aparente). Por otra parte, los decimales se pueden convertir en fracciones por diferentes procedimientos, según el número decimal sea exacto, periódico puro o periódico mixto. Existen números decimales que no pueden ser convertidos en fracciones como el número pi y son denominados números irracionales.

Los números periódicos son números decimales infinitos con una o más cifras decimales denominadas período que se repiten indefinidamente.

EL PORCENTAJE

El porcentaje se representa con el símbolo “%”. Es una forma de expresar una fracción dividida entre 100. Por esta razón, los números fraccionarios, los decimales y los porcentajes se encuentran muy relacionados. Los porcentajes se pueden transforman en números decimales al dividirlos entre el 100 %. Para calcular el porcentaje de una cifra se puede realizar mediante dos procedimientos. El primero es convertir el porcentaje en una fracción decimal y multiplicarlo por la cantidad total. Y el segundo método consiste en la regla de tres simple, en la cual el valor total es equivalente al 100 % y el porcentaje buscado corresponde al valor de la incógnita que queremos conocer.

El porcentaje es muy utilizado en el comercio para promocionar descuentos o realizar recargos al momento de la compra.

CAPÍTULO 3 / TEMA 4

EL PORCENTAJE

En nuestra vida diaria es frecuente escuchar expresiones relacionadas con porcentajes como “la población creció un 20 %” o “hay un 50 % de descuento en ropa”. El porcentaje se utiliza para representar una porción de algo y se encuentra muy relacionado con los números decimales y los fraccionarios.

RELACIÓN DEL PORCENTAJE CON LAS FRACCIONES Y LOS DECIMALES

Para poder realizar el cálculo del porcentaje primero hay que saber que este representa a una fracción decimal cuyo denominador es 100, equivalente al 100 % del número entero, y el numerador es una porción de este. Analicemos el siguiente ejemplo: según la Organización Mundial de la Salud (OMS), el 80 % de las personas que se contagian con el SARS-CoV-2 y desarrollan COVID‑19 se recuperan de la enfermedad sin necesidad de tratamiento hospitalario.

El porcentaje quiere decir que de cada 100 personas que contraen coronavirus, 80 personas se recuperan sin tener que ser hospitalizadas. Por lo tanto, el numerador de la fracción representa la porción de la población que se recupera y el denominador será la población total del estudio. En esta relación de porcentajes y fracciones también es posible aplicar el método de simplificación.

Con el resultado anterior concluimos que 8 de cada 10 personas contagiadas se recuperan sin necesidad de ser hospitalizadas.

Veamos otro ejemplo. La OMS dice que aproximadamente 1 de cada 5 personas que contraen la COVID‑19 presentan un cuadro grave y experimenta dificultades para respirar. Esto quiere decir:

Entonces, quiere decir que aproximadamente el 20 % de la población que se contagia con la enfermedad presenta un cuadro grave.

Asimismo, los porcentajes pueden ser convertidos en forma de números decimales al dividirse entre el 100 %, que representa al total. Y por el contrario, para convertir un número decimal a porcentaje basta con multiplicarlo por 100 %. En este sentido, los dos ejemplos anteriores se pueden expresar en forma decimal de la siguiente manera:

Porcentaje Fracción Número decimal
80\: % \frac{80}{100} 0,8
Fracción Número decimal Porcentaje
\frac{1}{5} 0,2 0,2\times 100 = 20 \: %
Los porcentajes son muy utilizados en diferentes campos, debido a que estos equivalen a una porción de un todo. Pueden ser representados en gráficos, lo que ayuda a una mejor comprensión y a un análisis más rápido de los datos. Por otra parte, los porcentajes se pueden representar en números decimales o en números fraccionarios.

CÁLCULO DE PORCENTAJE

Existen ocasiones en nuestro día a día en los que se requiere calcular el porcentaje de un total o viceversa. También hay veces que queremos conocer qué cantidad del total representa el porcentaje. En ese caso, se emplea el siguiente método:

Covertir un porcentaje a la porción que representa

Tomemos el siguiente ejemplo: un jugador de baloncesto durante toda la temporada realizó 120 lanzamientos y falló el 25 % de sus tiros. Se quiere saber cuántos lanzamientos falló durante la temporada.

Para conocer la cantidad que representa un porcentaje respecto a un total, lo primero que debemos hacer es convertir el porcentaje a una fracción decimal y luego se multiplica por el total que, en este caso, son los 120 lanzamientos que realizó el jugador.

Al transformar el porcentaje en una fracción decimal se obtiene el siguiente resultado:

25\, % =\frac{25}{100} = \frac{5}{20}= \frac{1}{4}

Luego multiplicamos esa fracción por la cantidad de lanzamientos que realizó el jugador.

\frac{1}{4}\times 120=\frac{1}{4}\times \frac{120}{1}= \frac{120}{4}=30

Esto quiere decir que, de los 120 lanzamientos que realizó el jugador, falló en 30 de sus lanzamientos, es decir, el 25 %.

Los porcentajes son muy empleados por los empresarios o dueños de tiendas como estrategia para generar mayores ventas y mejorar sus ingresos. Al ofrecer porcentajes de descuentos en sus productos, el índice de ventas aumenta y conlleva a un crecimiento de sus ingresos. Por otro lado, también pueden aplicar porcentajes de recargo como sucede en las compras con tarjetas de crédito.

Uso de la regla de tres

Cuando se trabaja con porcentajes, las cantidades son directamente proporcionales, por lo tanto, estos pueden ser calculados mediante el uso de la regla de tres simple. En estos casos, si una cantidad aumenta, la otra también, y en el caso de que una disminuya, la otra también lo hace. Por lo tanto, es una regla de tres directa.

Para emplear este método veamos el siguiente ejemplo: en un salón de clases hay 40 alumnos. El 30 % de ellos aprobó el examen con A, el 50 % aprobó con B y el resto obtuvo una C. ¿Cuántos alumnos obtuvieron A, B y C?

Si en el salón hay 40 alumnos, entonces ellos representan el 100 %. Entonces planteamos las reglas de la siguiente manera:

El 30 % de lo alumno obtuvieron A:

 

100\: %\rightarrow 40

30\: % \rightarrow x

 

x=\frac{30\: % \times 40}{100\: %}

 

\boldsymbol{x=12}

El 50 % de los alumnos obtuvieron B:

 

100\: %\rightarrow 40

50\: %\rightarrow x

 

x=\frac{50\: %\times 40}{100\: %}

 

\boldsymbol{x=20}

El 20 % de los alumnos obtuvieron C:

 

100\: %\rightarrow 40

20\: %\rightarrow x

 

x=\frac{20\: %\times 40}{100\: %}

 

\boldsymbol{x=8}

Entonces, se concluye que los 12 alumnos con A representan el 30 %, los 20 alumnos con B equivalen al 50 % y 8 de ellos obtuvieron C, el equivalente al 20 %.

¿Sabías qué?
Se tienen registros que señalan que el porcentaje se ha usado desde el siglo XV.

APLICACIÓN DEL PORCENTAJE EN EL COMERCIO

El porcentaje es muy utilizado de diferentes formas en el comercio, por ejemplo, para realizar descuentos o recargos a las compras.

Descuentos

Cuando se habla de descuento, quiere decir que a la cantidad total que se va a pagar hay que restarle el porcentaje. Por lo tanto, la cantidad que se obtiene como resultado es menor que la cantidad dada. Por ejemplo:

Una tienda de bicicletas eléctricas vende uno de sus modelos en 2.500 $ con un descuento de 30 % si se paga con tarjeta de crédito. ¿Cuánto será el costo de la bicicleta si se paga con tarjeta de crédito?

Para realizar este ejercicio utilizaremos el primer método visto anteriormente.

Se convierte el porcentaje en fracción.

30\, %=\frac{30}{100}=\frac{3}{10}

Se multiplica por el costo de la bicicleta.

\frac{3}{10}\times 2.500 = \frac{7.500}{10}= 750

Se resta el porcentaje de descuento (750 $) al total del costo de la bicicleta.

2.500 -750= 1.750

El costo de la bicicleta con descuento, por el pago con tarjeta de crédito, será de 1.750 $. Observa que, como era de esperarse, la cantidad con el descuento es menor que el precio inicial.

La estadística es una rama de las matemáticas que se ocupa del estudio de individuos o acontecimientos a través de la recolección y organización de datos. Esta emplea procedimientos que permiten obtener resultados de manera gráfica para la elaboración de  conclusiones. En este sentido, la estadística se vuelve una herramienta muy útil para muchas ciencias y actividades humanas, como la sociología, la psicología, la geografía, y la economía.

Recargos

Otro de los usos que se le puede dar al porcentaje es para realizar recargos. Esto se ve mucho cuando se quiere realizar compras de artículos y no se tiene el monto total del mismo. El monto es divido en varias cuotas mas pequeñas, pero al final el costo total aumenta.

Imaginemos que se desea comprar un auto de 350.000 $ y el concesionario permite pagarlo en 12 cuotas con un recargo del 8 % sobre su costo. ¿Cuánto será el costo real del auto?

Para este ejercicio aplicaremos el segundo método visto: la regla de tres simple. Así que el 8 % de aumento por las 12 cuotas se plantea de la siguiente forma:

100\: %\rightarrow \$ \: 350.000

8\: %\rightarrow x

x=\frac{8\: %\times \$ \: 350.000}{100\: %}

\boldsymbol{x= \$ \: 28.000}

Luego, al tener el 8 % de aumento, se le suma al costo del auto 28.000 $ de aumento. Eso da un total de 378.000 $. Este es el costo del auto si se paga en 12 cuotas. Como era de esperarse, el costo del auto con recargo es mayor que el costo inicial.

¡A practicar!

1. ¿Cuánto es el 38 % de 12.583?

RESPUESTAS

El 38 % de 12.583 es 4.781,54.

2. El costo de unos zapatos para jugar al fútbol tienen un valor de 130 $. Si se pagan en efectivo se realiza un descuento del 23 %. ¿Cuánto se ahorra si se pagan en efectivo?

RESPUESTAS

Se ahorrarían 29,90 $.

3. Si se realiza un viaje en auto con un motor usado se consumen 56 litros de gasolina. Si con un motor nuevo se ahorra 26 % de gasolina, ¿cuántos litros de gasolina ahorra el motor nuevo?

RESPUESTAS

El motor nuevo ahorra 14,56 litros de gasolina.

4. Desde el 2010 hasta el 2018, 7.954 personas han intentado subir al Monte Everest. Durante esa travesía, 72 personas no pudieron completar el viaje. ¿Cuánto fue el porcentaje de personas que no pudieron completar el viaje?

RESPUESTAS

El porcentaje de personas que no pudieron completar el viaje fue del 0,9 %.

RECURSOS PARA DOCENTES

Artículo “Porcentajes”

Este artículo permite analizar diferentes ejercicios en los que se aplican los porcentajes.

VER

Tarjeta Educativa “Porcentaje”

Esta tarjeta educativa sirve para resumir los aspectos básicos del porcentaje como sus aplicaciones, características y ejemplos.

VER

Artículo “Regla de tres”

Este artículo permite entender qué es una regla de tres, sus tipos y cómo resolverla.

VER

CAPÍTULO 3 / TEMA 3

FRACCIONES Y DECIMALES

Algunos números decimales pueden ser representados a través de fracciones, por esta razón se dice que los números decimales y las fracciones se encuentran relacionados. Los números decimales que se pueden representar a través de fracciones se denominan racionales y de acuerdo a su tipo se realiza la conversión.

Los números fraccionarios están formados por el numerador y el denominador que se encuentran divididos por una raya horizontal. Por otro lado, los números decimales están formados por una parte entera y una parte decimal separadas por una coma. En el caso de números racionales es posible representar la misma cantidad en fracción o decimal.

LOS NÚMEROS DECIMALES

Los números decimales son aquellos que están formados por una parte entera y una parte decimal. Estos están separados por una coma o un punto. Estos números son otra forma de escribir el resultado de las fracciones. Ambas expresiones representan cualquier número no entero (aunque las fracciones pueden representar cantidades enteras en el caso de las fracciones aparentes).

En este sentido, las fracciones se pueden expresar en forma de números decimales, para lo cual se debe realizar la división de la fracción, es decir, numerador entre denominador. Por ejemplo, al dividir el numerador entre el denominador de la fracción 5/4 se obtiene 1,25, que corresponde a la misma cantidad.

Convertir una fracción a número decimal

Solo existe un método para convertir una fracción a número decimal y se realiza a través de la división. Si divides el numerador entre el denominador por lo general obtienes un número decimal. Siempre y cuando no sea una fracción aparente, en la que el resultado es un número entero (como en el caso de 4/2 = 2).

Algunos ejemplos de conversión de fracciones a decimales son los siguientes:

\frac{9}{8}=1,125

\frac{3}{14}=0,214

\frac{26}{63}= 0,4127

Convertir un número decimal a fracción

Existen diferentes procedimientos para convertir números decimales a fracciones. Estos pasos dependen del tipo de número que se va a transformar.

Tipos de números decimales

Los números decimales pueden ser racionales o irracionales. Los racionales pueden representarse en forma de fracción y los irracionales no. Los números racionales se clasifican en decimales exactos y decimales periódicos.

Decimales exactos: son aquellos números que tiene una parte limitada o finita de cifras decimales. Los decimales finitos representan a las fracciones decimales. Por ejemplo: 2,38; 4,681; 68,98135; 9647,3543.

Decimales periódicos: son aquellos en los que toda la parte decimal o una porción de esta sigue un patrón infinito de números denominado período y se denota en forma de arco en la parte superior del mismo.

Se pueden distinguir dos tipos de decimales periódicos:

Números decimales periódicos puros

Estos números decimales tienen la parte decimal periódica inmediatamente después de la coma. La parte periódica se suele señalar usualmente con una línea horizontal o arco en la parte superior del mismo. Por ejemplo: 2,3333… = \inline 2,\widehat{33}.

Números decimales periódicos mixtos

Estos números decimales poseen dos partes decimales: una parte no periódica, denominada anteperíodo, y la otra parte es la periódica, que se denota con el arco superior. Por ejemplo: 2,147151515… = \inline 2,147\widehat{15}.

¿Sabías qué?
Al dividir la longitud de una circunferencia entre su diámetro se obtiene un número irracional denominado número pi.

Convertir un número decimal exacto a fracción

Para transformar un número decimal exacto a una fracción decimal se debe escribir el decimal dividido por 1. Luego hay que multiplicar tanto el numerador como el denominador por una potencia de base diez (10, 100, 1.000, etc.) que tenga tantos ceros como cifras decimales tenga el número. Si la fracción que se obtiene no es irreducible, entonces se debe simplificar para obtener el resultado

Por ejemplo:

Otro ejemplo sería:

 

Al igual que las demás clases de números, los decimales y los fraccionarios pueden ubicarse en la recta numérica. Estos se encuentran entre dos números enteros, por lo tanto, permiten realizar e indicar mediciones mucho más precisas. Un ejemplo de esto son las llaves mecánicas, las cuales tienen medidas fraccionarias en pulgadas y decimales en milímetros.

Convertir un decimal periódico puro a fracción

Para convertir un decimal periódico puro a fracción es necesario aplicar los siguientes pasos:

1. Se coloca en el numerador una resta entre el número formado por la parte entera y la parte periódica sin la coma, y la parte entera. Observemos el siguiente ejemplo en el que se desea convertir en fracción el número \inline 7,\widehat{66}.

2. Se coloca en el denominador un número formado por tantos 9 según la cantidad de cifras en el período, es decir, si hay un número bajo la línea periódica se coloca un solo 9, si hay dos números bajo el período se coloca 99 y así sucesivamente.

3. Se realizan las operaciones matemáticas necesarias para conseguir la fracción. Se simplifica si es necesario.

7,\widehat{66}=\frac{766-7}{99}=\boldsymbol{\frac{759}{99}}

Veamos otro ejemplo en el cual se aplicaron los mismos pasos:

92,\widehat{35}=\frac{9235-92}{99}=\boldsymbol{\frac{9.143}{99}}

Convertir un decimal periódico mixto a fracción.

Para llevar un número decimal mixto a fracción, seguimos los siguientes pasos:

1. Se coloca en el numerador una resta formada por el número completo sin la coma menos la parte entera y el anteperíodo. Observemos el siguiente ejemplo: \inline 58,3\widehat{7}.

2. Se coloca el denominador de la fracción que será un número formado por tantos 9 como cifras tenga el período y tantos 0 como cifras tenga el anteperíodo.

Por último, se realizan los cálculos necesarios para conseguir la fracción y se simplifica si la misma lo requiere.

58,3\widehat{7}=\frac{5837-583}{90}=\frac{5.254}{90}=\boldsymbol{\frac{2.627}{45}}

Veamos otro ejemplo con el mismo procedimiento:

64,12\widehat{91}=\frac{641291-6412}{9900}=\boldsymbol{\frac{634.879}{9.900}}

 

Los números irracionales

Este tipo de números decimales no pueden ser convertidos en fracciones, debido a que tienen cifras decimales infinitas que no pueden ser definidas como un patrón. Por lo tanto, crear una fracción de estos números sería infinita. Podemos mencionar como ejemplos de estos números al número pi = 3,1416… o al resultado de \sqrt{7}=2,6457512110...

VER INFOGRAFÍA

La estadística es una de las ramas de la matemática que emplea el uso de los números fraccionarios y decimales para realizar el estudio de muestras y poblaciones. Por tal motivo, tener conocimientos sobre cómo convertir un número fraccionario a decimal, y viceversa, puede ser muy útil en diversos campos.

Operaciones entre fracciones y decimales

Los números decimales y las fracciones se pueden sumar, restar, dividir, y multiplicar, entre otras operaciones, siempre y cuando se apliquen los métodos anteriormente vistos, como convertir un número decimal a fracción o una fracción a número decimal. Es importante tener presente que para resolver estos ejercicios debemos convertir todos los números a decimales o todos los números a fracciones.

– Primer método: convertir la fracción en un número decimal. Esto se realiza al dividir el numerador entre el denominador.

Ejemplo:

45,18 + \frac{38}{17}= 45,18 + 2,2353 = 47,4153

– Segundo método: convertir el número decimal en una fracción. En este caso, se utiliza la conversión del número decimal a fracción. En el ejemplo anterior, se puede notar que el número decimal es exacto, por lo tanto, se utiliza la conversión de número decimal exacto a fracción.

45,18+\frac{38}{17}=\frac{4.518}{100}+\frac{38}{17}=\frac{2.259}{50}+ \frac{38}{17}=\frac{2.259\times 17+50\times38}{50\times 17}= \frac{38.403+1.900}{850}=

\boldsymbol{=\frac{40.303}{850}}

En ambos casos se obtuvo el mismo resultado expresado de una forma diferente \frac{40.303}{850}=47,4153

Estos pasos previos se utilizan para realizar los otros cálculos matemáticos como la división, la multiplicación, las potencias, las raíces y las operaciones combinadas.

¡A practicar!

1. Convierte los siguientes números a decimales:

a) \frac{15}{12}

RESPUESTAS

\frac{15}{12}=1,25

b) \frac{28}{15}

RESPUESTAS

\frac{28}{15}= 1,8\widehat{6}

2. Convierte los siguientes números a fracciones:

a) 42,56\widehat{3}

RESPUESTAS

42,56\widehat{3}=\frac{42.563-4.256}{900}=\frac{38.307}{900}

b) 938,\widehat{7}

RESPUESTAS

938,\widehat{7}=\frac{9.387-938}{9}=\frac{8.449}{9}

c) 456,328

RESPUESTAS

456,328=\frac{456.328}{1.000}=\frac{228.164}{500}=\frac{114.082}{250}=\frac{57.041}{125}

3. Resuelve las siguientes operaciones:

a) 726,328+\frac{15}{6}

RESPUESTAS

726,328+\frac{15}{6}=\frac{726.328}{1.000}+\frac{15}{6}=\frac{90.791}{125}+\frac{15}{6}= 728,828

b) 415,14-\frac{425}{3}

RESPUESTAS

415,14-\frac{425}{3}=415,14-141,66=273,48

c) 26,31\times\frac{18}{23}

RESPUESTAS

26,31\times\frac{18}{23}=\frac{2.631}{100}\times\frac{18}{23}= \frac{47.358}{2.300}=\frac{23.679}{1.150}

d) 92,78 :\frac{87}{17}

RESPUESTAS

92,78 :\frac{87}{17}=\frac{9.278}{100}:\frac{87}{17}=\frac{4.639}{50}:\frac{87}{17}=\frac{\frac{4.639}{50}}{\frac{87}{17}}=\frac{78.863}{4.350}

RECURSOS PARA DOCENTES

Artículo “Resolución de cálculos combinados con paréntesis, corchetes y llaves”

Este artículo explica cómo resolver operaciones matemáticas con fracciones y decimales que incluyen paréntesis, corchetes y llaves.

VER

Artículo “Cómo realizar ejercicios combinados con fracciones”

El siguiente artículo destacado se enfoca en los pasos a seguir para resolver cálculos de operaciones combinadas con fracciones.

VER

CAPÍTULO 3 / TEMA 2

Multiplicación y división de fracciones

Las fracciones son números, por lo tanto, podemos realizar operaciones aritméticas básicas con ellas. Para multiplicar fracciones se debe realizar una multiplicación lineal de todos los numeradores y denominadores. Por otro lado, la división de estos números se puede realizar a través de varios procedimientos.

Diferentes métodos para la resolución de problemas

Una de las maravillas de las matemáticas es que generalmente para resolver un problema existen varios caminos que conducen al mismo resultado. Las operaciones con fracciones son un ejemplo, especialmente al momento de dividirlas se suelen aplicar varios métodos.

Multiplicación de fracciones

La multiplicación es una de las operaciones con fracciones mas sencillas. Para resolverla se deben multiplicar de forma lineal sus factores, es decir, numerador por numerador y denominador por denominador. En el caso de multiplicar más de dos fracciones el procedimiento es el mismo.

Por ejemplo:

a) \frac{2}{9}\times \frac{5}{9}= \frac{2\times 5}{9\times 9}=\frac{10}{81}

b) \frac{5}{7}\times \frac{4}{3}= \frac{5\times 4}{7\times 3}=\frac{20}{21}

En la multiplicación de fracciones no importa si son homogéneas o heterogéneas, el procedimiento siempre es el mismo. En los ejemplos anteriores observamos la resolución de fracciones de estos dos tipos.

Los criterios de divisibilidad son muy importantes a la hora de aplicar el método de simplificación o reducción de fracciones. Estos criterios permiten resolver las fracciones con mayor rapidez. Del mismo modo, se pueden aplicar a una o más fracciones siempre y cuando estas se multipliquen entre sí.

Simplificación de fracciones

Cuando se hace una multiplicación o división de fracciones, es necesario conocer cómo simplificarlas. Esto ahorra tiempo al momento de resolver el ejercicio y permite expresar cantidades de manera más sencilla. Para realizar una simplificación debemos tener presente los criterios de divisibilidad. A continuación, puedes ver algunos criterios:

Ahora, mira el siguiente ejemplo:

\frac{48}{16}=

Al comparar la fracción con la tabla anterior, se puede observar que tanto el numerador como el denominador son divisibles entre 2. Por lo tanto, se puede simplificar la fracción:

La fracción que se obtuvo se puede simplificar también:

Esta fracción se pudo convertir en un número entero porque se trata de una fracción aparente, pero en otros casos la simplificación de una fracción es otra con numerador y denominador menores que los de la fracción original. También debemos considerar que hay fracciones irreducibles, lo que quiere decir que no se pueden simplificar.

Simplificación de fracciones en multiplicaciones

En los casos de multiplicaciones se pueden realizar simplificaciones de términos pertenecientes a diferentes fracciones. Para ello, se realiza el mismo procedimiento explicado y se consideran de igual forma los criterios de divisibilidad.

Por ejemplo:

\frac{26}{15}\times \frac{13}{18}=

Como se puede observar, las dos fracciones, si se evalúan de forma separada, son irreducibles. Sin embargo, esta multiplicación se puede simplificar porque el numerador de la primera fracción y el denominador de la segunda son divisibles entre 2. Por lo tanto, al aplicar la simplificación queda de la siguiente manera:

Ahora sí se puede aplicar la multiplicación de fracciones con números más pequeños, ya que no tenemos ninguna posibilidad de simplificar.

Se debe simplificar el resultado si es necesario. En este caso, la fracción ya es irreducible.

En la multiplicación de tres o más fracciones se sigue el mismo procedimiento: simplificar, multiplicar todos los numeradores para obtener el numerador del resultado y luego se hace lo mismo con los denominadores para obtener el denominador del resultado.

La división de fracciones se puede realizar mediante el uso de cualquiera de los diferentes métodos existentes y el resultado siempre debe ser el mismo. Aplicar un segundo método de resolución puede resultar muy útil porque nos permite comprobar si el resultado obtenido es el correcto, o si se ha aplicado mal uno de los procedimientos.

División de fracciones

Para realizar la división de fracciones existen varios métodos.

  • Primer método

Se gira la segunda fracción, con el propósito de invertir de posición el numerador y el denominador y se aplica el método de multiplicación de fracciones.

Por ejemplo:

Se hace el cambio de la segunda fracción y el signo de división por multiplicación.

Luego se resuelve la multiplicación resultante.

  • Segundo método

Otra forma de realizar la división de fracciones es multiplicar en forma cruzada, de la siguiente forma:

Al igual que con las multiplicaciones, se debe revisar si el resultado es una fracción irreducible. Si no lo es, se procede a simplificar.

  • Tercer método

Otro método aplicado en la división de fracciones es la doble c. En este procedimiento, la segunda fracción se coloca debajo de la primera de la siguiente manera:Luego se procede a multiplicar los extremos de la fracción y el resultado de esa multiplicación se coloca como numerador. Luego se multiplican los números internos y el resultado de esta última multiplicación se coloca como denominador.Al igual que en los métodos anteriores, debemos asegurarnos que el resultado sea una fracción irreducible. Si no lo es, debemos aplicar la simplificación hasta obtenerla.

¿Sabías qué?
La multiplicación de fracciones cumple con las propiedades conmutativa y asociativa. Por otro lado, la división de fracciones no cumple con las propiedades asociativa ni distributiva.

VER INFOGRAFÍA

Multiplicación y división de fracciones con números enteros

El procedimiento para la multiplicación o división de fracciones con números enteros es muy sencillo. Para ello, es necesario representar primero al entero en forma de fracción y luego se resuelve la operación a través de los procedimientos explicados anteriormente.

Para expresar un entero en forma de fracción se debe colocar a la unidad como su denominador. Esto se hace ya que el número (1) como denominador no modifica el entero existente, porque todo número divido entre (1) es el mismo número.

Por ejemplo:

\frac{5}{16}\times 18 =

\frac{5}{16}\times \frac{18}{{\mathbf{\color{Cyan} 1}}} =
Ahora se procede a aplicar el método de la multiplicación como se explicó anteriormente. Numerador por numerador y denominador por denominador.Recuerda simplificar el resultado de la fracción.Este paso previo para convertir un número entero en fracción, también se aplica para la división de fracciones.

\frac{3}{2}\div 2 =\frac{3}{2}\div\frac{2}{{\color{Red} \mathbf{}1}}=\frac{3}{2}\times \frac{2}{1}=\frac{6}{2}=3

¡A practicar!

\frac{17}{3}\times\frac{13}{5}=

RESPUESTAS

\frac{17}{3}\times \frac{13}{5}=\frac{221}{15}

\frac{26}{15}\times\frac{18}{28}=

RESPUESTAS

\frac{26}{15}\times \frac{18}{28}=\frac{26}{15}\times \frac{9}{14}= \frac{13}{5}\times \frac{3}{7}=\frac{39}{35}

\frac{41}{15} : \frac{20}{28}=

RESPUESTAS

\frac{41}{15} : \frac{20}{28}=\frac{\frac{41}{15}}{\frac{20}{28}}=\frac{\frac{41}{15}}{\frac{10}{14}}= \frac{574}{150}=\frac{287}{75}

\frac{36}{29} : \frac{58}{82}=

RESPUESTAS

\frac{36}{29} : \frac{58}{82}=\frac{\frac{36}{29}}{\frac{58}{82}}=\frac{\frac{36}{29}}{\frac{29}{41}}= \frac{1476}{841}

\frac{42}{43} : \frac{12}{13}=

RESPUESTAS

\frac{42}{43} : \frac{12}{13}=\frac{42}{43} \times \frac{13}{12}=\frac{546}{516}=\frac{273}{258}=\frac{91}{86}

RECURSOS PARA DOCENTES

Artículo “Multiplicación y división de fracciones”

Este artículo explica cómo resolver multiplicaciones y divisiones de fracciones. También se enfoca en el procedimiento para su simplificación y ofrece una serie de ejercicios resueltos que facilitan su comprensión.

VER

Video “Fracciones decimales. Concepto y pasaje de fracción a número decimal”

En el siguiente video se explican los conceptos básicos de una fracción y se explica cómo se relacionan estos números con los decimales.

VER

CAPÍTULO 3 / TEMA 1

ADICIÓN Y SUSTRACCIÓN DE FRACCIONES

Los números fraccionarios están en nuestra vida cotidiana, por lo tanto, es de mucha importancia conocer cómo realizar adiciones y sustracciones con ellos. Para realizar estas operaciones se usan diferentes métodos que requieren realizar a su vez otras operaciones como el mcm.

 

Diferentes métodos para la resolución de problemas

Para resolver problemas de fracciones es necesario compararlas y conocer el tipo de fracción. De esta manera, podemos elegir qué tipo de método usar para resolver la operación.

Fracciones homogéneas

Son aquellas fracciones que poseen el mismo denominador. Debido a esto, para la suma y la resta de fracciones se coloca el mismo denominador y se suman o restan los numeradores de la siguiente manera:

Suma de fracciones homogéneas

\frac{6}{3}+\frac{4}{3}=\frac{6+4}{3}=\frac{10}{3}

Resta de fracciones homogéneas

\frac{9}{5}-\frac{8}{5}=\frac{9-8}{5}=\frac{1}{5}

Muchas de las fórmulas matemáticas empleadas en la resolución de problemas contienen sumas y restas de fracciones. En este sentido, es necesario conocer los diferentes métodos que se pueden aplicar de acuerdo al tipo de fracción presente en los ejercicios. Entre estos métodos están: la multiplicación cruzada o el cálculo del mínimo común múltiplo.

Fracciones Heterogéneas

Son aquellas fracciones que poseen distinto denominador. Para este tipo, existen diferentes métodos o formas de resolver adiciones y sustracciones.

Primer método: multiplicar en forma cruzada.

Se multiplica el numerador de la primera fracción por el denominador de la segunda y se coloca en el numerador.\frac{{\color{Blue} 3}}{5}+\frac{6}{{\color{Blue} 4}}=\frac{({\color{Blue} 3\times 4})}{}

Luego se multiplica el numerador de la segunda por el denominador de la primera y se suma con el numerador resultante de la multiplicación anterior.
\frac{{\color{Blue} 3}}{{\color{Red} 5}}+\frac{{\color{Red} 6}}{{\color{Blue} 4}}=\frac{({\color{Blue} 3\times 4})+({\color{Red} 5\times 6})}{}

Se procede a multiplicar los denominadores de ambas fracciones.

\frac{{\color{Blue} 3}}{{\color{Red} 5}}+\frac{{\color{Red} 6}}{{\color{Blue} 4}}=\frac{({\color{Blue} 3\times 4})+({\color{Red} 5\times 6})}{{\color{Red} 5}\times {\color{Blue} 4}}

Se realizan los cálculos necesarios y se obtiene la fracción resultante.

\frac{{\color{Blue} 3}}{{\color{Red} 5}}+\frac{{\color{Red} 6}}{{\color{Blue} 4}}=\frac{({\color{Blue} 3\times 4})+({\color{Red} 5\times 6})}{{\color{Red} 5}\times {\color{Blue} 4}}=\frac{12+30}{20}=\mathbf{\frac{42}{20}}

Segundo método: hallar el mínimo común múltiplo (mcm).

Se obtiene el mcm de los denominadores de la siguiente manera:

\frac{5}{8}+\frac{7}{6}=

 

Se coloca el mcm como denominador resultante y se divide entre el denominador de la primera fracción y se multiplica por el numerador de la misma fracción. El resultado se coloca de numerador.

24\div 8={\color{Red} 3}

{\color{Red} 3}\times 5={\color{Blue} 15}

 

\frac{5}{8}+\frac{7}{6}=\frac{{\color{Blue} 15}\: \: \: \: \: \: \: \: \: \: \: \: \: }{24}

Se realiza el mismo procedimiento con la segunda fracción.

24\div 6={\color{Red} 4}

{\color{Red} 4}\times 7={\color{DarkGreen} 28}

 

\frac{5}{8}+\frac{7}{6}=\frac{{\color{Blue} 15}+{\color{DarkGreen} 28}}{24}

 

Se realizan las operaciones correspondientes para obtener el resultado final.

\frac{5}{8}+\frac{7}{6}=\frac{15+28}{24}=\mathbf{\frac{43}{24}}

 

Para encontrar el resultado de una suma o una resta de fracciones muchas veces se recomienda simplificar los términos para tener un mejor resultado. Esta  técnica consiste en dividir ambos términos entre el mismo número. Por lo general, se utilizan los números primos para llegar a una fracción irreducible. Para simplificar fracciones rápidamente se recomienda tener presente los criterios de divisibilidad de un número.
¿Sabías qué?
Una fracción es irreducible cuando no se puede simplificar.

Otros tipos de fracciones

Fracciones aparentes: son aquellas que cumplen la condición de que al dividir el numerador entre el denominador, el resultado es un número entero. Por ejemplo, las fracciones \inline \frac{8}{4},\frac{2}{2} y \inline \frac{9}{3} son fracciones aparentes.

8\div 4=2

2\div 2=1

9\div 3=3

 

Fracciones equivalentes: son aquellas que se obtienen al multiplicar al numerador y al denominador por un mismo número. A este procedimiento también se lo denomina amplificación. Las fracciones \inline \frac{3}{2} y \inline \frac{15}{10}  son fracciones equivalentes.Otro método para obtener fracciones equivalentes es por simplificación. En dicho caso, se divide tanto al numerador como al denominador por el mismo número. Las fracciones \inline \frac{33}{15} y \inline \frac{11}{5}  son fracciones equivalentes.

Tercer método: utilizar las fracciones equivalentes.

Se convierten las fracciones en homogéneas mediante el uso de las fracciones equivalentes. Para hallar las equivalentes se multiplica una de las fracciones por una fracción aparente, cuyo resultado sea 1, como por ejemplo \inline \frac{2}{2}, \inline \frac{5}{5}, \inline \frac{7}{7} que permite hallar una fracción equivalente de la primera. En la sumatoria de \inline \frac{3}{2}+\frac{9}{10}, para convertir \inline \frac{3}{2} en una equivalente de igual denominador de la segunda (10), se multiplicó por la fracción aparente  \frac{5}{5}.

Se reescribe la adición de fracciones con la nueva fracción equivalente. De esta manera, las fracciones son homogéneas, por lo que pueden realizarse los cálculos para dichas fracciones, es decir, se suman los numeradores y se coloca el mismo denominador común (10).

La sustracción o resta de fracciones se realiza con el mismo procedimiento que la adición o suma, con la diferencia que, en vez de sumarlas, se restan.

En matemáticas es posible representar los números enteros como una suma de fracciones. Asimismo, aunque parezca difícil, existen procedimientos como convertir un entero en fracción, que se utiliza para resolver combinaciones de números enteros y fraccionarios. En estos casos, se coloca 1 como denominador del número entero.

adición y sustracción de fracciones con números enteros

Existen problemas en los cuales se pueden conseguir fracciones con números enteros. Aunque parece más complicado resolver este tipo de ejercicios, no lo es. Para sumar \inline \frac{4}{5}+3 lo primero que debemos hacer es identificar el tipo de números involucrados en la operación.

 \frac{4}{5}+3=

Luego se convierte el número entero en una fracción para lo cual colocamos como denominador del número entero la unidad (1). Esto se debe a que el número (1) como denominador no modifica el entero existente, porque todo número divido entre (1) es igual al mismo número.

Se procede a realizar los cálculos con cualquier método de fracciones heterogéneas visto anteriormente. En este caso, se aplicará el método cruzado.

\frac{{\color{Blue} 4}}{{\color{Red} 5}}+\frac{{\color{Red} 3}}{{\color{Blue} 1}}=\frac{({\color{Blue} 4\times 1})+({\color{Red} 5\times 3})}{{\color{Red} 5}\times {\color{Blue} 1}}

Por último, se realizan las operaciones matemáticas necesarias para hallar el resultado.

\frac{{\color{Blue} 4}}{{\color{Red} 5}}+\frac{{\color{Red} 3}}{{\color{Blue} 1}}=\frac{({\color{Blue} 4\times 1})+({\color{Red} 5\times 3})}{{\color{Red} 5}\times {\color{Blue} 1}}=\frac{4+15}{5}=\mathbf{\frac{19}{5}}

De esta forma, se pueden resolver las sustracciones o restas de números enteros y fracciones.

¿Sabías qué?

Se estima que en el 1650 a. C. se emplearon por primera vez fracciones con denominadores enteros positivos para representar las partes de un todo.

¡A practicar!

a) \frac{8}{3}+\frac{17}{3}=

RESPUESTAS

 \frac{8}{3}+\frac{17}{3}=\frac{8+17}{3}=\frac{25}{3}

b) \frac{5}{2}-\frac{11}{7}=

RESPUESTAS

\frac{5}{2}-\frac{11}{7}=\frac{5\times 7-2\times 11}{2 \times 7}= \frac{35-22}{14}=\frac{13}{14}

c) \frac{28}{13}+\frac{5}{2}=

RESPUESTAS

\frac{28}{13}+\frac{5}{2}=\frac{28\times 2+13\times 5}{13 \times 2}= \frac{56+65}{26}=\frac{121}{26}

d) 9 + \frac{5}{6}=

RESPUESTAS

9+\frac{5}{6}=\frac{9}{1}+\frac{5}{6}=\frac{9\times 6+1\times 5}{1 \times 6}= \frac{54+5}{6}=\frac{59}{6}

e) 26-\frac{38}{5}=

RESPUESTAS

26-\frac{38}{5}=\frac{26}{1}-\frac{38}{5}=\frac{26\times 5-1\times 38}{1 \times 5}= \frac{130-38}{5}=\frac{92}{5}

f) \frac{17}{3}-\frac{29}{6}=

RESPUESTAS

\frac{17}{3}-\frac{29}{6}=\frac{17}{3}\times\left (\frac{2}{2} \right )-\frac{29}{6}=\frac{34}{6}-\frac{29}{6}=\frac{34-29}{6}= \frac{5}{6}

\frac{27}{5}-\frac{13}{5}=

RESPUESTAS

\frac{27}{5}-\frac{13}{5}=\frac{27-13}{5}=\frac{14}{5}

RECURSOS PARA DOCENTES

Artículo “Clasificación de fracciones”

Este artículo permite obtener información más amplia sobre cómo se clasifican las fracciones.

VER

Artículo “Multiplicación y división de fracciones”

En este artículo se explica como resolver problemas de fracciones cuando estas involucran otras operaciones como la multiplicación y la división.

VER

CAPÍTULO 1 / TEMA 8 (REVISIÓN)

SISTEMA DE NUMERACIÓN | ¿qUÉ APRENDIMOS?

LECTURA DE NÚMEROS

Los números naturales (\boldsymbol{\mathbb{N}}) son los que utilizamos para contar. Cada número tiene un valor relativo según la posición que ocupe dentro de una cifra y esto permite una correcta lectura de los mismos. Además de los números naturales, existen los números decimales que están formados por una parte entera y otra decimal. También hay sistemas de numeración no posicionales como los números romanos, los cuales constan de siete letras del abecedario latino.

Para leer un número de manera correcta es necesario conocer el valor que ocupa cada una de sus cifras. Para esto podemos usar una tabla posicional.

descomposición de números

Existen distintas formas de descomponer números grandes: la aditiva con combinaciones básicas, la aditiva por medio de valor posicional, la polinómica o la multiplicativa. En la aditiva con combinaciones básicas usamos una o más sumas que expresen el mismo resultado; en la aditiva con valor posicional empleamos los valores posicionales de cada cifra; en la polinómica utilizamos las potencias de base 10; y en la multiplicativa descomponemos la cantidad en sus factores primos.

Estas diferentes maneras de expresar los números permiten resolver situaciones de forma más rápida y sencilla.

números enteros

Los números enteros (\boldsymbol{\mathbb{Z}}) están compuestos por todos los números naturales (\boldsymbol{\mathbb{N}}), sus opuestos negativos y el cero. Los enteros negativos requieren el uso obligatorio del signo (−) a diferencia de los positivos que pueden o no estar acompañados con el signo (+). Estos pueden ser representados en una recta numérica, la cual contiene todos los números reales (\boldsymbol{\mathbb{R}}). Los números enteros se aplican en diversas situaciones de la vida, como para indicar altitudes sobre el nivel del mar, registrar entradas y salidas de dinero de un banco, dibujar el eje de coordenadas, o para indicar temperaturas.

Otra de las tantas aplicaciones que se les da a los números enteros es para señalar los niveles de un edificios, en donde planta baja representa el 0, los niveles superiores los positivos y los niveles inferiores los negativos.

NÚMEROS decimales

Los números decimales están formados por una parte entera y una parte decimal, ambas divididas por una coma. Estos se clasifican en tres tipos según su parte decimal: exactos, periódicos y no periódicos. Los exactos tienen un número limitado de cifras; los periódicos poseen cifras decimales infinitas y, a su vez, estos se dividen en dos tipos: los puros y los mixtos; y los decimales no periódicos no tienen un patrón que se repita infinitamente. Estos números se pueden redondear para reducir la cantidad de cifras decimales y así obtener un valor muy parecido.

Los números decimales pueden ser utilizados en diversas situaciones de la vida, como para indicar la estatura de las personas o los precios de los productos.

sucesiones

Las sucesiones son un grupo de elementos que se ordenan uno detrás de otro. Estos elementos son llamados términos, siguen una regla dentro del conjunto y pueden ser números, letras, figuras o imágenes. En una sucesión, los términos son representados como subíndices (a1, a2, a3, …). Usamos sucesiones cada vez que contamos los días de la semana o las horas del día. También las usamos para ordenar de mayor a menor o de menor a mayor, o para aprender a leer el abecedario. Podemos encontrar sucesiones con operaciones matemáticas como la suma, la resta, la multiplicación, la división o la potencia.

Cuando se ordenan los ganadores de una carrera de automóviles, estos siguen un patrón de acuerdo al tiempo de llegada. Este es un ejemplo de sucesión.

potencias

La potenciación consiste en expresar de manera reducida una multiplicación de factores iguales. Tiene tres elementos: una base, un exponente y la potencia. La base es el número que se multiplicará tantas veces como indica el exponente y la potencia es el resultado de la multiplicación de los factores. Algunas de las propiedades de las potencias son: potencia de exponente 0, potencia de exponente 1, potencia de exponente negativo, multiplicación y división de potencias con igual base y la potencia de una potencia.

Las potencias sirven para aplicar teoremas, expresar notación científica, realizar sucesiones matemáticas y para demostrar problemas de crecimiento exponencial como la multiplicación de virus y bacterias.

raíz de un número

La raíz de un número es la operación inversa a la potencia de un número. Consiste en buscar el número que se ha multiplicado tantas como indica n bajo un operador radical. Los elementos de una raíz son el radicando, el índice, el radical y la raíz. El radicando es el resultado de la multiplicación de la raíz de un número tantas veces como indica el índice de la raíz. El índice indica el grado de una raíz, lo que se traduce en cuántas veces se multiplicó por sí mismo el resultado de la radicación. El radical representa el símbolo de la operación de radicación y la raíz es resultado de la operación matemática.

Todas las operaciones matemáticas poseen una operación inversa que revierte los cálculos realizados.

CAPÍTULO 1 / TEMA 7

RAÍZ DE UN NÚMERO

La radicación es la operación inversa de la potenciación. Su cálculo consiste en hallar un número que multiplicado por sí mismo cierta cantidad de veces resulte en otro número determinado. Para poder emplear de manera correcta esta operación es necesario saber sus elementos y propiedades.

Todos los cálculos matemáticos tienen una operación inversa. La suma es la operación inversa de la resta, la división lo es de la multiplicación y la radicación lo es de la potenciación. Posiblemente creas que la radicación es la operación más compleja, pero no es así. Si conoces sus elementos y propiedades podrás resolver cualquier raíz de un número.

¿qué es una raíz?

Es una operación matemática en la que se obtiene un número que se ha multiplicado por sí mismo n veces bajo el operador radical. Esta se encuentra formada por los siguientes elementos:

Donde:

  • Radical (\sqrt{\: \: }): representa el símbolo de la operación de radicación.
  • Índice de la raíz \left ( n \right ): indica el grado de una raíz, lo que se traduce en cuántas veces se multiplicó por sí mismo el resultado de la radicación. El índice de una raíz debe ser diferente de cero.
  • Radicando \left ( a \right ): es el producto de la multiplicación de la raíz según lo indique el índice. El radicando pertenece al conjunto de los números reales.
  • Raíz \left ( b \right ): es el resultado de la radicación.

Condiciones a cumplir

  • n \in \mathbb{N}\:\: ,\, n \geq 2
  • a \in \mathbb{R}
  • Si n es par, a debe ser \geq 0, para que el resultado sea un número real \left ( \mathbb{R} \right ).

¿Cómo se relacionan la potencia y la raíz de un número?

La relación de las operaciones matemáticas potenciación y radicación se refleja así:

  • La base de la potenciación es el resultado o raíz de la radicación.
  • La potencia de la potenciación es el radicando de la radicación.
  • El exponente de la potenciación coincide con el índice de la radicación.

Por lo tanto, podemos expresar a una raíz como un exponente fraccionario, en el cual el denominador de la fracción corresponde al índice de la raíz y el numerador al exponente del radicando.

\boldsymbol{\left ( \sqrt[n]{a}\right )^{m}=\sqrt[n]{a^{m}}={a^{\frac{m}{n}}}}

– Ejemplo:

\sqrt[3]{5^{2}}=5^{\frac{2}{3}}

\sqrt[3]{6}={6^{\frac{1}{3}}}

Origen del término

Antiguos papiros egipcios demuestran que en esta cultura se calculaban raíces. Muchos especialistas asocian el origen del símbolo de la raíz con la letra r de la palabra latina radix, que significa “raíz”. No obstante, este término fue introducido en siglo XVI por Christoph Rudolff, quien lo usó en su libro Coss.

propiedades de las raíces

Raíz de cero

La raíz con radicando 0 es igual a 0, siempre que su índice sea diferente de dicho número.

\boldsymbol{\sqrt[n]{0}=0\: ; n\neq 0}

– Ejemplo:

\sqrt[3]{0}=0

\sqrt[5]{0}=0

Raíz de la unidad

La raíz de 1 siempre será igual a 1.

\boldsymbol{\sqrt[n]{1}=1\: ; n\neq 0}

– Ejemplo:

\sqrt[4]{1}=1

\sqrt[7]{1}=1

Raíz de un producto

La raíz de un producto es igual al producto de las raíces de los factores.

\boldsymbol{\sqrt[n]{a\cdot b}=\sqrt[n]{a}\cdot \sqrt[n]{b}}

– Ejemplo:

\sqrt[3]{27\cdot 125}=\sqrt[3]{27}\cdot \sqrt[3]{125}=3\cdot 5=15

Raíz de un cociente

La raíz de un cociente es igual al cociente de las raíces del dividendo y del divisor.

\boldsymbol{\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}}

– Ejemplo

\sqrt[4]{\frac{81}{16}}=\frac{\sqrt[4]{81}}{\sqrt[4]{16}}=\frac{3}{2}

Raíz de una raíz

La raíz de una raíz es igual a una nueva raíz con el mismo radicando e índices multiplicados.

\boldsymbol{\sqrt[m]{\sqrt[n]{a}}=\sqrt[m\cdot n]{a}}

– Ejemplo:

\sqrt[3]{\sqrt[5]{32.768}}=\sqrt[3\cdot 5]{32.768}=\sqrt[15]{32.768}=2

Potencia de una raíz

La potencia de una raíz es igual a la misma raíz con el radicando elevado a dicha potencia.

\boldsymbol{\left ( \sqrt[n]{a}\right )^{m}=\sqrt[n]{a^{m}}}

– Ejemplo:

\left ( \sqrt[]{5}\right )^{4}=\sqrt[]{5^{4}}=\sqrt[]{625}=25

Los problemas con radicales pueden tener una, dos o ninguna solución, y esto depende principalmente del radicando y del índice de la raíz. Sin embargo, para poder resolverlos de manera correcta se requiere tener conocimiento tanto de sus propiedades como también de la regla de los signos.

Suma y resta de radicales

Los radicales pueden sumarse o restarse siempre y cuando sean semejantes, es decir, que tengan el mismo índice y radicando. En este caso, sumamos o restamos los coeficientes (los números que están fuera de la raíz) y dejamos el mismo índice y radicando.

\boldsymbol{x\sqrt[n]{a}+y\sqrt[n]{a}=(x+y)\sqrt[n]{a}}

\boldsymbol{x\sqrt[n]{a}-y\sqrt[n]{a}=(x-y)\sqrt[n]{a}}

– Ejemplo:

8\sqrt[3]{5}+7\sqrt[3]{5}=15\sqrt[3]{5}

3\sqrt{6}-2\sqrt{6} = (3-2)\sqrt{6}=\sqrt{6}

cálculo de raíces

En la actualidad existen herramientas que te ayudan a realizar las operaciones matemáticas de manera fácil y rápida, como por ejemplo la calculadora. Con una calculadora, podemos determinar la raíz de un número sin problemas, pero, ¿qué hacer si no tenemos una calculadora? Para ello, es bueno saber los pasos para calcular la raíz cuadrada de cualquier número.

Para calcular la raíz cuadrada de un número como 682.273 seguimos estos pasos:

1. Agrupamos el número en cifras de dos en dos desde la derecha a la izquierda.

2. Buscamos un número que elevado al cuadrado se aproxime a las dos primeras cifras de la izquierda. De este modo, colocamos el 8, pues 82 = 8 × 8 = 64 que se aproxima a 68.

3. Realizamos la resta entre las dos primeras cifras y el resultado de 82 = 64. Luego bajamos las dos cifras siguientes (22).

4. Tomamos el primer resultado de la raíz que es 8 y lo multiplicamos por 2: 8 × 2 = 16. Lo colocamos debajo.

5. El número multiplicado por dos lo usamos para dividir a los dos primeros números del resto anterior (422). Como 42/16 = 2,625, colocamos el número entero (2) después de 16 para formar una nueva cifra: 162. Ahora multiplicamos este nuevo resultado por 2: 162× 2.

6. Utilizamos el resultado de la multiplicación para restarlo a 422. Añadimos el 2 a la raíz.

7. Repetimos el procedimiento. Bajamos las dos cifras siguientes (76) junto al último resto (98) para formar 9.876. Multiplicamos por 2 la raíz hasta ahora obtenida (82 × 2) y la colocamos como nuevo cociente (164).

8. Del mismo modo, el número multiplicado por dos lo utilizamos para dividir a los tres primeros números del resto anterior (9.876), lo que nos da 987/164 = 6,018. De esta división, solo tomamos el número entero (6), que usaremos para colocarlo detrás del (164) para formar una nueva cifra (1.646) y, al mismo tiempo, para multiplicar esta nueva cifra (1646 × 6).

9. El resultado de la multiplicación se utiliza para restarlo al resto anterior (9.876) y el número entero utilizado para hacer esta multiplicación se coloca en la raíz (82) y queda así:

Entonces, \sqrt{682.276}=\boldsymbol{826}

¡A practicar!

1. Aplica las propiedades de las raíces para resolver los siguientes ejercicios:

  • \sqrt[3]{\frac{216}{27}}=

Solución

\sqrt[3]{\frac{216}{27}}=\frac{\sqrt[3]{216}}{\sqrt[3]{27}}=\frac{6}{3}=2

  • \sqrt[3]{\sqrt[2]{4^{6}\times 3^{12}}}=

Solución

\sqrt[3]{\sqrt[2]{4^{6}\times 3^{12}}}=\sqrt[6]{4^{6}\times 3^{12}}=4^{\frac{6}{6}}\times 3^{\frac{12}{6}}=4^{1}\times 3^{2}=4\times3 \times3= 36

  • \frac{\sqrt[3]{27\cdot 125}}{\sqrt[4]{625\cdot 6561}}=
Solución

\frac{\sqrt[3]{27\times 125}}{\sqrt[4]{625\times 6561}}=\frac{\sqrt[3]{27}\times \sqrt[3]{125}}{\sqrt[4]{625}\times \sqrt[4]{6561}}=\frac{3\times 5}{5\times 9}=\frac{1}{3}

  • \frac{9\sqrt[3]{27}+18\sqrt[3]{27}}{2\sqrt[3]{27}+\sqrt[3]{27}}=
Solución

\frac{9\sqrt[3]{27}+18\sqrt[3]{27}}{2\sqrt[3]{27}+\sqrt[3]{27}}= \frac{(9+18)\sqrt[3]{27}}{(2+1)\sqrt[3]{27}}= \frac{(27)\sqrt[3]{27}}{(3)\sqrt[3]{27}}= 9

2. Resuelve las siguientes raíces sin utilizar la calculadora:

\sqrt[]{262.144}=

Solución

\sqrt[]{262.144}=512

\sqrt[]{527.076}=

Solución

\sqrt[]{527.076}= 726

\sqrt[]{2.334.784}=

Solución

\sqrt[]{2.334.784}=1.528

RECURSOS PARA DOCENTES

Artículo “La radicación”

Con este artículo, podrá ampliar los conocimiento respecto a la radicación y sus propiedades.

VER

Artículo “Cálculo de una raíz cuadrada”

Este recurso le permitirá tener mayor información sobre cómo realizar el cálculo de una raíz cuadrada.

VER

CAPÍTULO 1 / TEMA 6

POTENCIAS

La matemática está compuesta por numerosos tipos de operaciones que varían según su complejidad. Entre esas operaciones se encuentra la potenciación, que consiste en la multiplicación de factores iguales de acuerdo a un exponente. Al igual que otros cálculos, tiene sus propiedades y sus características particulares. ¡Las aprenderemos a continuación!

La potenciación también puede ser definida como la forma abreviada de escribir un producto de varios factores iguales. En muchas ocasiones, los ejercicios de potenciación pueden parecer algo complejos. Para resolverlos de manera correcta es indispensable conocer sus elementos y propiedades.

LA POTENCIA Y SUS ELEMENTOS

La potencia se define como el resultado (b) de la multiplicación de la base (a) tantas veces como lo indica el exponente (n). En esta operación, a y b son números reales y n es un número entero.

– Ejemplo:

\boldsymbol{4^{3}=4\times 4\times4 =64}

\boldsymbol{5^{4}=5\times 5\times 5\times 5=625}

\boldsymbol{8^{2}=8\times 8 = 64}

¿Cómo se lee una potencia?

Si quieres leer una potencia es necesario que hayas aprendido bien a identificar sus elementos para luego aplicar los siguientes pasos.

  1. Lee la base como cualquier número seguido de la expresión “elevado a la” o “elevado al” según sea el caso.
  2. Lee el exponente como un número ordinal. A excepción del 2 y 3 que se expresan como “al cuadrado” y “al cubo” respectivamente.

– Ejemplo:

\boldsymbol{5^{{\color{Red} 3}}} se lee “cinco al cubo”.

\boldsymbol{4^{{\color{Red} 2}}} se lee “cuatro al cuadrado”.

\boldsymbol{9^{{\color{Red} 5}}} se lee “nueve a la quinta”.

¿Sabías qué?
René Descartes (1596-1650) realizó contribuciones importantes a la matemática y popularizó la notación para la potenciación. 

VER INFOGRAFÍA

¡A practicar!

¿Cómo se leen estas potencias?

\boldsymbol{4^{3}}

Solución

Cuatro al cubo.

\boldsymbol{25^{6}}

Solución

Veinticinco a la sexta.

\boldsymbol{64^{9}}

Solución

Sesenta y cuatro a la novena.

PROPIEDADES DE LA POTENCIA

Potencia de un exponente 0

Todo número elevado a la potencia cero es igual a 1.

\boldsymbol{a^{0}=1}

– Ejemplo:

\boldsymbol{5^{0}=1}

\boldsymbol{\left ( -3 \right )^{0} = 1}

Potencia de un exponente 1

Todo número elevado a la potencia 1 es igual al mismo número.

\boldsymbol{a^{1}=a}

– Ejemplo:

\boldsymbol{5^{1}=5}

\boldsymbol{\left ( -3 \right )^{1} = -3}

Potencia de un exponente negativo

Todo número elevado a la potencia negativa es igual a la fracción de uno sobre la misma base con potencia positiva.

\boldsymbol{a^{-n}=\frac{1}{a^{n}}}

– Ejemplo:

\boldsymbol{5^{-1}=\frac{1}{5^{1}}=\frac{1}{5}}

\boldsymbol{(-3)^{-2}=\frac{1}{(-3)^{2}} = \frac{1}{9}}

Multiplicación de potencias de igual base

En la multiplicación de potencias de igual base se coloca la misma base y se suman los exponentes.

\boldsymbol{a^{n}\times a^{m}=a^{n + m}}

– Ejemplo:

\boldsymbol{3^{2}\times 3^{4}=3^{2 + 4}=3^{6}}

\boldsymbol{(-7)^{5}\times (-7)^{-3}=(-7)^{5+( - 3)}=(-7)^{2}}

División de potencias de igual base

En la división de potencias se coloca la misma base y se restan los exponentes.

\boldsymbol{\frac{a^{n}}{a^{m}}=a^{n-m}}

– Ejemplo:

\boldsymbol{\frac{4^{6}}{4^{2}}=4^{6-2}=4^{4}}

\boldsymbol{\frac{(-3)^{-2}}{(-3)^{4}}=(-3)^{-2-4}= (-3)^{-6}}

Potencia de una potencia

En toda potencia elevada a otra potencia se coloca la misma base y se multiplican los exponentes.

\boldsymbol{(a^{n})^{m}=a^{n \times m}}

– Ejemplo:

\boldsymbol{(9^{2})^{3}=9^{2 \times 3}=9^{6}}

\boldsymbol{((-8)^{2})^{3}=(-8)^{2\times 3}=(-8)^{6}}

Potencia de un exponente racional

En una potencia con exponente fraccionario se extrae el denominador del exponente en forma de raíz y el numerador queda como exponente de la potencia.

\boldsymbol{a^{\frac{n}{m}}= \sqrt[m]{a^{n}}}

– Ejemplo:

\boldsymbol{5^{\frac{7}{3}}= \sqrt[3]{5^{7}}}

\boldsymbol{(-2)^{\frac{4}{5}}= \sqrt[5]{(-2)^{4}}}

Multiplicación de potencias con el mismo exponente

En la multiplicación de potencias de igual exponente se multiplican las bases y se coloca el mismo exponente.

\boldsymbol{a^{n}\times b^{n}=(a\times b)^{n}}

– Ejemplo:

\boldsymbol{5^{3}\times 4^{3}=(5\times 4)^{3}=(20)^{3}}

\boldsymbol{(-3)^{3}\times (-6)^{3}=((-3)\times (-6))^{3}=(18)^{3}}

División de potencias con el mismo exponente

En la división de potencias de igual exponente se coloca el mismo exponente y se dividen las bases.

\boldsymbol{\frac{a^{n}}{b^{n}}=(\frac{a}{b})^{n}}

– Ejemplo:

\boldsymbol{\frac{8^{2}}{4^{2}}=(\frac{8}{4})^{2}=2^{2}}

\boldsymbol{\frac{(-6)^{3}}{(-3)^{3}}=(\frac{(-6)}{(-3)})^{3}=2^{2}}

¿Resultado par o impar?

Toda potencia de base negativa con exponente par da como resultado un número positivo. Por ejemplo:

\boldsymbol{\left ( -3 \right )^{4} = (-3)\times (-3)\times (-3)\times (-3)=81}

Toda potencia de base negativa con exponente impar da como resultado un número negativo. Por ejemplo:

\boldsymbol{\left ( -2 \right )^{5} = (-2)\times (-2)\times (-2)\times (-2)\times (-2)=-32}

Potencias de base 10

Las potencias de base 10 son fáciles de calcular porque el valor es igual a la base seguida de tantos ceros como indica el exponente. Estas son muy útiles para escribir de forma polinómica un número, es decir, permiten escribir números muy grandes de forma reducida.

\boldsymbol{10^{2} = 10 \times 10 = 100}

\boldsymbol{10^{3} = 10 \times 10\times 10 = 1.000}

\boldsymbol{10^{4} = 10 \times 10\times 10\times 10 = 10.000}

\boldsymbol{10^{5} = 10 \times 10 \times 10\times 10\times 10 = 100.000}

\boldsymbol{10^{6} = 10 \times 10\times 10\times 10\times 10\times 10 = 1.000.000}

APLICACIONES DE LAS POTENCIAS

Debido a las diversas propiedades que estas poseen pueden utilizarse para:

  • Aplicar el teorema de Pitágoras
Uno de los teoremas más famosos de la geometría es el teorema de Pitágoras. Este emplea potencias para expresar su fórmula, la cual dice que la hipotenusa al cuadrado de un triángulo rectángulo es igual a la suma de sus catetos al cuadrado, es decir, C= A+ B2.
  • Emplear la notación científica

La notación científica utiliza potencias de base 10 para expresar números muy grandes o muy pequeños en forma reducida. Observa cómo algunos números pueden ser expresados de forma simplificada:

\boldsymbol{0,00000465 = 465\times 10^{-8}}

\boldsymbol{0,00000465 = 46,5\times 10^{-7}}

\boldsymbol{0,00000465 = 4,65\times 10^{-6}}

  • Expresar sucesiones matemáticas y progresiones geométricas

Existen series matemáticas que requieren el uso de las potencias para expresar su forma general o enésima.

Uno de los campos o áreas que usan la potenciación es la biología, específicamente en el estudio de la reproducción de virus y bacterias. Allí, para poder expresar su rápido crecimiento, es necesario emplear este tipo de operación matemática.

¡A practicar!

1. Resuelve las siguientes potencias y aplica las propiedades necesarias:

\boldsymbol{4^{3}+5^{2}=}

Solución

\boldsymbol{4^{3}+5^{2}= 4\times 4\times 4+5\times 5=64+25 = 89}

\boldsymbol{3^{3}\times 9^{3}=}

Solución

\boldsymbol{3^{3}\times 9^{3}= (3\times 9)^{3}= (27)^{3}=27\times 27\times 27=19.683}

\boldsymbol{\frac{8^{5}}{8^{3}}=}

Solución

\boldsymbol{\frac{8^{5}}{8^{3}}= 8^{5-3}=8^{2}= 8\times 8=64}

\boldsymbol{(\frac{4^{3}}{4^{2}})^{2}+\frac{5^{6}\times4^{3}}{5^{5}\times4^{2}}-\frac{2^{0}\times1^{9}}{5^{0}}}

Solución

\boldsymbol{(\frac{4^{3}}{4^{2}})^{2}+\frac{5^{6}\times4^{3}}{5^{5}\times4^{2}}-\frac{2^{0}\times1^{9}}{5^{0}}= 4^{6-4}+5^{6-5}\times4^{3-2}-\frac{1\times1}{1}}

\boldsymbol{4^{2}+5^{1}\times4^{1}-\frac{1\times1}{1}=4\times4+20-1=16+19=35}

2. Expresa los siguientes números en notación científica.

  • \boldsymbol{1.320.000}
Solución

\boldsymbol{1.320.000=1,32\times 10^{6}=13,2\times 10^{5}=132\times 10^{4}}

  • \boldsymbol{0,000968}
Solución

\boldsymbol{0,000968 = 968\times 10^{-6}}

RECURSOS PARA DOCENTES

Artículo “Propiedades de potencias”

En el siguiente artículo hay más estrategias para ampliar los conocimientos acerca de las propiedades de las potencias.

VER

Artículo “Ejercicios de propiedades de la potencia”

El siguiente recurso le brindará apoyo con ejercicios de potencias, con sus resultados y explicaciones.

VER

CAPÍTULO 1 / TEMA 5

SUCESIONES

Hacemos uso de las sucesiones al contar los días de la semana, del mes o del año. También al contar las horas del día o simplemente al contar los pasos para llegar a casa. Las sucesiones no son más que un conjunto de números organizados de un forma determinada. No solo las podemos encontrar con números, sino también con figuras.

Las primeras nociones sobre las sucesiones fueron propuestas por Fibonacci. A él se le ocurrió estudiar este concepto por medio de la relación que tenía con la reproducción de los conejos. ¡Sí! Los conejos se reproducen de forma sucesiva. Cada mes una hembra puede dar a luz, y por lo tanto, puede tener cientos de hijos al año.

¿QUÉ SON SUCESIONES?

Una sucesión es un conjunto de elementos ordenados de forma ascendente o descendente. Los elementos de este conjunto se denominan términos y estos siguen una regla, la cual permite calcular cada uno de ellos.

Las sucesiones pueden ser finitas o infinitas. Las sucesiones finitas tienen un número determinado de términos y las infinitas no tienen término final. Por ejemplo:

  • Sucesión finita = \boldsymbol{\left \{ 2,4,6,8,10 \right \}}
  • Sucesión infinita = \boldsymbol{\left \{ 3,6,9,12,15,18... \right \}}
¿Sabías qué?
Los puntos suspensivos (…) indican que la sucesión continua hasta el infinito.

Términos de una sucesión

Los términos de una sucesión se expresan con subíndices: a1, a2, a3, a4, a5, los cuales indican la posición de cada uno dentro de la secuencia, por ejemplo, el término a1 ocupa la primera posición de la secuencia, el término a2 corresponde al segundo lugar y así sucesivamente con cada uno.

Podemos calcular cada término de una sucesión de acuerdo a esta relación:

an = a0 + nr

Donde:

a0: término anterior al primero.

r: regla de la sucesión.

n: número de término.

– Ejemplo:

Podemos representar una sucesión por un término general o enésimo. En este caso su fórmula es:

an = −1 + n · (+3)

an = −1 + 3n

Observa que la regla de sucesión (r) es +3, por lo tanto, el término anterior al primero (t0) es igual a −1. Si queremos hallar el término a8 solo aplicamos la fórmula anterior:

a8 = −1 + 3 · 8 ⇒ a8 = −1 + 24 ⇒ a8 = 23

¿Cuáles son los términos?

Emplea la fórmula y determina cuáles son los términos a10, a12 y a15 de la secuencia anterior.

Solución

a10 = −1 + 3 · 10 ⇒ a10 = −1 + 30 ⇒ a10 = 29

a12 = −1 + 3 · 12 ⇒ a12 = −1 + 36 ⇒ a12 = 35

a15 = −1 + 3 · 15 ⇒ a15 = −1 + 45 ⇒ a15 = 44

Sucesión de Fibonacci

Una de las sucesiones conocidas más importantes es la de Fibonacci. Este tipo de secuencia lleva su nombre en honor al matemático italiano Leonardo Fibonacci y se caracteriza por el hecho de que cada número resulta de sumar los dos números anteriores a este. El término general de la misma es a_{n}= a_{n-1} + a_{n-2} y la forma más básica de este tipo de sucesión es: 1,1,2,3,5,8,13,21,34,55,89,144,233...

VER INFOGRAFÍA

SUCESIONES CON FIGURAS

No solo podemos encontrar sucesiones de números, también es posible encontrar sucesiones con diferentes figuras. Por ejemplo:

En ella se puede ver que las figuras están en orden ascendente con respecto a sus lados. Cada figura tiene un lado más que la anterior.

– Ejemplo 2:

También es posible conseguir sucesiones con figuras en distintas posiciones, como este ejemplo:

Como puedes ver en la imagen, todas las flechas tienen una dirección y sentido diferente, pero si te fijas con atención, el movimiento es igual al de las agujas del reloj, es decir, van en sentido horario. Este patrón nos permite saber cuál será la próxima figura en la sucesión:

Uno de los campeonatos más vistos es el Mundial de fútbol de la FIFA. En este, se clasifican 32 selecciones y, a medida que transcurre el torneo, se eliminan la mitad de los equipos en encuentros entre ellos. Así, comienzan 32, luego 16, 8, 4, 2, hasta que solo queda 1, el equipo campeón. Como ves, esta es una sucesión descendente en la que cada término es igual a la mitad del anterior.

SUCESIONES CON SUMAS Y RESTAS

Podemos construir sucesiones por medio de sumas, restas o la combinación de ambas operaciones. Por ejemplo:

– Otro ejemplo:

En la sucesión anterior, a medida que disminuye el número en cada término, la resta entre el término siguiente y el anterior aumenta.

Algunas aplicaciones

Debido a lo práctico que resulta expresar en forma general una secuencia ordenada de números, las sucesiones matemáticas han sido aplicadas en muchas disciplinas además de la matemática. Por ejemplo, la sucesión de Fibonacci se ha aplicado en la arquitectura, el arte y la informática.

Las progresiones son un tipo de sucesiones que se utilizan para realizar diversos cálculos como la determinación del interés compuesto. Las progresiones aritméticas también se usan en las interpolaciones, que consisten en calcular valores que se encuentran entre dos dados.

¡A practicar!

1. Consigue la regla de la sucesión en cada caso.

  • {2, 4, 6, 8, 10, 12, 14}
Solución

  • {45, 44, 42, 39, 35, 30, 24, 17, 9} 
Solución

2. ¿Cuál es la imagen que falta?

Solución

3. ¿Cuáles son las figuras que deben ir en los espacios en gris?

Solución

4. Selecciona cuál de las imágenes del segundo bloque es la que corresponde al cuadrado que falta en el primer bloque.

Solución

5. Calcula el término a25 de la siguiente sucesión:

{23, 27, 31, 35, 39}

Solución
  • Datos:

a0 = 19

r = +4

  • Término enésimo:

an = 19 + n · (+4)

an = 19 + 4n

  • Resultado:

a25 = 19 + 4 · 25

a25 = 19 + 100

a25 = 119  

RECURSOS PARA DOCENTES

Artículo “Sucesiones”

Este artículo lo ayudará a complementar la información sobre las sucesiones.

VER

Artículo “Sucesiones y series”

Con este artículo podrá ampliar los conocimiento sobre las series y sucesiones.

VER

 

CAPÍTULO 1 / TEMA 4

NÚMEROS DECIMALES

Los números decimales son todos aquellos que tienen una parte entera y una parte decimal, es decir, una cantidad menor que la unidad y mayor que cero. Estos números los podemos encontrar en todas partes, como en los precios de los productos del supermercado.

CARACTERÍSTICAS DE LOS NÚMEROS DECIMALES

Los números decimales están formados por dos partes separadas con una coma de la siguiente manera:

Los números decimales también son llamados números fraccionarios. Estos se utilizan para realizar mediciones con mayor precisión. Por ejemplo, al medir la estatura de una persona. Si decimos que alguien mide 1 m no sabríamos con exactitud la medida, en cambio, si usamos números decimales podemos decir que una persona mide 1,65 m o 165 cm.

Clasificación de números decimales

Números decimales exactos

Tienen un número limitado de cifras decimales. Por ejemplo:

1,25

Números decimales periódicos

Tienen una o más cifras decimales que se repiten de forma ilimitada o infinita. Podemos distinguir dos tipos de números decimales periódicos:

  • Números decimales periódicos puros: son aquellos números en los cuales la parte decimal periódica comienza inmediatamente después de la coma. La parte que se repite indefinidamente en estos números es señalada con una línea horizontal o arco en la parte superior. Por ejemplo:

0,66666 = 0, \widehat{6}

  • Números decimales periódicos mixtos: son los que están formados por dos partes decimales: una cifra que no se repite que está justo después de la coma, denominada ante-período; y la parte periódica. Por ejemplo:

3,233333 = 3,2\widehat{3}Números decimales no periódicos

No tienen cifras decimales con un patrón repetido indefinidamente. Un ejemplo de estos son los números irracionales, como el número pi.

\pi = 3,14159265...

¡A practicar!

Ya que conoces cómo están formados los números decimales, ¡consíguelos en este cuadro!

Solución

Número de Euler

Existen números decimales famosos y uno de ellos es el número de Euler, también denominado constante de Napier. Este número decimal fue utilizado por John Napier para introducir el concepto de logaritmo. No obstante, Leonhard Euler fue quien utilizó la letra e para representar dicha constante en el año 1727. El número es utilizado en cálculo, álgebra y números complejos.

e = 2,7182818284590452353602874713527 ...

LECTURA DE NÚMEROS DECIMALES

Podemos realizar la lectura de un número decimal de dos formas. Para ello, tomaremos como ejemplo el número 698,754980213, el cual podemos representarlo así de acuerdo a su valor posicional:

  • Primera forma de leer el número:
  1. Lee la parte entera de izquierda a derecha seguida de la palabra “enteros”.
  2. Lee toda la parte decimal como se lee la parte entera.
  3. Menciona la posición en la que se encuentra la última cifra decimal.

Entonces, el número 698,754980213 se lee “seiscientos noventa y ocho enteros setecientos cincuenta y cuatro millones novecientos ochenta mil doscientos trece milmillonésimas“.

  •  Segunda forma de leer el número:
  1. Lee la parte entera de izquierda a derecha seguida de la palabra “coma”.
  2. Lee toda la parte decimal como se lee la parte entera.

De este manera, el número 698,754980213 se lee “seiscientos noventa y ocho coma setecientos cincuenta y cuatro millones novecientos ochenta mil doscientos trece”.

¡Es tu turno!

Utiliza el primer método para leer estos números decimales:

  1. 456,268435 
    Solución
     456,268435 = cuatrocientos cincuenta y seis enteros doscientos sesenta y ocho mil cuatrocientos treinta y cinco millonésimas.
  2. 35.413,9346103 
    Solución
    35.413,9346103 = treinta y cinco mil cuatrocientos trece enteros nueve millones trescientos cuarenta y seis mil ciento tres diezmillonésimas.
  3. 58,79516428
    Solución
    58,79516428 = cincuenta y ocho enteros setenta y nueve millones quinientos dieciséis mil cuatrocientos veintiocho cienmillonésimas.

REDONDEO DE NÚMEROS DECIMALES

Todo número decimal puede ser redondeado. El redondeo se refiere a reducir la cantidad de cifras de un número para tener un valor similar. Las reglas son las siguientes:

  • Redondeo por defecto: si la última cifra del número que deseamos redondear es 1, 2, 3 o 4, la sustituimos por 0, y no variamos la penúltima cifra. Por ejemplo, el número 18,3.

  • Redondeo por exceso: si la última cifra es 5, 6, 7, 8 o 9, también sustituimos por 0, pero en este caso aumentamos la penúltima cifra en 1. Por ejemplo, el número 45,8.

El símbolo (≈) significa aproximado.

Todo número decimal puede ser redondeado. El redondeo se refiere a reducir la cantidad de cifras de un número para tener un valor similar. Saber esta práctica puede ser muy útil en nuestro día a día, pues cuando vamos a pagar una cuenta hacemos un redondeo de la cifra de forma mental para saber con qué billete vamos a pagar.

Redondeo por aproximación

Podemos aproximar los números decimales a la unidad más cercana, es decir, acercarlo a un número de la recta numérica que tenga menos decimales que este por medio de las mismas reglas. También los podemos aproximar a las décimas, centésimas, milésimas, etc., más cercanas. Por ejemplo, observa los siguientes números y redondéalos: 18,82653 y 45,73286.

El primer número lo aproximamos mediante la regla de redondeo por defecto, ya que la última cifra está entre 0 y 4. Aquí la cifra se aproximó a la diezmilésima más cercana.

 

Y para el segundo número seguimos la regla de exceso, ya que la última cifra está entre 5 y 9. Aquí la cifra se aproximó a la a la diezmilésima más cercana.

¡A practicar!

Convierte los siguientes números decimales a enteros por redondeo:

  • 465,568 
    Solución
    466
  • 84,91 
    Solución
    85
  • 14,3 
    Solución
    14
  • 9.214,12 
    Solución
    9.214

Aproxima estos números a las décimas, centésimas o milésimas más cercanas:

  • 326,3462 
    Solución
    326,346
  • 486,945  
    Solución
    486,95
  • 45,87
    Solución
    45,9 
RECURSOS PARA DOCENTES

Artículo “Números decimales”

Este artículo ayuda a complementar la información sobre los números decimales.

VER

Artículo “Operaciones con decimales”

Con este recurso podrá obtener conocimiento sobre las operaciones con los números decimales y profundizar al respecto.

VER