CAPÍTULO 3 / TEMA 1

ADICIÓN Y SUSTRACCIÓN DE FRACCIONES

Los números fraccionarios están en nuestra vida cotidiana, por lo tanto, es de mucha importancia conocer cómo realizar adiciones y sustracciones con ellos. Para realizar estas operaciones se usan diferentes métodos que requieren realizar a su vez otras operaciones como el mcm.

 

Diferentes métodos para la resolución de problemas

Para resolver problemas de fracciones es necesario compararlas y conocer el tipo de fracción. De esta manera, podemos elegir qué tipo de método usar para resolver la operación.

Fracciones homogéneas

Son aquellas fracciones que poseen el mismo denominador. Debido a esto, para la suma y la resta de fracciones se coloca el mismo denominador y se suman o restan los numeradores de la siguiente manera:

Suma de fracciones homogéneas

\frac{6}{3}+\frac{4}{3}=\frac{6+4}{3}=\frac{10}{3}

Resta de fracciones homogéneas

\frac{9}{5}-\frac{8}{5}=\frac{9-8}{5}=\frac{1}{5}

Muchas de las fórmulas matemáticas empleadas en la resolución de problemas contienen sumas y restas de fracciones. En este sentido, es necesario conocer los diferentes métodos que se pueden aplicar de acuerdo al tipo de fracción presente en los ejercicios. Entre estos métodos están: la multiplicación cruzada o el cálculo del mínimo común múltiplo.

Fracciones Heterogéneas

Son aquellas fracciones que poseen distinto denominador. Para este tipo, existen diferentes métodos o formas de resolver adiciones y sustracciones.

Primer método: multiplicar en forma cruzada.

Se multiplica el numerador de la primera fracción por el denominador de la segunda y se coloca en el numerador.\frac{{\color{Blue} 3}}{5}+\frac{6}{{\color{Blue} 4}}=\frac{({\color{Blue} 3\times 4})}{}

Luego se multiplica el numerador de la segunda por el denominador de la primera y se suma con el numerador resultante de la multiplicación anterior.
\frac{{\color{Blue} 3}}{{\color{Red} 5}}+\frac{{\color{Red} 6}}{{\color{Blue} 4}}=\frac{({\color{Blue} 3\times 4})+({\color{Red} 5\times 6})}{}

Se procede a multiplicar los denominadores de ambas fracciones.

\frac{{\color{Blue} 3}}{{\color{Red} 5}}+\frac{{\color{Red} 6}}{{\color{Blue} 4}}=\frac{({\color{Blue} 3\times 4})+({\color{Red} 5\times 6})}{{\color{Red} 5}\times {\color{Blue} 4}}

Se realizan los cálculos necesarios y se obtiene la fracción resultante.

\frac{{\color{Blue} 3}}{{\color{Red} 5}}+\frac{{\color{Red} 6}}{{\color{Blue} 4}}=\frac{({\color{Blue} 3\times 4})+({\color{Red} 5\times 6})}{{\color{Red} 5}\times {\color{Blue} 4}}=\frac{12+30}{20}=\mathbf{\frac{42}{20}}

Segundo método: hallar el mínimo común múltiplo (mcm).

Se obtiene el mcm de los denominadores de la siguiente manera:

\frac{5}{8}+\frac{7}{6}=

 

Se coloca el mcm como denominador resultante y se divide entre el denominador de la primera fracción y se multiplica por el numerador de la misma fracción. El resultado se coloca de numerador.

24\div 8={\color{Red} 3}

{\color{Red} 3}\times 5={\color{Blue} 15}

 

\frac{5}{8}+\frac{7}{6}=\frac{{\color{Blue} 15}\: \: \: \: \: \: \: \: \: \: \: \: \: }{24}

Se realiza el mismo procedimiento con la segunda fracción.

24\div 6={\color{Red} 4}

{\color{Red} 4}\times 7={\color{DarkGreen} 28}

 

\frac{5}{8}+\frac{7}{6}=\frac{{\color{Blue} 15}+{\color{DarkGreen} 28}}{24}

 

Se realizan las operaciones correspondientes para obtener el resultado final.

\frac{5}{8}+\frac{7}{6}=\frac{15+28}{24}=\mathbf{\frac{43}{24}}

 

Para encontrar el resultado de una suma o una resta de fracciones muchas veces se recomienda simplificar los términos para tener un mejor resultado. Esta  técnica consiste en dividir ambos términos entre el mismo número. Por lo general, se utilizan los números primos para llegar a una fracción irreducible. Para simplificar fracciones rápidamente se recomienda tener presente los criterios de divisibilidad de un número.
¿Sabías qué?
Una fracción es irreducible cuando no se puede simplificar.

Otros tipos de fracciones

Fracciones aparentes: son aquellas que cumplen la condición de que al dividir el numerador entre el denominador, el resultado es un número entero. Por ejemplo, las fracciones \inline \frac{8}{4},\frac{2}{2} y \inline \frac{9}{3} son fracciones aparentes.

8\div 4=2

2\div 2=1

9\div 3=3

 

Fracciones equivalentes: son aquellas que se obtienen al multiplicar al numerador y al denominador por un mismo número. A este procedimiento también se lo denomina amplificación. Las fracciones \inline \frac{3}{2} y \inline \frac{15}{10}  son fracciones equivalentes.Otro método para obtener fracciones equivalentes es por simplificación. En dicho caso, se divide tanto al numerador como al denominador por el mismo número. Las fracciones \inline \frac{33}{15} y \inline \frac{11}{5}  son fracciones equivalentes.

Tercer método: utilizar las fracciones equivalentes.

Se convierten las fracciones en homogéneas mediante el uso de las fracciones equivalentes. Para hallar las equivalentes se multiplica una de las fracciones por una fracción aparente, cuyo resultado sea 1, como por ejemplo \inline \frac{2}{2}, \inline \frac{5}{5}, \inline \frac{7}{7} que permite hallar una fracción equivalente de la primera. En la sumatoria de \inline \frac{3}{2}+\frac{9}{10}, para convertir \inline \frac{3}{2} en una equivalente de igual denominador de la segunda (10), se multiplicó por la fracción aparente  \frac{5}{5}.

Se reescribe la adición de fracciones con la nueva fracción equivalente. De esta manera, las fracciones son homogéneas, por lo que pueden realizarse los cálculos para dichas fracciones, es decir, se suman los numeradores y se coloca el mismo denominador común (10).

La sustracción o resta de fracciones se realiza con el mismo procedimiento que la adición o suma, con la diferencia que, en vez de sumarlas, se restan.

En matemáticas es posible representar los números enteros como una suma de fracciones. Asimismo, aunque parezca difícil, existen procedimientos como convertir un entero en fracción, que se utiliza para resolver combinaciones de números enteros y fraccionarios. En estos casos, se coloca 1 como denominador del número entero.

adición y sustracción de fracciones con números enteros

Existen problemas en los cuales se pueden conseguir fracciones con números enteros. Aunque parece más complicado resolver este tipo de ejercicios, no lo es. Para sumar \inline \frac{4}{5}+3 lo primero que debemos hacer es identificar el tipo de números involucrados en la operación.

 \frac{4}{5}+3=

Luego se convierte el número entero en una fracción para lo cual colocamos como denominador del número entero la unidad (1). Esto se debe a que el número (1) como denominador no modifica el entero existente, porque todo número divido entre (1) es igual al mismo número.

Se procede a realizar los cálculos con cualquier método de fracciones heterogéneas visto anteriormente. En este caso, se aplicará el método cruzado.

\frac{{\color{Blue} 4}}{{\color{Red} 5}}+\frac{{\color{Red} 3}}{{\color{Blue} 1}}=\frac{({\color{Blue} 4\times 1})+({\color{Red} 5\times 3})}{{\color{Red} 5}\times {\color{Blue} 1}}

Por último, se realizan las operaciones matemáticas necesarias para hallar el resultado.

\frac{{\color{Blue} 4}}{{\color{Red} 5}}+\frac{{\color{Red} 3}}{{\color{Blue} 1}}=\frac{({\color{Blue} 4\times 1})+({\color{Red} 5\times 3})}{{\color{Red} 5}\times {\color{Blue} 1}}=\frac{4+15}{5}=\mathbf{\frac{19}{5}}

De esta forma, se pueden resolver las sustracciones o restas de números enteros y fracciones.

¿Sabías qué?

Se estima que en el 1650 a. C. se emplearon por primera vez fracciones con denominadores enteros positivos para representar las partes de un todo.

¡A practicar!

a) \frac{8}{3}+\frac{17}{3}=

RESPUESTAS

 \frac{8}{3}+\frac{17}{3}=\frac{8+17}{3}=\frac{25}{3}

b) \frac{5}{2}-\frac{11}{7}=

RESPUESTAS

\frac{5}{2}-\frac{11}{7}=\frac{5\times 7-2\times 11}{2 \times 7}= \frac{35-22}{14}=\frac{13}{14}

c) \frac{28}{13}+\frac{5}{2}=

RESPUESTAS

\frac{28}{13}+\frac{5}{2}=\frac{28\times 2+13\times 5}{13 \times 2}= \frac{56+65}{26}=\frac{121}{26}

d) 9 + \frac{5}{6}=

RESPUESTAS

9+\frac{5}{6}=\frac{9}{1}+\frac{5}{6}=\frac{9\times 6+1\times 5}{1 \times 6}= \frac{54+5}{6}=\frac{59}{6}

e) 26-\frac{38}{5}=

RESPUESTAS

26-\frac{38}{5}=\frac{26}{1}-\frac{38}{5}=\frac{26\times 5-1\times 38}{1 \times 5}= \frac{130-38}{5}=\frac{92}{5}

f) \frac{17}{3}-\frac{29}{6}=

RESPUESTAS

\frac{17}{3}-\frac{29}{6}=\frac{17}{3}\times\left (\frac{2}{2} \right )-\frac{29}{6}=\frac{34}{6}-\frac{29}{6}=\frac{34-29}{6}= \frac{5}{6}

\frac{27}{5}-\frac{13}{5}=

RESPUESTAS

\frac{27}{5}-\frac{13}{5}=\frac{27-13}{5}=\frac{14}{5}

RECURSOS PARA DOCENTES

Artículo “Clasificación de fracciones”

Este artículo permite obtener información más amplia sobre cómo se clasifican las fracciones.

VER

Artículo “Multiplicación y división de fracciones”

En este artículo se explica como resolver problemas de fracciones cuando estas involucran otras operaciones como la multiplicación y la división.

VER

CAPÍTULO 1 / TEMA 2

CONJUNTO DE LOS NÚMEROS ENTEROS

El conjunto de los números enteros surge por la necesidad de expresar cantidades negativas. Aunque los números negativos se usan desde el siglo XV, fue en 1770 cuando Leonardo Euler justificó su uso. Luego fueron legalmente aceptados para crear un conjunto, más completo que los números naturales, denominados números enteros.

Cada región del mundo registra un clima distinto, por ejemplo, la Antártida suele tener temperaturas cercanas a los −10 °C en la costa, mientras que en Sudamérica la temperatura se acerca a los 20 °C. Estas situaciones se pueden describir gracias a los números enteros, un conjunto numérico amplio que incluye números positivos y negativos.

¿QUÉ SON LOS NÚMEROS ENTEROS?

Son un conjunto de número que sirven para representar valores positivos y negativos. El conjunto se denota por \mathbb{Z} y es:

\mathbb{Z} = \left \{ ...,-4, -3, -2, -1, 0, +1, +2, +3, +4, ... \right \}

El conjunto de los números enteros contiene otros conjuntos numéricos:

  • Enteros positivos (\mathbb{Z}^{+})

\mathbb{Z}^{+} = \left \{+1, +2, +3, +4, ...\right \} = \left \{ 1,\, 2,\, 3,\, 4, ... \right \}

  • Enteros negativos (\mathbb{Z}^{-})

\mathbb{Z}^{-} = \left \{..., -4, -3, -2, -1\right \}

  • Números naturales (\mathbb{N})

\mathbb{N} = \left \{0,\, 1,\, 2,\, 3,\, 4, ... \right \}

¿Sabías qué?
El conjunto de los números enteros se denota con la letra Z por la palabra Zahlen, que en alemán significa “número”.

¡Es tu turno!

¿Cuáles de estos números son enteros?

+4      −1,5       0       1/3      −3      −8,79       15       +0,5       7/4      −1/8       2       10,8      −9

Solución

Los números de color rojo son los números enteros.

+4      −1,5       0       1/3       −3       −8,79       15       +0,5       7/4      −1/8       2       10,8      −9

Valor absoluto de un número entero

El valor absoluto de un número es igual a la distancia que existe desde cero (0) hasta ese número. Para un número x, el valor absoluto se denota como \left | x \right |.

– Ejemplo:

Un buzo se encuentra a −7 metros de profundidad. ¿Qué distancia hay desde donde está hasta el nivel del mar?

Para hallar el valor absoluto de −7, debes medir los espacios entre −7 y 0. Por lo tanto, la distancia que hay desde donde está el buzo hasta el nivel del mar es de 7 metros. Matemáticamente se expresa así:

\left |-7 \right | = 7

En conclusión, podemos definir el valor absoluto de un número x así:

\left | x \right |= x, si x> 0

\left | x \right |=-x, si x< 0

\left | x \right |=0, si x=0

– Ejemplo:

\left | 9 \right |=9

\left | -5 \right |=-(-5)=5

\left | 0 \right |=0

¿Cómo aparecieron los números enteros?

Desde la Antigüedad, hace unos 400 años a. C., el hombre ha buscado la manera de realizar cálculos para sus actividades cotidianas. En un principio, los números naturales \mathbb{N} eran suficientes para contar. Sin embargo, con el paso de los años, se necesitó un conjunto que incluyera valores negativos para expresar el déficit de una cantidad. Esta necesidad dio origen a los números enteros \mathbb{Z}, que incluye a los números naturales sin el cero, al cero y a los negativos de los números naturales.

REGLA DE LOS SIGNOS

Cuando realizamos operaciones con números enteros es probable que nos cueste identificar el signo que tendrá el resultado. Para esto existe la regla de los signos, la cual se aplica a todas las operaciones básicas: suma, resta, multiplicación y división.

En la suma y la resta

  • Si sumamos dos números negativos, el resultado será un número negativo.

\left ( -a \right )+\left ( -b \right ) = - \left ( a+b \right )

– Ejemplo:

(−3) + (−9) = −(3 + 9) = −12

(−5) + (−10) = −(5 + 10) = −15

  • Si sumamos dos números positivos, el resultado será un número positivo.

\left ( +a \right )+ \left ( +b \right ) = +\left ( a+b \right )

– Ejemplo:

(+8) + (+6) = +(8 + 6) = +14

(+43) + (+7) = +(43 + 7) = +50

  • Si sumamos un número positivo y un número negativo, ambos se restan y se mantiene el signo del número mayor.

Si \left | a \right |> \left | -b \right |, entonces \left ( +a \right ) + \left ( -b \right )= + \left ( a-b \right )

Si \left | -a \right |> \left | b \right |, entonces \left ( -a \right )+\left (+b \right )= - \left ( a-b \right )

– Ejemplo:

(+18) + (−4) = +(18 − 4) = +14

(−54) + (+20) = −(54 − 20) = −34

En el buceo es importante conocer hasta qué profundidad puede sumergirse un buzo. La superficie del mar se denota con el 0 y con números negativos hacia el fondo. A medida que el buzo baja, la presión sobre él aumenta y si realiza muy rápido el descenso puede ser dañino. A partir de los −50 metros hay que realizar el descenso lentamente para no correr riesgos.

En la multiplicación

  • Si multiplicamos dos números con signos iguales, el resultado será siempre positivo.

(+a)\times (+b) = + (a\times b)

(-a)\times (-b)=+(a\times b)

– Ejemplo:

(+26) × (+3) = +78

(−10) × (−5) = +50

  • Si multiplicamos dos números con signos diferentes, el resultado siempre será negativo.

(-a)\times (+b)=-(a\times b)

(+a)\times (-b)=-(a\times b)

– Ejemplo:

(−8) × (+15) = −120

(+12) × (−9) = −108

En la división

  • Si dividimos dos números con signos iguales, el resultado será positivo.

(+a)\div (+b)=+(a\div b)

(-a)\div (-b)=+(a \div b)

– Ejemplo:

(+81) ÷ (+9) = +9

(−322) ÷ (−23) = +14

  • Si dividimos dos números con signos diferentes, el resultado será negativo.

(+a)\div (-b)=-(a\div b)

(-a)\div (+b)=-(a\div b)

– Ejemplo:

(+180) ÷ (−5) = −36

(−250) ÷ (+50) = −5

APLICACIÓN DE LOS NÚMEROS ENTEROS

Los números enteros tienen múltiples aplicaciones, algunas de las más comunes son las siguientes:

  • Expresar temperaturas en diferentes épocas del año, por ejemplo, en algunas ciudades de Argentina, durante el verano la temperatura es de 22 ºC, mientras que durante el invierno llega a −3 ºC.
  • Indicar la altura a la que se encuentran ciertas regiones respecto al nivel del mar. Las regiones que se encuentran por encima del nivel del mar tienen altura positiva, mientras que las que se localizan por debajo tienen altura negativa, por ejemplo, la ciudad de Lagunillas en Venezuela se ubica a −12 msnm.
  • Especificar el tiempo antes y después de Cristo. Consideramos negativos los años antes de Cristo (a. C.) y positivos los años después de Cristo (d. C.).
  • Indicar el saldo en una cuenta bancaria, donde los números positivos representan un saldo a nuestro favor y los negativos representan deudas.
Si el lunes tienes disponible $ 155, el martes retiras $ 32 y te depositan $ 13, y el miércoles el banco te descuenta $ 10 por comisión, ¿cuánto dinero tienes para el jueves? Este es un problema en el que las entradas son números positivos y las salidas o descuentos son números negativos. Lo puedes plantear así: 155 − 32 + 13 −10 = 126. ¡Te quedan $ 126!

¡A practicar!

1. Resuelve estas operaciones:

  • 5 − 12
    Solución
    5 − 12 = −7
  • −13 − 15
    Solución
    −13 − 15 = −28
  • 2 − 7
    Solución
    2 − 7 = −5
  • 3 × (−37)
    Solución
    3 × (−37) = −111
  • (−2) × (−15)
    Solución
    (−2) × (−15) = 30
  • −17 × 18
    Solución
    −17 × 18 = −306
  • 10 ÷ (−5)
    Solución
    10 ÷ (−5) = −2
RECURSOS PARA DOCENTES

Artículo “La clasificación de los números”

En este artículo encontrará una descripción general sobre la clasificación de los números, desde los naturales hasta los complejos.

VER

Artículo “Regla de los signos”

Este artículo explica cómo utilizar la regla de los signos, tanto para la suma y la resta, como para la multiplicación y la división.

VER

CAPÍTULO 5 / TEMA 3

FRACCIONES Y SUS GRÁFICAS

CUANDO CONTAMOS NUESTROS JUGUETES O LÁPICES USAMOS LOS NÚMEROS NATURALES: 1, 2, 3, … PERO ¿QUÉ SUCEDE SI SOLO TENEMOS LA MITAD DE UN LÁPIZ? EN ESTOS CASOS USAMOS UN TIPO DE NÚMEROS LLAMADO FRACCIÓN. LAS FRACCIONES REPRESENTAN UNA PARTE DE UN ENTERO, ESTÁN FORMADAS POR DOS NÚMEROS NATURALES Y SON MÁS COMUNES DE LOS QUE CREES. ¡APRENDAMOS A GRAFICARLAS!

¿QUÉ ES UNA FRACCIÓN?

UNA FRACCIÓN REPRESENTA LA PARTE DE UN TODO O DE UNA UNIDAD DIVIDIDA EN PARTES IGUALES.

UNA NARANJA ENTERA ES IGUAL A UNA UNIDAD O EL “TODO”. OBSERVA LA IMAGEN, ¿LA NARANJA ESTÁ ENTERA? ¡NO! ESTÁ PICADA A LA MITAD Y HAY DOS MITADES. SI COMEMOS UNA DE ESTAS PARTES, DECIMOS QUE COMIMOS “MEDIA NARANJA”. ESTO ES UN EJEMPLO DE FRACCIÓN PORQUE COMIMOS UNA PARTE DE UN TODO. PIENSA: ¿EN QUÉ OTRA OCASIÓN USAMOS FRACCIONES?

VER INFOGRAFÍA

ELEMENTOS DE UNA FRACCIÓN

LA FRACCIÓN TIENE DOS ELEMENTOS SEPARADOS POR UNA RAYA: EL NÚMERO DE ARRIBA SE LLAMA NUMERADOR Y EL DE ABAJO SE LLAMA DENOMINADOR.

  • EL NUMERADOR ES IGUAL A LA CANTIDAD DE PARTES QUE SE HAN TOMADO DEL ENTERO.
  • EL DENOMINADOR ES IGUAL A LA CANTIDAD DE PARTES EN LAS QUE SE HA DIVIDIDO AL ENTERO.

TIPOS DE FRACCIONES

LAS FRACCIONES PUEDEN SER PROPIAS O IMPROPIAS.

  • LAS FRACCIONES PROPIAS TIENEN EL NUMERADOR MENOR AL DENOMINADOR.

POR EJEMPLO: \frac{1}{2}\frac{3}{5} Y \frac{8}{10}.

  • LAS FRACCIONES IMPROPIAS TIENEN EL NUMERADOR MAYOR AL DENOMINADOR.

POR EJEMPLO: \frac{7}{5}\frac{10}{4} Y \frac{5}{3}.

¿SABÍAS QUÉ?
LAS FRACCIONES TAMBIÉN SE PUEDEN EXPRESAR CON UNA DIAGONAL, POR EJEMPLO,\frac{1}{2} ES IGUAL A 1/2.

¿CÓMO GRAFICAR FRACCIONES?

AL SER LAS PARTES DE UN TODO O UNIDAD, PODEMOS DIBUJAR FRACCIONES POR MEDIO DE GRÁFICOS CON FIGURAS GEOMÉTRICAS.

SI QUEREMOS GRAFICAR LA FRACCIÓN \boldsymbol{\frac{1}{2}} LOS PASOS SON LOS SIGUIENTES:

1. DIBUJAMOS CUALQUIER FIGURA GEOMÉTRICA. EN ESTE CASO DIBUJAMOS UN RECTÁNGULO.

2. VEMOS EL DENOMINADOR DE LA FRACCIÓN. EL DENOMINADOR DE LA FRACCIÓN \boldsymbol{\frac{1}{{\color{Red} 2}}} ES 2, ASÍ QUE DIVIDIMOS EL RECTÁNGULO EN 2 PARTES IGUALES.

3. VEMOS EL NUMERADOR DE LA FRACCIÓN. EL NUMERADOR DE LA FRACCIÓN \boldsymbol{\frac{{\color{Red} 1}}{2}} ES 1, ASÍ QUE COLOREAMOS UNA SOLA PARTE DEL RECTÁNGULO.

 

– OTRO EJEMPLO:

GRAFIQUEMOS LA FRACCIÓN \boldsymbol{\frac{3}{4}}.

PRIMERO DIBUJAMOS LA FIGURA GEOMÉTRICA QUE REPRESENTA AL “TODO”.

¿CUÁL ES EL DE DENOMINADOR? EL DENOMINADOR ES 4. ASÍ QUE DIVIDIMOS LA FIGURA EN 4 PARTES IGUALES.

¿CUÁL ES EL NUMERADOR? EL NUMERADOR ES 3. ENTONCES, COLOREAMOS 3 PARTES DE LA FIGURA.

¡ES TU TURNO!

REALIZA EL GRÁFICO DE ESTAS FRACCIONES:

  • \boldsymbol{\frac{2}{5}}
SOLUCIÓN

  • \boldsymbol{\frac{2}{3}}
SOLUCIÓN

LAS FRACCIONES SON UN TIPO ESPECIAL DE NÚMEROS Y SE LEEN DE UNA MANERA DIFERENTE A LOS DEMÁS. PRIMERO LEEMOS EL NUMERADOR COMO CUALQUIER NÚMERO NATURAL. EL DENOMINADOR CAMBIA SEGÚN EL NÚMERO, SI ES 2 SE LEE “MEDIOS”, SI ES 3 SE LEE “TERCIOS” Y SI ES 4 SE LEE “CUARTOS”. ASÍ, LA FRACCIÓN 1/2 SE LEE “UN MEDIO” Y LA FRACCIÓN 1/3 SE LEE “UN TERCIO”.

FRACCIONES EN LA VIDA COTIDIANA

LAS FRACCIONES FORMAN PARTE DE NUESTRO DÍA A DÍA. USAMOS FRACCIONES CADA VEZ QUE COMPRAMOS PAN, FRUTAS O VEGETALES, PUES PODEMOS PEDIR MEDIO KILOGRAMO DE ALGO. TAMBIÉN USAMOS FRACCIONES CUANDO DAMOS LA HORA Y DECIMOS, POR EJEMPLO, “SON LAS DOS Y CUARTO” LO QUE SIGNIFICA QUE HA PASADO 1/4 DE HORA DESPUÉS DE LAS 2.

– OTRAS SITUACIONES:

  • AL CORTAR UNA FRUTA EN DOS PARTES Y COMER UNA: 
  • AL CORTAR UNA PIZZA EN 4 PARTES Y COMER 2: 
  • AL COMPRAR PRODUCTOS:  KILO DE HARINA.
  • AL REALIZAR UNA PARTE DE UN RECORRIDO. LAURA RECORRIÓ  DE UNA CARRERA.
EN VARIAS SITUACIONES DE NUESTRA VIDA ENCONTRAMOS FRACCIONES DE FORMA GRÁFICA. UN EJEMPLO COMÚN DE FRACCIONES ES CUANDO REPARTIMOS UN PASTEL. EN LA IMAGEN VEMOS UNO CORTADO EN 8 PARTES IGUALES, ES DECIR, EL DENOMINADOR ES 8. TAMBIÉN VEMOS QUE SE TOMA 1 PARTE, ASÍ QUE EL NUMERADOR ES 1 Y LA FRACCIÓN DE ESE PEDAZO ES 1/8. LA TORTA TIENE FORMA DE CÍRCULO Y ES SIMILAR AL GRÁFICO DE LA FRACCIÓN.

¡A PRACTICAR!

ESCRIBE LA FRACCIÓN PARA CADA GRÁFICO:

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 2

PARTES COLOREADAS: 1

FRACCIÓN: \boldsymbol{\frac{1}{2}}

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 5

PARTES COLOREADAS: 1

FRACCIÓN: \boldsymbol{\frac{1}{5}}

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 3

PARTES COLOREADAS: 2

FRACCIÓN: \boldsymbol{\frac{2}{3}}

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 4

PARTES COLOREADAS: 3

FRACCIÓN: \boldsymbol{\frac{3}{4}}

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 4

PARTES COLOREADAS: 2

FRACCIÓN: \boldsymbol{\frac{2}{4}}

RECURSOS PARA DOCENTES

Artículo “Fracciones”

Este recurso cuenta con ejemplos didáctico sobre los tipos de fracciones y cómo graficarlos.

VER

CAPÍTULO 1 / TEMA 8 (REVISIÓN)

SISTEMA DE NUMERACIÓN | ¿qUÉ APRENDIMOS?

LECTURA DE NÚMEROS

Los números naturales (\boldsymbol{\mathbb{N}}) son los que utilizamos para contar. Cada número tiene un valor relativo según la posición que ocupe dentro de una cifra y esto permite una correcta lectura de los mismos. Además de los números naturales, existen los números decimales que están formados por una parte entera y otra decimal. También hay sistemas de numeración no posicionales como los números romanos, los cuales constan de siete letras del abecedario latino.

Para leer un número de manera correcta es necesario conocer el valor que ocupa cada una de sus cifras. Para esto podemos usar una tabla posicional.

descomposición de números

Existen distintas formas de descomponer números grandes: la aditiva con combinaciones básicas, la aditiva por medio de valor posicional, la polinómica o la multiplicativa. En la aditiva con combinaciones básicas usamos una o más sumas que expresen el mismo resultado; en la aditiva con valor posicional empleamos los valores posicionales de cada cifra; en la polinómica utilizamos las potencias de base 10; y en la multiplicativa descomponemos la cantidad en sus factores primos.

Estas diferentes maneras de expresar los números permiten resolver situaciones de forma más rápida y sencilla.

números enteros

Los números enteros (\boldsymbol{\mathbb{Z}}) están compuestos por todos los números naturales (\boldsymbol{\mathbb{N}}), sus opuestos negativos y el cero. Los enteros negativos requieren el uso obligatorio del signo (−) a diferencia de los positivos que pueden o no estar acompañados con el signo (+). Estos pueden ser representados en una recta numérica, la cual contiene todos los números reales (\boldsymbol{\mathbb{R}}). Los números enteros se aplican en diversas situaciones de la vida, como para indicar altitudes sobre el nivel del mar, registrar entradas y salidas de dinero de un banco, dibujar el eje de coordenadas, o para indicar temperaturas.

Otra de las tantas aplicaciones que se les da a los números enteros es para señalar los niveles de un edificios, en donde planta baja representa el 0, los niveles superiores los positivos y los niveles inferiores los negativos.

NÚMEROS decimales

Los números decimales están formados por una parte entera y una parte decimal, ambas divididas por una coma. Estos se clasifican en tres tipos según su parte decimal: exactos, periódicos y no periódicos. Los exactos tienen un número limitado de cifras; los periódicos poseen cifras decimales infinitas y, a su vez, estos se dividen en dos tipos: los puros y los mixtos; y los decimales no periódicos no tienen un patrón que se repita infinitamente. Estos números se pueden redondear para reducir la cantidad de cifras decimales y así obtener un valor muy parecido.

Los números decimales pueden ser utilizados en diversas situaciones de la vida, como para indicar la estatura de las personas o los precios de los productos.

sucesiones

Las sucesiones son un grupo de elementos que se ordenan uno detrás de otro. Estos elementos son llamados términos, siguen una regla dentro del conjunto y pueden ser números, letras, figuras o imágenes. En una sucesión, los términos son representados como subíndices (a1, a2, a3, …). Usamos sucesiones cada vez que contamos los días de la semana o las horas del día. También las usamos para ordenar de mayor a menor o de menor a mayor, o para aprender a leer el abecedario. Podemos encontrar sucesiones con operaciones matemáticas como la suma, la resta, la multiplicación, la división o la potencia.

Cuando se ordenan los ganadores de una carrera de automóviles, estos siguen un patrón de acuerdo al tiempo de llegada. Este es un ejemplo de sucesión.

potencias

La potenciación consiste en expresar de manera reducida una multiplicación de factores iguales. Tiene tres elementos: una base, un exponente y la potencia. La base es el número que se multiplicará tantas veces como indica el exponente y la potencia es el resultado de la multiplicación de los factores. Algunas de las propiedades de las potencias son: potencia de exponente 0, potencia de exponente 1, potencia de exponente negativo, multiplicación y división de potencias con igual base y la potencia de una potencia.

Las potencias sirven para aplicar teoremas, expresar notación científica, realizar sucesiones matemáticas y para demostrar problemas de crecimiento exponencial como la multiplicación de virus y bacterias.

raíz de un número

La raíz de un número es la operación inversa a la potencia de un número. Consiste en buscar el número que se ha multiplicado tantas como indica n bajo un operador radical. Los elementos de una raíz son el radicando, el índice, el radical y la raíz. El radicando es el resultado de la multiplicación de la raíz de un número tantas veces como indica el índice de la raíz. El índice indica el grado de una raíz, lo que se traduce en cuántas veces se multiplicó por sí mismo el resultado de la radicación. El radical representa el símbolo de la operación de radicación y la raíz es resultado de la operación matemática.

Todas las operaciones matemáticas poseen una operación inversa que revierte los cálculos realizados.

CAPÍTULO 2 / TEMA 4

fracciones

SI TIENES UN ALFAJOR Y DESEAS COMPARTIRLO CON UN AMIGO ¿CÓMO LO REPARTES? LO PARTES A LA MITAD ¿CIERTO? ES NORMAL QUE DIVIDAMOS ALIMENTOS PARA COMPARTIR Y PARA ESTOS CASOS USAMOS UN TIPO ESPECIAL DE NÚMEROS: LAS FRACCIONES. SON MÁS COMUNES DE LO QUE PIENSAS Y HOY APRENDERÁS A REPRESENTARLAS.

¿EN CUÁNTOS PEDAZOS ESTÁ CORTADO ESTE PASTEL? PARA RESPONDER ESTA PREGUNTA SOLO TENEMOS QUE CONTAR DE 1 EN 1: 1, 2, 3, …¡ESTÁ CORTADA EN 10 PEDAZOS! ESOS SON NÚMEROS NATURALES. PERO SI COMEMOS UNA DE ESAS PARTES ¿CÓMO REPRESENTARÍAS ESA CANTIDAD? EN ESTE CASO TENEMOS QUE USAR FRACCIONES: NÚMEROS QUE NOS AYUDAN A EXPRESAR PARTES DE UN TODO.

LA FRACCIÓN Y SUS ELEMENTOS

UNA FRACCIÓN ES UN NÚMERO QUE REPRESENTA LA PARTE O LAS PARTES QUE SE HAN TOMADO DE UN TODO CUANDO EL TODO ESTÁ DIVIDIDO EN PARTES IGUALES.

– EJEMPLO 1:

¿EN CUÁNTAS PARTES ESTÁ DIVIDIDA ESTA FIGURA?, ¿CUÁNTAS PARTES ESTÁN PINTADAS?

ESTE CUADRADO ESTÁ DIVIDIDO EN 4 PARTES IGUALES. UNA SOLA PARTE ESTÁ PINTADA.

¿QUÉ NÚMERO USARÍAS PARA REPRESENTAR QUE UNA PARTE SE HA TOMADO DE 4 PARTES IGUALES? PARA ESO ESTÁN LAS FRACCIONES, LAS CUALES SIEMPRE TIENEN DOS ELEMENTOS: UN NUMERADOR Y UN DENOMINADOR.

  • EL NUMERADOR ES IGUAL A LA CANTIDAD DE PARTES QUE SE TOMARON DEL TODO.
  • EL DENOMINADOR ES IGUAL A LA CANTIDAD DE PARTES EN LAS QUE SE HA DIVIDO EL ENTERO.

AMBOS ELEMENTOS SE COLOCAN UNO SOBRE OTRO CON UNA RAYA EN EL MEDIO, OBSERVA:

EN ESTE EJEMPLO, EL 1 ES EL NUMERADOR PORQUE REPRESENTA LA CANTIDAD DE PARTES QUE SE TOMARON DEL TODO Y EL 4 ES EL DENOMINADOR PORQUE REPRESENTA LA CANTIDAD DE PARTES EN LA QUE SE DIVIDIÓ AL TODO.


– EJEMPLO 2:

¿EN CUÁNTAS PARTES SE DIVIDIÓ EL CÍRCULO?

EN 5 PARTES. EL DENOMINADOR ES 5.

 

¿CUÁNTAS PARTES ESTÁN PINTADAS?

2 PARTES ESTÁN PINTADAS. EL NUMERADOR ES 2.

 

¿QUÉ FRACCIÓN REPRESENTA ESTE GRÁFICO?

\boldsymbol{\frac{2}{5}}

 


– EJEMPLO 3:

¿EN CUÁNTAS PARTES SE DIVIDIÓ EL RECTÁNGULO?

EN 8 PARTES. EL DENOMINADOR ES 8.

 

¿CUÁNTAS PARTES ESTÁN PINTADAS?

3 PARTES ESTÁN PINTADAS. EL NUMERADOR ES 3.

 

¿QUÉ FRACCIÓN REPRESENTA ESTE GRÁFICO?

\boldsymbol{\frac{3}{8}}


LAS FRACCIONES SON MUY UTILIZADAS EN LA VIDA COTIDIANA. EXISTEN SITUACIONES COMUNES DONDE PODEMOS ENCONTRARLAS, POR EJEMPLO, CUANDO PEDIMOS MEDIO KILOGRAMO DE PAN O CUANDO COMEMOS PIZZA. IMAGINA QUE LA PIZZA ES EL TODO Y ESTÁ PICADA EN 4 PARTES IGUALES; SI NOS COMEMOS UN TROZO ES IGUAL A DECIR QUE NOS COMIMOS 1/4 DE PIZZA.
¿SABÍAS QUÉ?
LAS FRACCIONES TAMBIÉN SE PUEDEN REPRESENTAR CON UNA DIAGONAL, ES DECIR, \boldsymbol{\frac{1}{4}} ES IGUAL A 1/4.

¿CÓMO GRAFICAR FRACCIONES?

SI QUEREMOS GRAFICAR UNA FRACCIÓN COMO \boldsymbol{\frac{5}{6}} DEBEMOS SEGUIR ESTOS PASOS:

1. DIBUJAMOS UNA FIGURA GEOMÉTRICA. POR EJEMPLO, UN RECTÁNGULO.

2. DIVIDIMOS EL RECTÁNGULO EN TANTAS PARTES COMO INDIQUE EL DENOMINADOR. EN ESTE CASO EL DENOMINADOR ES 6, ASÍ QUE LO DIVIDIMOS EN 6 PARTES IGUALES.

3. PINTAMOS LA CANTIDAD DE PARTES QUE INDIQUE EL NUMERADOR. AQUÍ PINTAMOS 5 PARTES. ¡ESE SERÁ EL GRÁFICO DE LA FRACCIÓN!

¡ES TU TURNO!

GRAFICA ESTAS FRACCIONES. DIBUJA UN CÍRCULO COMO EL TODO.

  • \boldsymbol{\frac{1}{3}}
SOLUCIÓN

  • \boldsymbol{\frac{3}{4}}
SOLUCIÓN

  • \boldsymbol{\frac{4}{6}}
SOLUCIÓN

FRACCIONES IGUALES A LA UNIDAD

TODA FRACCIÓN QUE TENGA EL NUMERADOR IGUAL A SU DENOMINADOR SERÁ IGUAL A 1. EJEMPLO:

ESTE GRÁFICO REPRESENTA A LA FRACCIÓN \boldsymbol{\frac{3}{3}} QUE ES IGUAL A 1.

ESTE GRÁFICO REPRESENTA A LA FRACCIÓN \boldsymbol{\frac{6}{6}} QUE ES IGUAL A 1.

¿CÓMO LEER FRACCIONES?

LAS FRACCIONES SE LEEN DIFERENTES A LOS NÚMEROS NATURALES. ES IMPORTANTE QUE SIGAMOS ESTOS PASOS:

  1. LEEMOS EL NUMERADOR COMO CUALQUIER NÚMERO NATURAL.
  2. LEEMOS EL DENOMINADOR DE ACUERDO A LA SIGUIENTE TABLA:
DENOMINADOR SE LEE
2 MEDIOS
3 TERCIOS
4 CUARTOS
5 QUINTOS
6 SEXTOS
7 SÉPTIMOS
8 OCTAVOS
9 NOVENOS
10 DÉCIMOS

– EJEMPLOS:

\boldsymbol{\frac{2}{3}} SE LEE “DOS CUARTOS”.

 

\boldsymbol{\frac{4}{10}} SE LEE “CUATRO DÉCIMOS”.

 

\boldsymbol{\frac{5}{7}} SE LEE “CINCO SÉPTIMOS”.

 

\boldsymbol{\frac{1}{8}} SE LEE “UN OCTAVO”.

LAS PARTES DE UN TODO

CADA PARTE DE UN TODO SE PUEDE REPRESENTAR POR MEDIO DE UNA FRACCIÓN. SEGÚN EL DENOMINADOR CADA PORCIÓN TENDRÁ UN NOMBRE DISTINTO. OBSERVA ESTA IMAGEN CON UN TODO DIVIDIDO DE 1 A 10 PARTES IGUALES.

¡A PRACTICAR!

1. ¿QUÉ FRACCIÓN REPRESENTAN ESTOS GRÁFICOS?

A. 

SOLUCIÓN
 

B. 

SOLUCIÓN
 

C. 

SOLUCIÓN
 

D. 

SOLUCIÓN

2. ¿CÓMO SE LEEN LAS SIGUIENTES FRACCIONES:

  • \frac{2}{10}
SOLUCIÓN
DOS DÉCIMOS.
  • \frac{1}{10}
SOLUCIÓN
UN DÉCIMO.
  • \frac{1}{4}
SOLUCIÓN
UN CUARTO.
  • \frac{4}{5}
SOLUCIÓN
CUATRO QUINTOS.
  • \frac{3}{6}
SOLUCIÓN
TRES SEXTOS.
RECURSOS PARA DOCENTES

Artículo “Fracciones”

En el siguiente artículo podrás encontrar un abordaje de las fracciones con diferentes estrategias didácticas.

VER

CAPÍTULO 1 / TEMA 3

NÚMEROS ENTEROS

¿Te has preguntado qué números utilizarías para representar temperaturas por debajo de 0 ºC? o ¿qué números utilizarías para indicar la altura del monte Everest? Para describir estas situaciones usamos los números enteros, un conjunto numérico que abarca desde los números negativos hasta los positivos.

Muchas situaciones de la vida cotidiana requieren el uso de los números enteros. Un ejemplo de ello es la economía a nivel mundial, la cual necesita de estos para poder registrar las entradas y salidas de dinero (las entradas serán enteros positivos y las salidas enteros negativos). Esto es con el fin de poder contabilizar las ganancias o las pérdidas.

¿QUÉ SON los NÚMEROS ENTEROS?

Los números enteros abarcan todos los números naturales \mathbb{N}, así como también el cero y los números negativos o menores que cero. Matemáticamente, el conjunto de números enteros es representado con la letra \mathbb{Z} y se expresa de la siguiente manera:

\mathbb{Z}=\left \{ ...,\, -3,\, -2,\, -1,\, 0,\, +1,\, +2,\, +3,...\right \}

Estos números continúan hasta infinito, tanto del lado de los positivos como del lado de los negativos.

Por lo general, los números enteros positivos \mathbb{Z}^{+} no requieren el uso del signo más (+) para resaltarlos, caso contrario ocurre con los enteros negativos \mathbb{Z}^{-}, que sí requieren el uso obligatorio del signo menos (−) para diferenciarlos.

Por ejemplo:

Los siguientes números enteros positivos+3.674 y +5.876.541 se pueden escribir de dos formas:

  • Con el signo positivo antes del número: +3.674 +5.876.541.
  • Sin el signo positivo antes del número: 3.674 y 5.876.541.

Por otra parte, los números enteros negativos 614 y 9.780 requieren el uso obligatorio del signo menos (−) antes de ellos. No colocar el signo negativo antes del número lo convierte en un número positivo.

 

LA RECTA NUMÉRICA

También es conocida como la recta real y se representa con una línea recta. Esta contiene todos los números reales \mathbb{R}.

¿Cómo dibujar una recta numérica?

Traza una línea de forma horizontal con flechas en ambos extremos como la siguiente:

Divide la línea en segmentos iguales con la misma distancia entre ellos:

Coloca el número cero (0) en el centro de la recta:Comienza a colocar los números en cada intervalo: del lado derecho del cero van los enteros positivos y del lado izquierdo van los enteros negativos.

Ubicación de los números en la recta numérica

La recta numérica puede contener:

    1. Enteros positivos y negativos como: −17 y +11.
    2. Números decimales o en forma de fracción como: −8/5 que es igual a −1,6 y 4/5 que es igual a 0,8.

¿Sabías qué?
La línea recta fue introducida por John Wallis, un matemático Inglés que alrededor del año 1670 la empleó para representar de modo gráfico los números naturales.

¡A practicar!

Ubica estos número en la recta numérica:

  • +150
Solución
  • −180
Solución
  • +19
Solución
  • 3/2
Solución

  • −0,5
Solución

APLICACIÓN DE NÚMEROS ENTEROS

Los números enteros son utilizados en muchas situaciones de nuestra vida, algunos ejemplos son los siguientes:

  • Para indicar la altitud o altura sobre el nivel del mar.

En todo nuestro planeta existen distintas altitudes, tal son los casos del monte Everest en el Himalaya, el cual posee una altitud de +8.848 msnm y la costa del mar Muerto que se encuentra a unos 417 msnm.

  • Para indicar los pisos de un edificio.

Al caminar por el centro de la ciudad habrás visto algún edificio, estos están divididos por pisos y cada piso corresponde a un número. El piso que se encuentra en el mismo nivel de la calle es la planta baja, le corresponde el número 0. Los niveles que están arriba de él se indican con enteros positivos y los que se encuentra debajo, llamados subterráneos o sótanos, se señalan con los negativos.

Otras aplicaciones

  • Para realizar mediciones de temperatura.

¿Has escuchado hablar del Polo Sur y el Polo Norte de nuestro planeta tierra? La temperatura en esos lugares puede variar entre los 89 ºC y los 0 ºC. A esos valores, por lo general se les llama temperaturas bajo 0.

Por otra parte, existen lugares como Kuwait con temperaturas que pueden llegar a los +63 ºC.

  • Para contabilizar pérdidas o ganancias.

Las cuentas bancarias realizan registros de entradas de dinero con números enteros positivos, y los retiros o pagos con los números enteros negativos.

Por ejemplo:

Una persona recibe 2.000 $ en su cuenta y luego realiza una transferencia de 1.000  $ para pagar una computadora. ¿Cuánto dinero tendrá en la cuenta luego de la transferencia?

Recibe dinero: +2.000 $

Transferencia de dinero: 1.000 $

Total de dinero en la cuenta: +2.000 $  1.000 $ = +1.000 $

Entonces, el dinero que la persona tendrá en su cuenta luego de realizar la transferencia será 1.000 $.

  • Para dibujar ejes de coordenadas o eje cartesiano se emplean los números enteros
Ejercicios

  • Juan se encuentra al nivel del mar y quiere escalar una montaña. Decide subir 50 m, luego desciende 25 m para tomar una herramienta que se le cayó. Al agarrar la herramienta decide terminar su escalada y sube 80 m. ¿A qué altura sobre el nivel del mar se encuentra?
Solución

Ubicación de Juan sobre el nivel del mar: 0 m

Juan sube: +50 m

Juan desciende: −25 m

Juan vuelve a subir: +80 m

Altura que escaló juan: 50 m − 25 m + 80 m = 105 m

Juan se encuentra a 105 metros sobre el nivel del mar.

  • Romina decide comprar un teléfono celular que cuesta 1.850 $, pero en su cuenta bancaria solo tiene 1.100 $. Decide decirle a su papá que le transfiera el dinero que le falta para comprar el teléfono y él le transfiere a su cuenta 1.350 $. ¿Cuánto dinero le quedó a Romina en su cuenta luego de comprar el teléfono?
Solución

Cuenta bancaria de Romina: +1.100 $

Transferencia del papá de Romina: +1.350 $

Compra del teléfono: −1.850 $

Total después de la compra: +1.100 $ + 1.350 $ − 1.850 $ = +600 $

A Romina le quedaron 600 $ en su cuenta luego de comprar el teléfono.

  • Felipe se encuentra parado en la posición +2 de una recta numérica, decide avanzar +6 posiciones y luego vuelve 11 posiciones atrás. ¿En qué posición quedó Felipe?
Solución

+2 + 6 − 11 = −3

Felipe quedó en la posición −3.

RECURSOS PARA DOCENTES

Artículo “La recta numérica”

Este artículo ayuda a complementar la información sobre la recta numérica.

VER

Artículo “La clasificación de los números”

Con este recurso se puede ampliar el conocimiento sobre la clasificación de los números.

VER