CAPÍTULO 7 / TEMA 2

LA RECTA NUMÉRICA

Se trata de una herramienta muy útil para representar de forma ordenada los números reales en una dimensión, de manera que podamos visualizar con facilidad aspectos como la secuencia y la relación entre varios números, así como también soluciones de inecuaciones. Fue propuesta por John Wallis y es la base para la construcción del plano cartesiano.

Al igual que en la recta numérica, los números de las escalas en los instrumentos de medición, tales como una regla o cinta métrica, se encuentran ubicados de forma ordenada y con números consecutivos equidistantes. Las divisiones pueden a su vez contener subdivisiones para expresar fracciones o decimales de una medida.

ELEMENTOS DE UNA RECTA NUMÉRICA

Los elementos que podemos incluir en una recta numérica son muy variables, ya que dependerán del uso que hagamos de ella; pero, en esencia, la recta numérica está conformada por una recta horizontal en la que se indican generalmente los números enteros (\mathbb{Z}) con un origen (0) ubicado en el centro. Sin embargo, esta recta no es exclusiva de los números enteros, ya que en ella podemos representar cualquier número real (\mathbb{R}).

A la izquierda del cero se encuentran los números negativos y hacia la derecha los positivos. Además, suponemos que la prolongación de los extremos de la recta representa el infinito tanto positivo (a la derecha) como negativo (a la izquierda).

Los valores en la recta numérica se pueden representar de uno en uno, pero también se puede seleccionar a conveniencia una escala diferente, por ejemplo, de 0,5 en 0,5; o bien, de 3 en 3. También, podemos subdividir cada espacio en la recta real para representar números decimales o fracciones.

La escala de la regla es equivalente a la sección positiva de una recta numérica con una cantidad finita de números. En este caso, los centímetros son la escala principal y las subdivisiones representan los milímetros que proporcionan la parte decimal de una medida. A la menor medida que se pueda obtener con un instrumento se le denomina apreciación.

EL ORDEN DE LOS NÚMEROS

En la recta numérica los números están ordenados en forma ascendente de izquierda a derecha, es decir, si se comparan dos números, será mayor el que se localice más a la derecha.

Como ya hemos visto, cada división puede subdividirse para representar fracciones, las cuales pertenecen al conjunto de los números racionales (\mathbb{Q}). Si para una determinada fracción realizamos la división del numerador entre el denominador, encontraremos su expresión decimal equivalente, es decir, toda fracción se puede expresar como un decimal; sin embargo, no todos los decimales tienen una fracción generatriz.

 

Los números decimales que no podemos expresar en fracciones pertenecen al conjunto de los números irracionales (\mathbb{I}), por ejemplo, el valor \sqrt{2} o la constante \pi. A su vez, los números irracionales son un subconjunto de los números reales.

¿Sabías qué?
Los números negativos fueron aceptados universalmente e incluidos en la recta numérica a finales del siglo XVIII.
La constante π (pi) es un valor que contiene infinitos dígitos no periódicos en su parte decimal, por lo que pertenece al conjunto de los números irracionales. Su ubicación exacta en la recta real supone un inconveniente, por lo que se suele realizar un redondeo, por ejemplo, hasta la centésima (3,14) al momento de representar su valor en la recta numérica.

VER INFOGRAFÍA

Adición y sustracción con la recta numérica

Podemos utilizar la longitud de segmentos de línea a escala sobre la recta numérica para efectuar operaciones de suma y resta. Por ejemplo:

Si queremos sumar 3 + 5, a partir del 0 representamos de izquierda a derecha un segmento de recta de longitud igual a 3 unidades y seguidamente dibujamos de izquierda a derecha otro segmento de longitud igual a 5 unidades. El resultado, será el valor indicado desde cero hasta donde llegue el último segmento trazado:

Ahora bien, si queremos restar 6 − 4, a partir de 0 debemos dibujar de izquierda a derecha una recta de longitud 6 unidades y luego, donde termina dicha recta, trazamos ahora de derecha a izquierda otra recta de longitud 4 unidades (quedará sobre el primer segmento dibujado). El resultado, será el valor indicado desde cero hasta el punto donde coinciden los dos segmentos de recta:

¿CÓMO UBICAR UN RADICAL EN LA RECTA NUMÉRICA?

Algunos números, en especial los radicales, resultan complicados de ubicar con precisión en la recta real, sin embargo, en algunos casos podemos hacer uso del teorema de Pitágoras y un compás, para determinar la ubicación precisa de estos valores.

Cabe destacar que este método es útil cuando podemos expresar el radical como la suma de dos términos que tienen raíces exactas, digamos: 1, 4, 9, 16, 25, 36, 49… entre otros.

Uno de los legados más conocidos del filósofo griego Pitágoras fue el teorema que lleva su nombre, el cual establece que en cualquier triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma del cuadrado de los catetos. Hasta la fecha, este se considera uno de los teoremas más utilizados en la matemática y la física clásica.

Por ejemplo, si deseamos ubicar \sqrt{13} en la recta numérica el procedimiento es el siguiente:

  • Descomponemos el número dentro del radical como la suma de dos términos con raíces enteras:

\sqrt{13}=\sqrt{9+4}

  • Expresamos cada término como la suma de dos cuadrados, es decir, cada término será la raíz de ese valor elevado al cuadrado:

\sqrt{9+4}=\sqrt{3^{2}+2^{2}}

  • Si hacemos la analogía con el teorema de Pitágoras:

  • La base de cada cateto a y b son los valores de los términos que están elevados al cuadrado dentro de la raíz, es decir, 3 y 2.
  • Para representar el radical en la recta numérica, a partir del cero (0) se construye un rectángulo de base a y altura b (o viceversa); y la diagonal que parte de cero a la otra esquina será la hipotenusa del triángulo rectángulo que quedará con la medida del radical que deseas ubicar.
  • Con un compás, hacemos centro en el origen 0 y con abertura equivalente a la diagonal (hipotenusa), trazamos un arco de circunferencia hasta que corte la recta numérica y ese será el valor del radical que deseamos ubicar: \sqrt{13}.

 

VER INFOGRAFÍA

¡A practicar!

Ubica los siguientes valores en la recta numérica:

a) \frac{3}{4}

Solución

b) \frac{1}{3}

Solución

c) −0,5

Solución

d) Ubica en la recta numérica el valor de \sqrt{20}

Solución
RECURSOS PARA DOCENTES

Artículo “La recta numérica”

En este artículo encontrarás contenido relacionado con la ubicación de los diferentes conjuntos de números en la recta real, y en particular, la explicación de cómo ubicar un número irracional en dicha recta.

VER

Artículo “Recta numérica”

En este artículo se describen los pasos para ubicar un número entero, fracciones o decimales en la recta numérica.

VER

CAPÍTULO 4 / TEMA 6 (REVISIÓN)

ORDEN Y RELACIONES | ¿QUÉ APRENDIMOS?

RECTA NUMÉRICA

La recta numérica es un gráfico en el que podemos representar cualquier número que pertenezca al conjunto de los números reales (\mathbb{R}). Tiene intervalos que señalan las unidades y siempre tienen la misma distancia entre un número y su consecutivo. Por otra parte, los distintos tipos de relaciones que existen entre los números se pueden mostrar por medio de los símbolos “<” y “>” que significan “menor que” y “mayor que” respectivamente.

Una regla graduada es muy parecida a una recta numérica.

ORDEN DE NÚMEROS NATURALES Y DECIMALES

Para ubicar los números naturales en la recta numérica ubicamos el 0 en una posición arbitraria y luego colocamos el resto de los números naturales en intervalos regulares. Si deseamos comparar números naturales usamos los símbolos < y > o la recta numérica, pues todo número que esté más a la derecha en la recta siempre será el mayor. Para ubicar números decimales en la recta numérica, debemos agregar subdivisiones entre los números enteros. Cuando queremos compararlos, primero tomamos en cuenta la parte entera y luego comparamos las cifras decimales de izquierda a derecha.

Sí bien algunos expertos afirman que el número cero (0) no pertenece al conjunto de los números naturales, otros aseguran que sí forma parte.

ORDEN DE FRACCIONES

Las fracciones también tiene un lugar en la recta numérica, para esto tenemos que considerar si la fracción es propia o impropia. De ser propia dividimos a la unidad en tantos segmentos como indique el denominador y contamos tantos segmentos como indique el numerador, luego marcamos la fracción. Si la fracción es impropia, tenemos que convertirla primero en un número mixto, en este caso, seguimos el procedimiento anterior pero a partir de la parte entera que tenga el número mixto.

Si comparamos fracciones con igual numerador y diferente denominador, será mayor aquella que tenga menor denominador.

PROPORCIONALIDAD

La proporcionalidad es una relación que existe entre dos magnitudes que podemos medir, y puede ser directa o inversa. Dos cantidades son directamente proporcionales si cuando una aumenta la otra aumenta o si cuando una disminuye la otra también lo hace. Por otro lado, al convertir medidas lo hacemos por medio de una regla de tres, un método muy útil para saber un valor desconocido entre 2 relaciones.

Siempre que vamos a un kiosco, sabemos que mientras más compremos, más tendremos que pagar; eso es porque la “cantidad que compramos” y la “cantidad que debemos pagar” tienen una relación directamente proporcional.

RELACIONES DE TIEMPO

El tiempo es quizás la magnitud más usada y medida diariamente. Sus unidades son variadas y van desde las menores a un día, como los segundos, los minutos y las horas; hasta las que sobrepasan al día como los meses, años y décadas. Si usamos una regla de tres podemos convertir una unidad a otra sin dificultad. También podemos hacer cálculos de suma y resta con el tiempo, esto nos ayuda a saber cuando empezó un partido de fútbol o qué hora salió un tren, por ejemplo.

Los calendarios o agendas son útiles para planificar las actividades a realizar a lo largo del día.

CAPÍTULO 4 / TEMA 3

ORDEN DE FRACCIONES

Si tienes que elegir entre 1/2 de pizza o 3/4 de pizza, ¿cuál elegirías? Para responder esta pregunta es importante que sepas comparar distintos tipos de fracciones. Estas expresiones matemáticas constan de un numerador y un denominador, y según la relación entre ellos pueden ser mayores o menores que otras. ¡Aprende cómo ordenar fracciones!

Una fracción es una división entre dos números: un numerador y un denominador. El denominador indica en cuantas partes se divide la unidad y el numerador señala cuántas de esas partes se han de tomar. Si el numerador es menor que el denominador, la fracción es propia; pero si es mayor al denominador, la fracción es impropia.

Ubicación de fracciones en la recta numérica

Fracciones propias

Las fracciones propias son aquellas que tienen el numerador menor al denominador, por lo que siempre son menores a 1. Para ubicar estas fracciones en la recta numérica dividimos a la unidad en tantos segmentos como indique el denominador de la fracción que queremos representar. Luego, contamos tantos espacios como indique el numerador a partir del cero.

– Ejemplo:

La fracción \frac{4}{5} es propia porque su numerador es menor al denominador (4 < 5).

Para representarla en la recta dividimos el segmento entre el 0 y el 1 en 5 espacios (denominador). Después contamos 4 espacios (numerador) y ubicamos la fracción.

Fracciones impropias

Las fracciones impropias son aquellas cuyo numerador es mayor al denominador, por lo que siempre son mayores a 1. Para representar este tipo de fracciones en la recta numérica tenemos que transformarlas a números mixtos.

¿Qué es un número mixto?

Es aquel que tiene una parte entera y una parte fraccionaria. Por ejemplo:

\boldsymbol{2\frac{1}{2}=} 

Este número mixto se lee “dos enteros y un medio”.

¿Cómo transformar una fracción impropia a un número mixto?

Realiza la división entre el numerador y el denominador. Al terminar con la cuenta, el cociente de la división indica el entero del número mixto; el resto junto al divisor van a conformar la parte fraccionaria: el resto será el numerador y el divisor será el denominador.

– Ejemplo:

¿Cuál es el número mixto equivalente a la fracción \frac{5}{2}?

Por lo tanto:

\boldsymbol{\frac{5}{2}=2\frac{1}{2}}

 

De este modo, para poder representar el número mixto 2\frac{1}{2} en la recta numérica consideramos el número entero, en este caso el 2, y a partir de este seguimos los mismos pasos que en las fracciones propias: dividimos el segmento entre el 2 y el 3 en 2 segmentos iguales (denominador), después contamos un espacio (numerador) y ubicamos la fracción.

VER INFOGRAFÍA

¡Es tu turno!

Representa las siguientes fracciones en una recta numérica.

  • \frac{7}{5}
Solución

Como la fracción es impropia, la transformamos a número mixto.

\boldsymbol{\frac{7}{5}=1\frac{2}{5}}

  • \frac{1}{5}
Solución

  • \frac{8}{10}
Solución

  • \frac{9}{6}
Solución

Como la fracción es impropia, la transformamos a número mixto.

\boldsymbol{\frac{9}{6}=1\frac{3}{6}}

 

Las fracciones representan una parte del todo. No solo son importantes en el ámbito escolar, sino que son muy utilizadas en la vida diaria. Usamos fracciones cada vez que partimos un pastel, cuando pedimos media docena de empanadas o cuando cortamos la mitad de un pan. También vemos fracciones en las etiquetas de los productos, por ejemplo, 1/2 litro de jugo.

comparación de fracciones

Cuando comparamos fracciones, determinamos cuál es mayor o menor que otra. Para esto, debemos tomar en cuenta sus elementos y ver si los denominadores son iguales o si sus numeradores son iguales.

Comparar fracciones con igual denominador

Entre dos fracciones con igual denominador será mayor la fracción que tenga mayor numerador.

– Ejemplo:

\boldsymbol{\frac{8}{3}>\frac{6}{3}}

Observa que los denominadores son iguales (3 = 3) pero los numeradores no; y como 8 > 6, la fracción 8/6 es mayor que 6/3.

Comparar fracciones con igual numerador

Entre dos fracciones con igual numerador será mayor la fracción que tenga menor denominador.

– Ejemplo:

\boldsymbol{\frac{12}{5}<\frac{12}{4}}

Observa que los numeradores son iguales (12 = 12) pero los denominadores no; y como 5 > 4, la fracción 12/4 es mayor que 12/5.

Fracciones con distintos numeradores y denominadores

Cuando las dos fracciones tienen numeradores y denominadores diferentes, buscamos homogeneizar, es decir, encontrar fracciones equivalentes con igual denominador.

¿Cómo homogeneizar dos fracciones?

Para encontrar las fracciones equivalentes con igual denominador de unas fracciones seguimos estos pasos:

  1. Determinamos el mínimo común múltiplo de los denominadores. Ese será el denominador de las fracciones equivalentes.
  2. Encontramos el número por el que hay que multiplicar el numerador y el denominador de las fracciones.

– Ejemplo:

Homogeneiza las fracciones \boldsymbol{\frac{2}{3}} y \boldsymbol{\frac{3}{4}}. Luego compara.

1. Calculamos el m. c. m. de los denominadores 3 y 4.

2. Encontramos el número por el que hay que multiplicar el numerador y el denominador de las fracciones.

Como 3 × 4 = 12, entonces también multiplicamos el numerador por 4.

\frac{2}{3}=\frac{2\times 4}{12}=\boldsymbol{ \frac{8}{12}}

Como 4 × 3 = 12, entonces también multiplicamos el numerador por 3.

\frac{3}{4}=\frac{3\times 3}{12}=\boldsymbol{\frac{9}{12}}

 

Ahora es más sencillo comparar las fracciones, pues tenemos fracciones homogéneas por lo que seguimos los pasos anteriores: entre dos fracciones con igual denominador será mayor la fracción que tenga mayor numerador. Así que:

\boldsymbol{\frac{9}{12}>\frac{8}{12}} Como \frac{9}{8} es la fracción equivalente de \frac{3}{4}; y \frac{8}{12} es la fracción equivalente de \frac{2}{3}, podemos decir que:

\boldsymbol{\frac{3}{4}>\frac{2}{3}}

 

¿Sabías qué?
En el año 1800 a. C. el pueblo babilonio introdujo las fracciones.

Comparación de números mixtos

Entre dos números mixtos, será mayor aquel que tenga mayor parte entera. Por ejemplo:

\boldsymbol{2\frac{3}{4}<3\frac{5}{3}}

Pero si las partes enteras son iguales, comparamos la parte fraccionaria por medio de cualquier de los métodos aplicados anteriormente. Por ejemplo:

\boldsymbol{1\frac{4}{6}>1\frac{1}{6}}

Las dos partes entera son iguales (1 = 1), pero las partes fraccionarias no. Como ves, ambas son fracciones homogéneas porque los denominadores son iguales (6 = 6), así que comparamos los numeradores, y como 4 > 1, el número mixto 1\frac{4}{6} es mayor que 1\frac{1}{6}.

Un uso muy popular de las fracciones es cuando damos la hora. Por ejemplo, cuando decimos que son “las dos y media”, hacemos referencia a un número mixto en la que la parte entera es 2, y la parte fraccionaria es 1/2. También ocurre cuando decimos que “son las cinco y cuarto”, allí la parte entera es 5 y la parte fraccionaria es 1/4.

 

¡A practicar!

1. Representa las siguientes fracciones en la recta numérica.

  • \frac{4}{9}
Solución

  • \frac{9}{5}
Solución

\frac{9}{5}=1\frac{4}{5}

  • \frac{2}{10}
Solución

  • 6\frac{3}{5}
Solución

 

2. Compara los siguientes números mixtos.

  • 4\frac{1}{6} y 2\frac{1}{2}
Solución
4\frac{1}{6}>2\frac{1}{2}
  • 1\frac{7}{8} y 2\frac{2}{6}
Solución
1\frac{7}{8}<2\frac{2}{6}
  • 1\frac{1}{3} y 1\frac{2}{6}
Solución
1\frac{1}{3}=1\frac{2}{6} porque \frac{1}{3}=\frac{2}{6}
  • 1\frac{5}{6} y 1\frac{1}{2}
Solución
1\frac{5}{6}>1\frac{1}{2}
RECURSOS PARA DOCENTES

Artículo “Partes y porciones”

En este artículo podrás ampliar la información sobre la comparación de fracciones por medio del método del común denominador (sin utilizar recta numérica).

VER

Enciclopedia “Enciclopedia de Matemáticas Primaria”

Con el Tomo 2 de esta enciclopedia podrás profundizar en el concepto de fracciones y su clasificación, así como en la comparación de fracciones y números mixtos.

VER

Artículo “Clasificación de fracciones”

En este artículo podrás encontrar más información sobre la clasificación de fracciones.

VER

CAPÍTULO 1 / TEMA 8 (REVISIÓN)

SISTEMA DE NUMERACIÓN | ¿qUÉ APRENDIMOS?

LECTURA DE NÚMEROS

Los números naturales (\boldsymbol{\mathbb{N}}) son los que utilizamos para contar. Cada número tiene un valor relativo según la posición que ocupe dentro de una cifra y esto permite una correcta lectura de los mismos. Además de los números naturales, existen los números decimales que están formados por una parte entera y otra decimal. También hay sistemas de numeración no posicionales como los números romanos, los cuales constan de siete letras del abecedario latino.

Para leer un número de manera correcta es necesario conocer el valor que ocupa cada una de sus cifras. Para esto podemos usar una tabla posicional.

descomposición de números

Existen distintas formas de descomponer números grandes: la aditiva con combinaciones básicas, la aditiva por medio de valor posicional, la polinómica o la multiplicativa. En la aditiva con combinaciones básicas usamos una o más sumas que expresen el mismo resultado; en la aditiva con valor posicional empleamos los valores posicionales de cada cifra; en la polinómica utilizamos las potencias de base 10; y en la multiplicativa descomponemos la cantidad en sus factores primos.

Estas diferentes maneras de expresar los números permiten resolver situaciones de forma más rápida y sencilla.

números enteros

Los números enteros (\boldsymbol{\mathbb{Z}}) están compuestos por todos los números naturales (\boldsymbol{\mathbb{N}}), sus opuestos negativos y el cero. Los enteros negativos requieren el uso obligatorio del signo (−) a diferencia de los positivos que pueden o no estar acompañados con el signo (+). Estos pueden ser representados en una recta numérica, la cual contiene todos los números reales (\boldsymbol{\mathbb{R}}). Los números enteros se aplican en diversas situaciones de la vida, como para indicar altitudes sobre el nivel del mar, registrar entradas y salidas de dinero de un banco, dibujar el eje de coordenadas, o para indicar temperaturas.

Otra de las tantas aplicaciones que se les da a los números enteros es para señalar los niveles de un edificios, en donde planta baja representa el 0, los niveles superiores los positivos y los niveles inferiores los negativos.

NÚMEROS decimales

Los números decimales están formados por una parte entera y una parte decimal, ambas divididas por una coma. Estos se clasifican en tres tipos según su parte decimal: exactos, periódicos y no periódicos. Los exactos tienen un número limitado de cifras; los periódicos poseen cifras decimales infinitas y, a su vez, estos se dividen en dos tipos: los puros y los mixtos; y los decimales no periódicos no tienen un patrón que se repita infinitamente. Estos números se pueden redondear para reducir la cantidad de cifras decimales y así obtener un valor muy parecido.

Los números decimales pueden ser utilizados en diversas situaciones de la vida, como para indicar la estatura de las personas o los precios de los productos.

sucesiones

Las sucesiones son un grupo de elementos que se ordenan uno detrás de otro. Estos elementos son llamados términos, siguen una regla dentro del conjunto y pueden ser números, letras, figuras o imágenes. En una sucesión, los términos son representados como subíndices (a1, a2, a3, …). Usamos sucesiones cada vez que contamos los días de la semana o las horas del día. También las usamos para ordenar de mayor a menor o de menor a mayor, o para aprender a leer el abecedario. Podemos encontrar sucesiones con operaciones matemáticas como la suma, la resta, la multiplicación, la división o la potencia.

Cuando se ordenan los ganadores de una carrera de automóviles, estos siguen un patrón de acuerdo al tiempo de llegada. Este es un ejemplo de sucesión.

potencias

La potenciación consiste en expresar de manera reducida una multiplicación de factores iguales. Tiene tres elementos: una base, un exponente y la potencia. La base es el número que se multiplicará tantas veces como indica el exponente y la potencia es el resultado de la multiplicación de los factores. Algunas de las propiedades de las potencias son: potencia de exponente 0, potencia de exponente 1, potencia de exponente negativo, multiplicación y división de potencias con igual base y la potencia de una potencia.

Las potencias sirven para aplicar teoremas, expresar notación científica, realizar sucesiones matemáticas y para demostrar problemas de crecimiento exponencial como la multiplicación de virus y bacterias.

raíz de un número

La raíz de un número es la operación inversa a la potencia de un número. Consiste en buscar el número que se ha multiplicado tantas como indica n bajo un operador radical. Los elementos de una raíz son el radicando, el índice, el radical y la raíz. El radicando es el resultado de la multiplicación de la raíz de un número tantas veces como indica el índice de la raíz. El índice indica el grado de una raíz, lo que se traduce en cuántas veces se multiplicó por sí mismo el resultado de la radicación. El radical representa el símbolo de la operación de radicación y la raíz es resultado de la operación matemática.

Todas las operaciones matemáticas poseen una operación inversa que revierte los cálculos realizados.

CAPÍTULO 1 / TEMA 7

RELACIONES

LOS NÚMEROS NATURALES SON LOS QUE USAMOS PARA CONTAR, POR EJEMPLO, LA CANTIDAD DE JUGUETES QUE TENEMOS O LAS HORAS QUE FALTAN PARA SALIR A JUGAR. TODOS ELLOS TIENEN UNA RELACIÓN CON LOS DEMÁS NÚMEROS. PARA ESCRIBIR ESTAS RELACIONES USAMOS ALGUNOS SÍMBOLOS ESPECIALES QUE APRENDERÁS HOY.

RELACIONES ENTRE NÚMEROS

TODOS LOS NÚMEROS NATURALES TIENEN UNA RELACIÓN. EN LA IMAGEN VEMOS UN ORDEN DE 1 EN 1 PORQUE CADA NÚMERO A LA DERECHA TIENE UNA UNIDAD MÁS QUE EL ANTERIOR. SI QUEREMOS SABER QUÉ NÚMERO ES MAYOR O MENOR QUE OTRO PODEMOS UTILIZAR UNA RECTA NUMÉRICA. MIENTRAS MÁS A LA DERECHA DE LA RECTA ESTÉ EL NÚMERO, MAYOR SERÁ SU VALOR.

HAY NÚMEROS QUE REPRESENTAN MÁS CANTIDAD QUE OTROS Y POR LO TANTO, TAMBIÉN HAY NÚMEROS QUE REPRESENTAN MENOS CANTIDAD QUE OTROS. ESTA RELACIÓN SE LLAMA ORDEN Y LA USAMOS CADA VEZ QUE CONTAMOS O COMPARAMOS CIFRAS.

ENTRE DOS NÚMEROS, UNO PUEDE SER MAYOR QUE OTRO, IGUAL A OTRO O MENOR QUE OTRO. CADA RELACIÓN TIENE UN SÍMBOLO ÚNICO PARA QUE PUEDAS DIFERENCIARLO.

MAYOR QUE

CUANDO ESCRIBIMOS NÚMEROS PODEMOS VER QUE UNOS REPRESENTAN MÁS CANTIDADES QUE OTROS. POR EJEMPLO:

  • ¿CUÁNTOS CANGREJOS HAY EN LA CAJA ROJA?

HAY 24 CANGREJOS.

  • ¿CUÁNTO CANGREJOS HAY EN LA CAJA AZUL?

HAY 12 CANGREJOS.

  • ¿CUÁL CAJA TIENE MAYOR CANTIDAD DE CANGREJOS?

LA CAJA ROJA TIENE MAYOR CANTIDAD DE CANGREJOS PORQUE 24 ES MAYOR QUE 12.

 

ESTA RELACIÓN ENTRE DOS NÚMEROS LA PODEMOS ESCRIBIR CON EL SÍMBOLO > QUE SIGNIFICA “MAYOR QUE”.

24 > 12

SI UBICAMOS CADA NÚMERO EN LA RECTA NUMÉRICA TENEMOS QUE:

EL NÚMERO 24 ES MAYOR QUE 12 PORQUE SE ENCUENTRA MÁS A LA DERECHA EN LA RECTA NUMÉRICA.


OTRO EJEMPLO:

OBSERVA ESTOS NÚMEROS, ¿CUÁL ES MAYOR?

365            357

PARA RESPONDER LA PREGUNTA DEBEMOS REPRESENTAR EN LA RECTA NUMÉRICA CADA NÚMERO Y COMPARARLOS:

COMO EL 365 ESTÁ MÁS A LA DERECHA EN LA RECTA, 365 ES MAYOR QUE 357. ENTONCES:

365 > 357

¡A ORDENAR NÚMEROS!

ORDENA DE MAYOR A MENOR ESTOS NÚMEROS. USA EL SÍMBOLO “MAYOR QUE” PARA REPRESENTAR LA RELACIÓN ENTRE CADA UNO DE ELLOS.

125 – 89 – 856 – 632

SOLUCIÓN

856 > 632 > 125 > 89

IGUAL QUE

ES POSIBLE QUE DOS CANTIDADES SEAN IGUALES. POR EJEMPLO:

  • CADA CAJA TIENE CARACOLAS MARINAS, ¿CUÁNTAS HAY EN LA CAJA ROJA?, ¿CUÁNTAS HAY EN LA CAJA AZUL?

EN LAS DOS CAJAS HAY LO MISMO: 15 CARACOLAS MARINAS.

 

CUANDO DOS NÚMEROS SON IGUALES USAMOS EL SÍMBOLO = QUE SIGNIFICA “IGUAL A “.

15 = 15

EL SÍMBOLO DE IGUALDAD TAMBIÉN SIRVE PARA DEMOSTRAR QUE UN NÚMERO ES IGUAL A LA SUMA DE OTROS. EJEMPLO:

15 = 10 + 5

15 = 5 + 5 + 5

15 = 2 + 3 + 2 + 3 + 2 + 3

SI BUSCAMOS REPRESENTAR LA IGUALDAD EN UNA RECTA NUMÉRICA, LOS DOS NÚMEROS SERÁN REPRESENTADOS EN EL MISMO LUGAR.

¡COMPAREMOS NÚMEROS!

INDICA SI ESTAS IGUALDADES SON CORRECTAS:

  • 543 = 500 + 40 + 3
SOLUCIÓN
CORRECTO.
  • 123 = 10 + 2 + 3
SOLUCIÓN
INCORRECTO. LA DESCOMPOSICIÓN ADITIVA DE 123 = 100 + 20 + 3.

LA IGUALDAD

SIEMPRE QUE DOS EXPRESIONES SEAN IGUALES DECIMOS QUE HAY UNA IGUALDAD MATEMÁTICA. EL SIGNO USADO ES =. ESTE SIGNO FUE CREADO POR ROBERT RECORDE EN 1557. ÉL USÓ DOS RECTAS PARALELAS PARA REPRESENTARLO.

MENOR QUE

ALGUNOS NÚMEROS REPRESENTAN MENOS CANTIDADES QUE OTROS. POR EJEMPLO:

  • ¿CUÁNTOS PECES HAY EN LA CAJA ROJA?

HAY 18 PECES.

  • ¿CUÁNTOS PECES HAY EN LA CAJA AZUL?

HAY 21 PECES.

  • ¿CUÁL CAJA TIENE MENOR CANTIDAD DE PECES?

LA CAJA ROJA TIENE MENOR CANTIDAD DE PECES PORQUE 18 ES MENOR QUE 21.

 

ESTA RELACIÓN ENTRE DOS NÚMEROS LA PODEMOS ESCRIBIR CON EL SÍMBOLO QUE SIGNIFICA “MENOR QUE”.

18 < 21

SI UBICAMOS CADA NÚMERO EN LA RECTA NUMÉRICA TENEMOS QUE:

EL NÚMERO 18 ES MENOR QUE 21 PORQUE SE ENCUENTRA MÁS A LA IZQUIERDA EN LA RECTA NUMÉRICA.


OTRO EJEMPLO:

OBSERVA ESTOS NÚMEROS, ¿CUÁL ES MENOR?

433            448

PARA RESPONDER LA PREGUNTA DEBEMOS REPRESENTAR EN LA RECTA NUMÉRICA CADA NÚMERO Y COMPARARLOS:

COMO EL 433 ESTÁ MÁS A LA IZQUIERDA EN LA RECTA, 433 ES MENOR QUE 448. ENTONCES:

433 < 448

¿SABÍAS QUÉ?
LA ABERTURA DE LOS SÍMBOLOS < Y > SIEMPRE IRÁ HACIA EL NÚMERO MAYOR, Y LA PUNTA IRÁ HACIA EL NÚMERO MENOR.

¡A ORDENAR NÚMEROS!

ORDENA DE MENOR A MAYOR ESTOS NÚMEROS. USA EL SÍMBOLO “MENOR QUE” PARA REPRESENTAR LA RELACIÓN ENTRE CADA UNO DE ELLOS.

489 – 511 – 263 – 384

SOLUCIÓN

263 < 384 < 489 < 511

LOS SÍMBOLOS DE RELACIÓN SIRVEN PARA QUE COMPAREMOS CANTIDADES. ES POSIBLE QUE NO NOS DEMOS CUENTA, PERO SIEMPRE LOS USAMOS. POR EJEMPLO, MIENTRAS MÁS AÑOS TENEMOS, MÁS ALTOS SOMOS. SI MARCAMOS EN LA PARED NUESTRA ESTATURA VEREMOS QUE CADA AÑO LA MEDIDA ES MAYOR QUE LA ANTERIOR, O VISTO DE OTRO MODO, QUE LA ESTATURA ANTERIOR ES MENOR QUE LA ACTUAL.

 

¡A PRACTICAR!

1. COLOCA EL SÍMBOLO DE RELACIÓN QUE CORRESPONDA:

  • 64 ___ 89
SOLUCIÓN
64 < 89 
  • 159 ___ 685
SOLUCIÓN
159 < 685
  • 745 ___ 700 + 40 + 5
SOLUCIÓN
745 = 700 + 40 + 5
  • 4 + 40 ___ 20 + 7
SOLUCIÓN
4 + 40 = 44 > 27 = 20 + 7
  • 999 ___ 654
SOLUCIÓN
999 > 654
  • 80 + 4 ___ 84
SOLUCIÓN
80 + 4 = 84

 

2. ESCRIBE SI LA RELACIÓN ES VERDADERA O FALSA.

  • 5 = 8
SOLUCIÓN
FALSO. 5 < 8
  • 85 < 85
SOLUCIÓN
FALSO. 85 = 85
  • 196 < 852
SOLUCIÓN
VERDADERO.
  • 458 > 655
SOLUCIÓN
FALSO. 458 < 655
  • 351 < 536
SOLUCIÓN
VERDADERO.
  • 758 = 663
SOLUCIÓN
FALSO. 758 > 663

 

3. ORDENA DE MENOR A MAYOR:

78 – 96 – 499 – 164 – 8 – 968 – 781 – 63 – 19 – 82

SOLUCIÓN
8 < 19 < 63 < 78 < 82 < 96 < 164 < 499 < 781 < 968
RECURSOS PARA DOCENTES

Artículo “Comparar y ordenar números”

En el siguiente artículo hay más ejercicios para la práctica de la relación de números: mayor que y menor que.

VER

CAPÍTULO 1 / TEMA 2

VALOR POSICIONAL

EL HOMBRE SIEMPRE HA TENIDO LA NECESIDAD DE CONTAR Y POR ESO INVENTÓ LOS SISTEMAS DE NUMERACIÓN. NOSOTROS USAMOS EL SISTEMA DECIMAL QUE SOLO TIENE DIEZ CIFRAS CON LAS QUE PODEMOS FORMAR CUALQUIER CANTIDAD DE NÚMEROS. PERO ¿CÓMO HACERLO? DEBEMOS SABER EL VALOR DE CADA CIFRA DENTRO DEL NÚMERO, ES DECIR, SU VALOR POSICIONAL.

ESTOS DIEZ DÍGITOS FORMAN NUESTRO SISTEMA DECIMAL Y CON ELLOS FORMAMOS MUCHOS NÚMEROS. ¿LOS HAS USADO? ¡SEGURO QUE SÍ! USAMOS LA COMBINACIÓN DE ESTAS CIFRAS PARA DAR UN NÚMERO DE TELÉFONO, LA FECHA DE NUESTRO CUMPLEAÑOS, EL NÚMERO DE IDENTIFICACIÓN O  PARA CONTAR LA CANTIDAD DE JUGUETES QUE TENEMOS.

¿QUÉ ES EL VALOR POSICIONAL?

ES EL VALOR QUE TIENE UNA CIFRA SEGÚN SU POSICIÓN EN EL NÚMERO. ESTAS POSICIONES TIENEN UN NOMBRE Y PUEDEN SER UNIDADES, DECENAS O CENTENAS. OBSERVA Y RESPONDE:

1. ¿CUÁNTOS CUADRADOS HAY?

HAY 1 CUADRADO.

1 = 1 UNIDAD

 

2. ¿CUÁNTAS TIRAS HAY?

HAY 10 TIRAS.

10 UNIDADES = 1 DECENA

 

3. ¿CUÁNTOS CUADRADOS HAY?

HAY 100 CUADRADOS.

100 UNIDADES = 1 CENTENA

 

¿CUÁNTAS UNIDADES HAY?

OBSERVA LAS IMÁGENES Y CUENTA LAS UNIDADES.

1. 

SOLUCIÓN

HAY 2 CENTENAS.

2 VECES 100 = 200 UNIDADES

HAY 200 UNIDADES.

2. 

SOLUCIÓN
HAY 3 DECENAS.

3 VECES 10 = 30 UNIDADES

HAY 30 UNIDADES.

3. 

SOLUCIÓN
HAY 8 UNIDADES.

4. 

SOLUCIÓN
HAY 1 DECENA Y 1 UNIDAD.

10 UNIDADES + 1 UNIDAD = 11 UNIDADES

HAY 11 UNIDADES.

5. 

SOLUCIÓN
HAY 1 CENTENA, 1 DECENA Y 1 UNIDAD.

100 UNIDADES + 10 UNIDADES + 1 UNIDAD = 111 UNIDADES

HAY 111 UNIDADES.

EL NÚMERO 123 ESTÁ FORMADO POR TRES CIFRAS: 1, 2 Y 3. ¿PODEMOS CREAR MÁS NÚMERO CON ESTAS TRES CIFRAS? ¡CLARO QUE SÍ! POR EJEMPLO, EL NÚMERO 312 O EL 231. COMO VES, AUNQUE TENGAN LAS MISMAS CIFRAS, CADA NÚMERO TIENE UN VALOR DISTINTO PORQUE LAS POSICIONES SON DIFERENTES.    EN 123 EL 1 VALE 100; EN 312 EL 1 VALE 10; Y EN 231 EL 1 VALE 1.

 

PARA SABER LOS VALORES DE CADA CIFRA EN UN NÚMERO USAMOS UNA TABLA DE VALOR POSICIONAL COMO ESTA:

EL NÚMERO 468 TIENE:

  • 8 UNIDADES.
  • 6 DECENAS.
  • 4 CENTENAS.

¡CAMBIEMOS POSICIONES!

LA POSICIÓN DE UNA CIFRA EN UN NÚMERO INDICAN UN VALOR. SI UNA DE LAS CIFRAS CAMBIA DE POSICIÓN, ENTONCES SE CONVIERTE EN OTRO NÚMERO. OBSERVA ESTOS EJEMPLOS EN LOS QUE CAMBIAMOS LAS POSICIONES DE TRES CIFRAS: 4, 6 Y 8.

NÚMERO VALOR POSICIONAL SE LEE
468 4 CENTENAS

6 DECENAS

8 UNIDADES

CUATROCIENTOS SESENTA Y OCHO.
486 4 CENTENAS

8 DECENAS

6 UNIDADES

CUATROCIENTOS OCHENTA Y SEIS.
864 8 CENTENAS

6 DECENAS

4 UNIDADES

OCHOCIENTOS SESENTA Y CUATRO.
 846 8 CENTENAS

4 DECENAS

6 UNIDADES

OCHOCIENTOS CUARENTA Y SEIS.
684

 

6 CENTENAS

8 DECENAS

4 UNIDADES

SEISCIENTOS OCHENTA Y CUATRO.
648 6 CENTENAS

4 DECENAS

8 UNIDADES

SEISCIENTOS CUARENTA Y OCHO.

DESCOMPOSICIÓN DE NÚMEROS

CONSISTE EN CONVERTIR UN NÚMERO EN UNA SUMA DE SUS VALORES POSICIONALES.

– EJEMPLO:

EL NÚMERO 183 TIENE:

1 CENTENA = 1 VEZ 100 = 100 UNIDADES

8 DECENAS = 8 VECES 10 = 80 UNIDADES

3 UNIDADES = 3 VECES 1 = 3 UNIDADES

ENTONCES, LA DESCOMPOSICIÓN DEL NÚMERO 183 ES LA SIGUIENTE:

183 = 1 C + 8 D + 3 U

183 = 100 + 80 + 3

¡A PRACTICAR!

REALIZA LA DESCOMPOSICIÓN ADITIVA DE LOS SIGUIENTES NÚMEROS:

  • 642
SOLUCIÓN
642 = 6 C + 4 D + 2 U

642 = 600 + 40 + 2

  • 789
SOLUCIÓN
789 = 7 C + 8 D + 9 U

789 = 700 + 80 + 9

  • 453
SOLUCIÓN
453 = 4 C + 5 D + 3 U

453 = 400 + 50 + 3

  • 998
SOLUCIÓN
998 = 9 C + 9 D + 8 U

998 = 900 + 90 + 8

¿SABÍAS QUÉ?
LA DESCOMPOSICIÓN DEL NÚMERO 1.000 TIENE UNA UNIDAD DE MIL Y SE ESCRIBE “1 UM”. 

UBICACIÓN EN LA RECTA NUMÉRICA

ES UNA LÍNEA RECTA EN LA QUE UBICAMOS LOS NÚMEROS. EL 0 ES EL COMIENZO DE LA RECTA, LUEGO VAN LOS NÚMEROS DE 1 EN 1 DE MENOR A MAYOR.

– EJEMPLO:

LA REGLA ES UN ELEMENTO QUE UTILIZAMOS PARA MEDIR OBJETOS O PARA TRAZAR LAS LÍNEAS DE UN DIBUJO. SU FORMA ES DELGADA Y RECTANGULAR, PUEDE SER RÍGIDA O FLEXIBLE Y HAY DE DISTINTOS MATERIALES: PLÁSTICO, GOMA, METAL, MADERA. EXISTEN OTROS ELEMENTOS QUE CUMPLEN UNA FUNCIÓN SIMILAR, PERO SON MÁS LARGOS, COMO POR EJEMPLO, LA CINTA MÉTRICA O EL METRO.

 

– EJEMPLO:

LAS EDADES DE CINCO HERMANOS SON LAS SIGUIENTES:

JUAN: 2 AÑOS; INÉS: 5 AÑOS; ALDO: 9 AÑOS; CARLA: 12 AÑOS; y LUCÍA: 18 AÑOS.

SI DESEAMOS UBICAR EN UNA RECTA NUMÉRICA LAS EDADES DE LOS HERMANOS SEGUIMOS ESTOS PASOS:

 

1) DIBUJAMOS UNA RECTA CON LAS FLECHAS EN LOS EXTREMOS, HACEMOS DIVISIONES DE IGUAL DISTANCIA Y UBICAMOS EL 0.

2) EN ESTE CASO HICIMOS 20 DIVISIONES PARA UBICAR TODAS LAS EDADES.

3) COLOCAMOS UN PUNTO EN EL VALOR DE LAS EDADES.

OBSERVA QUE MIENTRAS MÁS AVANZA HACIA LA DERECHA, MAYORES SON LOS NÚMEROS.

¡A PRACTICAR!

 

1. REALIZA LA DESCOMPOSICIÓN DE ESTOS NÚMEROS.

  • 275
SOLUCIÓN
275 = 2 C + 7 D + 5 U = 200 + 70 + 5
  • 638
SOLUCIÓN
638 = 6 C + 3 D + 8 U = 600 + 30 + 8
  • 996
SOLUCIÓN
996 = 9 C + 9 D + 6 U = 900 + 90 + 6
  • 47
SOLUCIÓN
47 = 4 D + 7 U = 40 + 7
  • 546
SOLUCIÓN
546 = 500 + 40 + 6
  • 87
SOLUCIÓN
87 = 80 + 7
  • 788
SOLUCIÓN
788 = 700 + 80 + 8
  • 9 D + 2 U =
SOLUCIÓN
92 = 90 + 2

 

2. UBICA EN ESTA RECTA NUMÉRICA LOS SIGUIENTES NÚMEROS: 0, 3, 10, 15 Y 20.

SOLUCIÓN

RECURSOS PARA DOCENTES

Composición y descomposición de números

El siguiente artículo destacado te permitirá trabajar con los alumnos la composición y descomposición aditiva de números.

VER

CAPÍTULO 3 / TEMA 6 (REVISIÓN)

Fracciones | ¿Qué aprendimos?

¿Qué son las fracciones?

Una fracción está formada por dos términos principales: el numerador y el denominador. Estos son números enteros que están separados por una línea horizontal denominada raya divisoria o raya fraccionaria. Una fracción es la división de un entero o una unidad en partes iguales. El numerador indica las partes a considerar de esa división y el denominador indica las partes en las que se dividió el entero o unidad. Estos números son más antiguos que lo que se piensa y están relacionados con la división.

Las fracciones están presentes en la vida cotidiana, sobre todo en las mediciones usadas en la cocina, pero también están presentes en algunas monedas.

Fracciones diversas

De acuerdo a la relación que exista entre el numerador y el denominador, las fracciones pueden ser propiasimpropias. Las fracciones propias son aquellas en las que el numerador es menor que el denominador, contrario a las fracciones impropias, en las que el numerador es mayor que el denominador. Por otro lado, si comparamos dos o más fracciones, estas pueden ser homogéneas o heterogéneas. Las fracciones homogéneas son las que poseen el mismo denominador, las heterogéneas, en cambio, presentan diferentes denominadores.

Las fracciones pueden expresarse en forma de gráfica o viceversa. Lo emocionante de ellas es que las usamos a diario para dividir cosas o cantidades.

Gráficas de fracciones

Las fracciones suelen expresarse en gráficos para interpretar de manera más sencilla los datos. La forma para representar estos gráficos dependen del tipo de fracción. Si la fracción es propia elegimos cualquier figura, la dividimos en partes iguales según el denominador y señalamos las partes que indique el numerador. Cuando se trata de una fracción impropia dividimos una figura geométrica en las partes que señale el denominador, pero debido a que en este tipo de fracción el numerador es mayor que el denominador, serán necesarias más de una figuras.

Los números mixtos son un tipo de número fraccionario que posee una parte entera y otra fraccionaria.

Orden de fracción

Las fracciones presentan un sentido de orden, es decir, hay fracciones que son mayores o menores que otras. Una herramienta muy útil para reconocer este orden es la recta numérica. Se trata de un gráfico en forma de línea horizontal en el que los números están ordenados de menor a mayor. Para ubicar fracciones propias en la recta numérica dividimos la unidad en segmentos iguales según indique el denominador y la fracción se ubicaría en el número de segmento indicado por el numerador. Las fracciones impropias, por su parte, deben ser transformadas en números mixtos.

En la recta numérica, si se toma un número como referencia, los números de su izquierda son menores a él y los de la derecha mayores.

Problemas con fracciones

Las fracciones, además de ayudarnos a resolver problemas que impliquen proporciones, nos permiten resolver las operaciones básicas matemáticas como la adición, la sustracción, la multiplicación y al división. En el caso de la adición y la sustracción de fracciones debemos tener en cuenta su tipo: si las fracciones son homogéneas sumamos o restamos los numeradores y colocamos el denominador, si son heterogéneas usamos el método de cruz para resolverlas. Las multiplicaciones se resuelven de forma lineal, al multiplicar los numeradores y los denominadores.

La adición y sustracción de fracciones heterogéneas suele realizarse por el método en cruz que permite calcular de manera directa fracciones equivalentes.

CAPÍTULO 1 / TEMA 3

NÚMEROS ENTEROS

¿Te has preguntado qué números utilizarías para representar temperaturas por debajo de 0 ºC? o ¿qué números utilizarías para indicar la altura del monte Everest? Para describir estas situaciones usamos los números enteros, un conjunto numérico que abarca desde los números negativos hasta los positivos.

Muchas situaciones de la vida cotidiana requieren el uso de los números enteros. Un ejemplo de ello es la economía a nivel mundial, la cual necesita de estos para poder registrar las entradas y salidas de dinero (las entradas serán enteros positivos y las salidas enteros negativos). Esto es con el fin de poder contabilizar las ganancias o las pérdidas.

¿QUÉ SON los NÚMEROS ENTEROS?

Los números enteros abarcan todos los números naturales \mathbb{N}, así como también el cero y los números negativos o menores que cero. Matemáticamente, el conjunto de números enteros es representado con la letra \mathbb{Z} y se expresa de la siguiente manera:

\mathbb{Z}=\left \{ ...,\, -3,\, -2,\, -1,\, 0,\, +1,\, +2,\, +3,...\right \}

Estos números continúan hasta infinito, tanto del lado de los positivos como del lado de los negativos.

Por lo general, los números enteros positivos \mathbb{Z}^{+} no requieren el uso del signo más (+) para resaltarlos, caso contrario ocurre con los enteros negativos \mathbb{Z}^{-}, que sí requieren el uso obligatorio del signo menos (−) para diferenciarlos.

Por ejemplo:

Los siguientes números enteros positivos+3.674 y +5.876.541 se pueden escribir de dos formas:

  • Con el signo positivo antes del número: +3.674 +5.876.541.
  • Sin el signo positivo antes del número: 3.674 y 5.876.541.

Por otra parte, los números enteros negativos 614 y 9.780 requieren el uso obligatorio del signo menos (−) antes de ellos. No colocar el signo negativo antes del número lo convierte en un número positivo.

 

LA RECTA NUMÉRICA

También es conocida como la recta real y se representa con una línea recta. Esta contiene todos los números reales \mathbb{R}.

¿Cómo dibujar una recta numérica?

Traza una línea de forma horizontal con flechas en ambos extremos como la siguiente:

Divide la línea en segmentos iguales con la misma distancia entre ellos:

Coloca el número cero (0) en el centro de la recta:Comienza a colocar los números en cada intervalo: del lado derecho del cero van los enteros positivos y del lado izquierdo van los enteros negativos.

Ubicación de los números en la recta numérica

La recta numérica puede contener:

    1. Enteros positivos y negativos como: −17 y +11.
    2. Números decimales o en forma de fracción como: −8/5 que es igual a −1,6 y 4/5 que es igual a 0,8.

¿Sabías qué?
La línea recta fue introducida por John Wallis, un matemático Inglés que alrededor del año 1670 la empleó para representar de modo gráfico los números naturales.

¡A practicar!

Ubica estos número en la recta numérica:

  • +150
Solución
  • −180
Solución
  • +19
Solución
  • 3/2
Solución

  • −0,5
Solución

APLICACIÓN DE NÚMEROS ENTEROS

Los números enteros son utilizados en muchas situaciones de nuestra vida, algunos ejemplos son los siguientes:

  • Para indicar la altitud o altura sobre el nivel del mar.

En todo nuestro planeta existen distintas altitudes, tal son los casos del monte Everest en el Himalaya, el cual posee una altitud de +8.848 msnm y la costa del mar Muerto que se encuentra a unos 417 msnm.

  • Para indicar los pisos de un edificio.

Al caminar por el centro de la ciudad habrás visto algún edificio, estos están divididos por pisos y cada piso corresponde a un número. El piso que se encuentra en el mismo nivel de la calle es la planta baja, le corresponde el número 0. Los niveles que están arriba de él se indican con enteros positivos y los que se encuentra debajo, llamados subterráneos o sótanos, se señalan con los negativos.

Otras aplicaciones

  • Para realizar mediciones de temperatura.

¿Has escuchado hablar del Polo Sur y el Polo Norte de nuestro planeta tierra? La temperatura en esos lugares puede variar entre los 89 ºC y los 0 ºC. A esos valores, por lo general se les llama temperaturas bajo 0.

Por otra parte, existen lugares como Kuwait con temperaturas que pueden llegar a los +63 ºC.

  • Para contabilizar pérdidas o ganancias.

Las cuentas bancarias realizan registros de entradas de dinero con números enteros positivos, y los retiros o pagos con los números enteros negativos.

Por ejemplo:

Una persona recibe 2.000 $ en su cuenta y luego realiza una transferencia de 1.000  $ para pagar una computadora. ¿Cuánto dinero tendrá en la cuenta luego de la transferencia?

Recibe dinero: +2.000 $

Transferencia de dinero: 1.000 $

Total de dinero en la cuenta: +2.000 $  1.000 $ = +1.000 $

Entonces, el dinero que la persona tendrá en su cuenta luego de realizar la transferencia será 1.000 $.

  • Para dibujar ejes de coordenadas o eje cartesiano se emplean los números enteros
Ejercicios

  • Juan se encuentra al nivel del mar y quiere escalar una montaña. Decide subir 50 m, luego desciende 25 m para tomar una herramienta que se le cayó. Al agarrar la herramienta decide terminar su escalada y sube 80 m. ¿A qué altura sobre el nivel del mar se encuentra?
Solución

Ubicación de Juan sobre el nivel del mar: 0 m

Juan sube: +50 m

Juan desciende: −25 m

Juan vuelve a subir: +80 m

Altura que escaló juan: 50 m − 25 m + 80 m = 105 m

Juan se encuentra a 105 metros sobre el nivel del mar.

  • Romina decide comprar un teléfono celular que cuesta 1.850 $, pero en su cuenta bancaria solo tiene 1.100 $. Decide decirle a su papá que le transfiera el dinero que le falta para comprar el teléfono y él le transfiere a su cuenta 1.350 $. ¿Cuánto dinero le quedó a Romina en su cuenta luego de comprar el teléfono?
Solución

Cuenta bancaria de Romina: +1.100 $

Transferencia del papá de Romina: +1.350 $

Compra del teléfono: −1.850 $

Total después de la compra: +1.100 $ + 1.350 $ − 1.850 $ = +600 $

A Romina le quedaron 600 $ en su cuenta luego de comprar el teléfono.

  • Felipe se encuentra parado en la posición +2 de una recta numérica, decide avanzar +6 posiciones y luego vuelve 11 posiciones atrás. ¿En qué posición quedó Felipe?
Solución

+2 + 6 − 11 = −3

Felipe quedó en la posición −3.

RECURSOS PARA DOCENTES

Artículo “La recta numérica”

Este artículo ayuda a complementar la información sobre la recta numérica.

VER

Artículo “La clasificación de los números”

Con este recurso se puede ampliar el conocimiento sobre la clasificación de los números.

VER

CAPÍTULO 2 / TEMA 2

Multiplicación y división

La multiplicación y la división son operaciones básicas de la matemática. La primera consiste básicamente en sumar varias veces un mismo número y la segunda, en cambio, consiste en repartir cantidades. Ambas están muy relacionadas entre sí y su manejo es necesario para resolver otros tipos de problemas.

Elementos de la multiplicación

La multiplicación es una operación en la que se suma tantas veces un número como indica otro número, por ejemplo, 3 x 4 = 12 se puede representar como 3 + 3 + 3 + 3 = 12. El signo usado en la multiplicación es “x” y se lee “por”. Los elementos principales de una multiplicación son:

  • Factores o coeficientes: son los números que se multiplican, estos son multiplicando y multiplicador. El multiplicando es el número a sumar y el multiplicador es el número de veces que se suma al multiplicando. En la multiplicación 3 x 4 = 12, el número 3 es el multiplicando y el 4 corresponde al multiplicador.
  • Producto: es el resultado de la multiplicación de dos o más factores. Hay ocasiones en las que las multiplicaciones son largas y deben realizarse por medio de la suma de productos parciales.

¿Sabías qué?
En la multiplicación además de la equis también suele usarse el punto “·” como símbolo.
La multiplicación tiene la finalidad de calcular el producto o resultado que se obtiene de sumar el multiplicando tantas veces por sí mismo como indique el multiplicador. En estas operaciones, cuando el multiplicador es mayor a una cifra se requieren de productos parciales que se sumarán para obtener el resultado final de la multiplicación.

Propiedades de la multiplicación

Son cuatro propiedades: la conmutativa, la asociativa, la distributiva y la del elemento neutro.

Propiedad conmutativa

Esta propiedad permite que al multiplicar dos números el resultado sea el mismo sin importar el orden de los factores. Por ejemplo:

3 x 10 = 30
10 x 3 = 30

Por lo tanto, 3 x 10 = 10 x 3. Observa:

Propiedad asociativa

Esta propiedad permite que al multiplicar tres o más factores el producto siempre sea el mismo, sin importar como se agrupen estos. Por ejemplo, 2 x 4 x 6 se puede agrupar de estas formas:

(2 x 4) x 6 = x 6 = 48
2 x (4 x 6) = 2 x 24 = 48

Por lo tanto, (2 x 4) x 6 = 2 x (4 x 6). Observa:

Propiedad distributiva

Esta propiedad permite que la suma de dos o más números multiplicada por otro número sea igual a la multiplicación de ese número por cada elemento de la suma. Por ejemplo:

Elemento neutro

El uno es el elemento neutro de la multiplicación, cualquier número multiplicado por él será igual a sí mismo. Por ejemplo:

0 x 1 = 0
3 x 1 = 3
10 x 1 =10
113 x 1 = 113

¿Sabías qué?
La propiedad distributiva también puede aplicarse a números que se restan.

Modelos de multiplicación

Una multiplicación es una suma abreviada y puede ser representada a través del modelo grupal, modelo lineal y modelo geométrico. Estas son diferentes formas de dar sentido a las multiplicaciones y se pueden aplicar en situaciones simples de la vida.

Modelo grupal

En este modelo se construyen secuencias con la misma cantidad de elementos, estos grupos de elementos representan la multiplicación.

Observa la representación del modelo en los siguientes ejemplos:

4 pelotas de tenis = 4
1 vez 4 = 4
1 x 4 = 4


4 + 4 = 8 raquetas de tenis
2 veces 4 = 8
2 x 4 = 8


4 + 4 + 4 = 12 pelotas de baloncesto
3 veces 4 = 12
3 x 4 = 12


¿Sabías qué?
En el modelo grupal, 3 x 4 se lee como “tres veces cuatro”.

Modelo lineal

En este modelo se emplea la semirrecta numérica para representar las multiplicaciones. Se comienza desde cero y se cuenta de acuerdo al número de elementos que tenga el conjunto a estudiar y al número de conjuntos. Por ejemplo:

Un árbol crece 2 metros cada año. ¿Cuántos metros crecerá en 4 años?

Planteado el sistema en la gráfica sería:
4 veces 2 = 8 metros
4 x 2 = 8

Modelo geométrico

En este método se comparan las cuadrículas en columnas y filas para representar una multiplicación. Se colocan tantas filas como indique el primer factor y el número de columnas será igual al segundo factor. Por ejemplo:

La multiplicación 3 x 4 = 12 se representa geométricamente de la siguiente manera:

Si se cuentan cada una de las cuadrículas se obtiene el resultado: 3 x 4 = 12

Pasos para resolver ejercicios con el algoritmo de la multiplicación

  1. Multiplica las unidades del multiplicador por cada una de las cifras del multiplicando y coloca el resultado en la fila de abajo. Será el primer producto parcial.
  2. Multiplica las decenas del multiplicador por cada una de las cifras del multiplicando y coloca el resultado en la fila de abajo pero con la diferencia que se debe desplazar una posición hacia la izquierda. Este será el segundo producto parcial.
  3. Suma los dos productos parciales. El número que obtengas será el total de la multiplicación.

– Resuelve la multiplicación 453 x 24

Por tratarse de una multiplicación con números grandes no sería tan fácil de resolver a través de los modelos grupal, lineal y geométrico. En estos casos debes emplear el algoritmo de la multiplicación y seguir los pasos mencionados anteriormente.

Para iniciar, el multiplicando y el multiplicador tienen que estar uno debajo del otro:

Luego multiplica las unidades del multiplicador por el multiplicando, es decir, multiplica 4 por 453:

Después multiplica las decenas del multiplicador por el multiplicando, es decir, 2 por 453:

Por último, suma los dos productos parciales que se calcularon para obtener el resultado de la multiplicación:

Elementos de la división

La división consiste en repartir grupos de elementos en partes iguales. Sus elementos principales son:

  • Dividendo: es el número que se va a dividir, es decir, la cantidad que se quiere repartir.
  • Divisor: es el número que divide, este indica cuántas veces se va a repartir el dividendo.
  • Cociente: es el resultado de la división.
  • Resto: es la cantidad que sobra de la división o la que no se puede repartir por ser menor que el divisor.

La división también se expresa con el símbolo “÷“, por ejemplo:

 

Método para comprobar una división

En una división se cumple la relación:

Dividendo = (cociente x divisor) + resto

De esta manera es muy fácil comprobar que una división esté correcta, solo se debe multiplicar el cociente que se obtuvo por el divisor y luego sumarle el resto. Si el resultado que se obtiene es igual al número del dividendo, entonces la división es correcta.

¿Sabías qué?
Cuando el resto de una división es igual a cero la división es exacta y cuando no lo es se denomina división inexacta.

Algoritmo de división

Los pasos para resolver una división son los siguientes:

– Resuelve la división 3.654 ÷ 25

  1. Lo primero que hay que hacer es tomar las dos primeras cifras del dividendo, si estas dos cifras forman un número menor que el divisor entonces se toman tres cifras del dividendo. En este caso, las dos primeras cifras son 36 y como es mayor que 25 se puede continuar.
  2. Divide el primer número del dividendo (si tomaste tres cifras, entonces divide los dos primero) entre el primer número del divisor. Coloca el número resultado en el cociente. Como el primer número del dividendo es 3 y el primer número del divisor es 2, el resultado de dividirlo es 1.
  3. Multiplica el número del cociente por el divisor y coloca el resultado debajo de los dos números seleccionados al principio del dividendo. Luego haz la resta y anota el resultado:
  4. Baja la cifra siguiente del dividendo.
    5. Si divides 11 entre 2, el resultado es 5; y cuando multiplicas 5 por 25 se obtiene 125 que no puede restarse con 115. Por esta razón, coloca 4 en el cociente y continúa con los pasos anteriores.
  5. Baja la cifra siguiente del dividendo.
  6. Si divides 15 entre 2, obtienes 6. Colócalo en el cociente y repite los pasos anteriores.
    Como no existen más cifras del dividendo para bajar y el número que se obtuvo de la resta es menor que el divisor, entonces se culmina el ejercicios: 3.654 ÷ 25 = 146 y sobraron 4 unidades sin repartir (resto).
¡A practicar!

1. Resuelve las siguientes multiplicaciones:

a) 296 x 18

Solución
5.328
b) 593 x 29
Solución
17.197
c) 332 x 74
Solución
24.568
d) 375 x 16
Solución
6.000
e) 613 x 59
Solución
36.167

2. Resuelve las siguientes divisiones:

a) 4.739 ÷ 88

Solución
Cociente = 53; Resto = 75
b) 7.049 ÷ 41
Solución
Cociente = 171; Resto = 38
c) 9.370 ÷ 58
Solución
Cociente = 161; Resto = 32
d) 3.830 ÷ 40
Solución
Cociente = 95; Resto = 30
e) 5.378 ÷ 65
Solución
Cociente = 82; Resto = 48

RECURSOS PARA DOCENTES

Artículo “Trucos para aprender las tablas de multiplicar”

El siguiente artículo muestra algunas sugerencias para que el aprendizaje de las tablas de multiplicar sea más sencillo y significativo.

VER

Artículo “La tabla pitagórica”

Este artículo muestra esta útil herramienta en las primeras etapas del aprendizaje de las tablas.

VER

Enciclopedia “Números”

Con esta enciclopedia podrán estudiar los principales sistemas de numeración y las operaciones básicas de las matemáticas.

VER